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Abstract. Recognition and localization of surgical detailed actions is
an essential component of developing a context-aware decision support
system. However, most existing detection algorithms fail to provide high-
accuracy action classes even having their locations, as they do not con-
sider the surgery procedure’s regularity in the whole video. This limita-
tion hinders their application. Moreover, implementing the predictions in
clinical applications seriously needs to convey model confidence to earn
entrustment, which is unexplored in surgical action prediction. In this
paper, to accurately detect fine-grained actions that happen at every
moment, we propose an anchor-context action detection network (ACT-
Net), including an anchor-context detection (ACD) module and a class
conditional diffusion (CCD) module, to answer the following questions:
1) where the actions happen; 2) what actions are; 3) how confidence
predictions are. Specifically, the proposed ACD module spatially and
temporally highlights the regions interacting with the extracted anchor
in surgery video, which outputs action location and its class distribu-
tion based on anchor-context interactions. Considering the full distri-
bution of action classes in videos, the CCD module adopts a denoising
diffusion-based generative model conditioned on our ACD estimator to
further reconstruct accurately the action predictions. Moreover, we uti-
lize the stochastic nature of the diffusion model outputs to access model
confidence for each prediction. Our method reports the state-of-the-art
performance, with improvements of 4.0% mAP against baseline on the
surgical video dataset.

Keywords: Action detection, Anchor-context, Conditional diffusion, Sur-
gical video
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1 Introduction

Surgery is often an effective therapy that can alleviate disabilities and reduce
the risk of death from common conditions [17]. While surgical procedures are
intended to save lives, errors within the surgery may bring great risks to the
patient and even cause sequelae [18], which emphasizes the development of a
computer-assisted system. A context-aware assistant system for surgery can not
only decrease intraoperative adverse events, and enhance the quality of inter-
ventional healthcare [28], but also contribute to surgeon training, and assist
procedure planning and retrospective analysis [9].

Designing intelligent assistance systems for operating rooms requires an un-
derstanding of surgical scenes and procedures [20]. Most current works pay atten-
tion to phase and step recognition [3,27], which is to get the major types of events
that occurred during the surgery. They merely provided very coarse descriptions
of scenes. As the granularity of action increases, the clinical utility becomes more
valuable in providing an accurate depiction of detailed motion [13, 19]. Recent
studies focus on fine-grained action recognition by modelling action as a group
of the instrument, its role, and its target anatomy and capturing their associa-
tions [7, 26]. Recognizing targets in different methods is dependent on different
surgical scenarios and it also significantly increases the complexity and time
consumption for anatomy annotation [30]. In addition, although most existing
methods can provide accurate action positions, the predicted action class is often
inaccurate. Moreover, they do not provide any information about the reliability
of their output, which is a key requirement for integrating into assistance systems
of surgery [11]. Thus, we propose a reliable surgical action detection method in
this paper, with high-accuracy action predictions and their confidence.

Mistrust is a major barrier to deep-learning-based predictions applied to clin-
ical implementation [14]. Existing works measuring the model uncertainty [1, 8]
often need several-time re-evaluations, and store multiple sets of weights. It is
hard for them to apply to surgery assistance applications to get confidence for
each prediction directly [10], and they are limited to improving prediction perfor-
mance. Conditional diffusion-based generative models have received significant
attention due to their ability to accurately recover the full distribution of data
guided by conditions from the perspective of diffusion probabilistic models [24].
However, they focus on generating high-resolution photo-realistic images. In-
stead, after observing our surgical video dataset, our conditional diffusion model
aims to reconstruct accurately class distribution. We also access the estimation
of confidence with the stochastic nature of the diffusion model.

Here, to predict accurately micro-action (fine-grained action) categories hap-
pening every moment, we achieve it with two modules. Specifically, a novel
anchor-context module for action detection is proposed to highlight the spatio-
temporal regions that are interacted with the anchors (we extract instrument
features as anchors), which includes surrounding tissues and movement informa-
tion. Then, with the constraints of class distributions and the surgical videos,
we propose a conditional diffusion model to cover the whole distribution of our
data and to accurately reconstruct new predictions based on full learning. Fur-
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Fig. 1: The pipeline of our ACTNet includes ACD and CCD modules.

thermore, our class conditional diffusion model also accesses uncertainty for each
prediction, through the stochasticity of outputs.

We summarize our main contributions as follows: 1) We develop an anchor-
context action detection network (ACTNet), including an anchor-context de-
tection (ACD) module and a class conditional diffusion (CCD) module, which
combines three tasks: i) where actions locate; ii) what actions are; iii) how con-
fident our model is about predictions. 2) For ACD module, we develop a spatio-
temporal anchor interaction block (STAB) to spatially and temporally highlight
the context related to the extracted anchor, which provides micro-action location
and initial class. 3) By conditioning on the full distribution of action classes in
the surgical videos, our proposed class conditional diffusion (CCD) model recon-
structs better class prototypes in a stochastic fashion, to provide a more accurate
estimations and push the assessment of the model confidence in its predictions.
4) We carry out comparison and ablation study experiments to demonstrate the
effectiveness of our proposed algorithm based on cataract surgery.

2 Methodology

The overall framework of our proposed ACTNet for reliable action detection
is illustrated in Fig. 1. Based on a video frame sequence, the ACD module
extracts anchor features and aggregates the spatio-temporal interactions with
anchor features by proposed STAB, which generates action locations and initial
action class distributions. Then considering the full distribution of action classes
in surgical videos, we use the CCD module to refine the action class predictions
and access confidence estimations.
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2.1 Our ACD module

Anchor extraction: Assuming a video X with T frames, denoted as X =
{xt}Tt=1, where xt is the t-th frame of the video. The task of this work is to esti-
mate all potential locations and classes P = {boxn, cn}Nn=1 for action instances
contained in video X, where boxn is the position of the n-th action happened,
cn is the action class of n-th action, and N is the number of action instances.
For video representation, this work tries to encode the original videos into fea-
tures based on the backbone ResNet50 [5] network to get each frame’s feature
F = {ft}Tt=1.

In surgical videos, the instruments, as action subjects, are significant to rec-
ognize the action. For instrument detection, it is very important but not very
complicated. Existing excellent object detection method like Faster R-CNN [22]
is enough to obtain results with high accuracy. After getting the detected instru-
ment anchors, RoIAlign is applied to extract the instrument features from frame
features. The instrument features are denoted as I = {it}Tt=1. Since multiple in-
struments exist in surgeries, our action detection needs to solve the problem that
related or disparate concurrent actions often lead to wrong predictions. Thus,
in this paper, we propose to provide action location and class considering the
spatio-temporal anchor interactions in the surgical videos, based on STAB.
Spatio-Temporal Action interaction Block (STAB): For several actions
like pushing, pulling, and cutting, there is no difference just inferred from the
local region in one frame. Thus we propose STAB to utilize spatial and temporal
interactions with an anchor to improve the prediction accuracy of the action
class, which finds actions with strong logical links to provide an accurate class.
The structure of STAB is shown in Fig. 1. We introduce spatial and temporal
interactions respectively in the following.

For spatial interaction: The instrument feature it acts as the anchor. In order
to improve the anchor features, the module has the ability to select value features
that are highly active with the anchor features and merge them. The formulation
is defined as: at = 1

C(ft)

∑
j∈Sj

h(ftj , it)g(ftj), where j is the index that enumerates

all possible positions of ft. A pairwise function h(·) computes the relationship
such as affinity between it and all ftj . In this work, dot-product is employed
to compute the similarity. The unary function g(ftj) computes a representation
of the input signal at the position j. The response is normalized by a factor
C(ft) =

∑
j∈Sj

h(ftj , it). Sj represents the set of all positions j. Through the

formulation, the output at obtains more information from the positions related
to the instrument and catches interactions in space for the actions.

For temporal interaction: We build memory features consisting of features in
consecutive frames: mt = [ft−L, ..., ft−1]. To effectively model temporal interac-
tions of the anchor, the network offers a powerful tool for capturing the complex
and dynamic dependencies that exist between elements in sequential data and
anchors. Same with the spatial interaction, we take it as an anchor and calculate
the interactions between the memory features and the anchor. The formulation
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Fig. 2: Overview of the class conditional diffusion (CCD) model.

is defined as: bt = 1
C(mt)

∑
j∈Tj

h(mtj , it)g(mtj),where Tj refers to the set of all

possible positions along the time series in the range of L. In this way, temporal
interactions with anchors are obtained. Then a global average pooling is carried
out on the spatial and temporal outputs. Action localizations and initial action
class distributions are produced based on the fully-connected classifier layer.

2.2 CCD module for reliable action detection

Since the surgical procedures follow regularity, we propose a CCD module to re-
construct the action class predictions considering the full distribution of action
classes in videos. The diffusion conditioned on the action classes and surgical
videos is adopted in our paper. Let y0 ∈ Rn be a sample from our data dis-
tribution. As shown in Fig. 2, a diffusion model specified in continuous time is
a generative model with latent yt, obeying a forward process qt(yt|yt−1) start-
ing at data y0 [6]. y0 indicates a one-hot encoded label vector. We treat each
one-hot label as a class prototype, i.e., we assume a continuous data and state
space, which enables us to keep the Gaussian diffusion model framework [2, 6].
The forward process and reverse process of unconditional diffusion are provided
in the supplementary material.

Here, for the diffusion model optimization can be better guided by mean-
ingful information, we integrate the ACD and our surgical video data as priors
or constraints in the diffusion training process. We design a conditional diffu-
sion model p̂θ(yt−1|yt, x) that is conditioned on an additional latent variable x.
Specifically, the model p̂θ(yt−1|yt, x) is built to approximate the corresponding
tractable ground-truth denoising transition step p̂t(yt−1|yt, y0, x). We specify the
reverse process with conditional distributions as [21]:

p̂t (yt−1|yt, y0, x) = p̂t (yt−1|yt, y0, fφ(x)) = N
(
yt−1; µ̂ (yt, y0, fφ(x)) , β̂tI

)
where µ̂ (yt, y0, fφ(x)) and β̂t are described in supplementary material. fφ(x)
is the prior knowledge of the relation between x and y0, i.e., the ACD module
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pre-trained with our surgical video dataset. The x indicates the input surgical
video frames. Since ground-truth step p̂t(yt−1|yt, y0, x) cannot get directly, the
model p̂θ(yt−1|yt, x) are trained by following loss function for estimating ϵθ to
approximate the ground truth:

L̂(θ) = Et,y0,ϵ,x

[
∥ϵ− ϵθ(x,

√
ᾱty0 +

√
1− ᾱtϵ+ (1−

√
ᾱt)fφ(x), fφ(x), t)∥2

]
where αt := 1−βt, ᾱt :=

∏t
s=1(1−βs), ϵ ∼ N(0, 1) and ϵθ(·) estimates ϵ using a

time-conditional network parameterized by θ. βt is a constant hyperparameter.
To produce model confidence for each action instance, we mainly calculate

the prediction interval width (IW). Specifically, we first sample N class prototype
reconstruction with the trained diffusion model. Then calculate the IW between
the 2.5th and 97.5th percentiles of the N reconstructed values for all test classes.
Compared with traditional classifiers to get deterministic outputs, the denoising
diffusion model is a preferable modelling choice due to its ability to produce
stochastic outputs, which enables confidence generation.

3 Experimental Results

Cataract surgical video Dataset: To perform reliable action detection, we
build a cataract surgical video dataset. Cataract surgery is a procedure to remove
the lens of the eyes and, in most cases, replace it with an artificial lens. The
dataset consists of 20 videos with a frame rate of 1 fps (a total of 17511 frames
and 28426 action instances). Under the direction of ophthalmologists, each video
is labelled frame by frame with the categories and locations of the actions. 49
types of action bounding boxes as well as class labels are included in our dataset.
The surgical video dataset is randomly split into a training set with 15 videos
(13583 frames) and a testing set with 5 videos (3928 frames).
Implementation Details: The proposed architecture is implemented using
the publicly available Pytorch Library. A model with ResNet50 backbone from
Faster R-CNN-benchmark [23] is adopted for our instrument anchor detection.
In STAB, we use ten adjacent frames. During inference, detected anchor boxes
with a confidence score larger than 0.8 are used. More implementation details
are listed in the supplementary material. The performances are evaluated with
official metric frame level mean average precision (mAP) at IoU = 0.1, 0.3, and
0.5, respectively, obtaining figures in the following named mAP10, mAP30 and
mAP50 with their mean mAPmean.
Method Comparison: In order to demonstrate the superiority of the proposed
method for surgical action detection, we carry out a comprehensive comparison
between the proposed method and the following state-of-the-art methods: 1)
single-stage algorithms, including the Single Shot Detector (SSD) [16], SSDLite
[25] and RetinaNet [12]. 2) two-stage algorithms, including Faster R-CNN [23],
Mask R-CNN [4], Dynamic R-CNN [29] and OA-MIL [15]. The data presented
in Table 1 clearly demonstrate that our method outperforms other approaches,
irrespective of the IoU threshold being set to 0.1, 0.3, 0.5, or the average values.
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Table 1: Methods comparison and ablation study on cataract video dataset.
Methods mAP10 mAP30 mAP50 mAPmean

Faster R-CNN [23] 0.388 0.384 0.371 0.381
SSD [16] 0.360 0.358 0.350 0.356
RetinaNet [12] 0.358 0.356 0.347 0.354
Mask R-CNN [4] 0.375 0.373 0.363 0.370
SSDlite [25] 0.305 0.304 0.298 0.302
Dynamic R-CNN [29] 0.315 0.310 0.296 0.307
OA-MIL [15] 0.395 0.394 0.378 0.389

backbone 0.373 0.365 0.360 0.366
+temporal 0.385 0.378 0.372 0.378
+spatial 0.394 0.385 0.377 0.385
+STAB 0.400 0.393 0.385 0.393
+CCD (ACTNet) 0.415 0.406 0.397 0.406

Notably, the results obtained after incorporating diffusion even surpass Faster
R-CNN by 2.5% and baseline by 4.0% in terms of average mAP. This finding
provides compelling evidence for the efficacy of our method in integrating spatio-
temporal interactive information under the guidance of anchors and leveraging
diffusion to optimize the category distribution. The quantitative results further
corroborate the effectiveness of our approach in Fig. 3, which shows that our
model does not only improve the performance of the baseline models but also
localizes accurately the regions of interest of the actions. More results are listed
in the supplementary material.
Ablation Study: To validate the effectiveness of our ACTNet, we have done
some ablation studies. We train and test the model with spatial interaction,
temporal interaction, spatio-temporal interaction (STAB), and finally together
with our CCD model. The testing results are shown in Fig. 3 and Table. 1.
For our backbone, it is achieved by concatenating the anchor features through
RoIAlign and the corresponding frame features to get the detected action classes.

The results reveal that the spatial and temporal interactions for instruments
can provide useful information to detect the actions. What’s more, spatial inter-
action has slightly better performance than temporal interaction. It may be led
by the number of spatially related action categories being slightly more than that
of temporally related action categories. It is worth noting that spatial interaction
and temporal interaction can be enhanced by each other and achieve optimal
performance. After being enhanced by the diffusion model conditioned on our
obtained class distributions and video frames, we get optimal performance.
Confidence analysis: To analyze the model confidence, we take the best predic-
tion for each instance to calculate the instance accuracy. We can observe from
Table 2 across the test set, the mean_IW of the class label among correctly
classified instances by ACTNet is significantly narrower compared to that of in-
correctly classified instances. This observation indicates that the model is more
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Fig. 3: Visualization on cataract dataset. We choose different actions to show
the results of (a) Faster R-CNN, (b) OA_MIL, and (c) our ACTNet. For each
example, we show the ground-truth (Blue), right predictions (Green) and wrong
predictions (Red). The actions are labelled from left to right. IW values (multi-
plied by 100) mean prediction interval width to show the level of confidence.

confident in its accurate predictions and is more likely to make errors when its
predictions are vague. Furthermore, upon comparing the mean_IW at the true
class level, we find that a more precise class tends to exhibit a larger disparity
between the correct and incorrect predictions. Fig. 3 also shows the confidence
estimations for some samples. We can see the correct prediction gets smaller IW
values compared with the incorrect one (The rightmost figure in column (c)),
which means it has more uncertainty for the incorrect prediction.

4 Conclusions

In this paper, we propose a conditional diffusion-based anchor-context spatio-
temporal action detection network (ACTNet) to achieve recognition and local-
ization of every occurring action in the surgical scenes. ACTNet improves the
accuracy of the predicted action class from two considerations, including spatio-
temporal interactions with anchors by the proposed STAB and full distribution
of action classes by class conditional diffusion (CCD) module, which also provides
uncertainty in surgical scenes. Experiments based on cataract surgery demon-
strate the effectiveness of our method. Overall, the proposed ACTNet presents a
promising avenue for improving the accuracy and reliability of action detection
in surgical scenes.
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Table 2: The mean_IW (multiplied by 100) results from our CCD module.
Class Instance Accuracy Mean_IW (Correct) Mean_IW (Incorrect)

grasp conjunctiva 487 0.702 0.91 (342) 9.78 (145)
aspirate lens cortex 168 0.613 1.37 (103) 15.82 (65)
chop lens nucleus 652 0.607 0.54 (396) 9.73 (256)
polish intraocular lens 222 0.572 0.90 (127) 8.48 (95)
aspirate lens nucleus 621 0.554 0.76 (344) 10.30 (277)
inject viscoelastic 112 0.536 2.17 (60) 9.14 (52)
Remove lens cortex 174 0.471 0.42 (82) 5.84 (92)
forceps null 280 0.464 2.67 (130) 8.38 (150)
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