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Abstract. Medical students and junior surgeons often rely on senior
surgeons and specialists to answer their questions when learning surgery.
However, experts are often busy with clinical and academic work, and
have little time to give guidance. Meanwhile, existing deep learning (DL)-
based surgical Visual Question Answering (VQA) systems can only pro-
vide simple answers without the location of the answers. In addition,
vision-language (ViL) embedding is still a less explored research in these
kinds of tasks. Therefore, a surgical Visual Question Localized-Answering
(VQLA) system would be helpful for medical students and junior sur-
geons to learn and understand from recorded surgical videos. We pro-
pose an end-to-end Transformer with the Co-Attention gaTed Vision-
Language (CAT-ViL) embedding for VQLA in surgical scenarios, which
does not require feature extraction through detection models. The CAT-
ViL embedding module is designed to fuse multimodal features from vi-
sual and textual sources. The fused embedding will feed a standard Data-
Efficient Image Transformer (DeiT) module, before the parallel classifier
and detector for joint prediction. We conduct the experimental valida-
tion on public surgical videos from MICCAI EndoVis Challenge 2017
and 2018. The experimental results highlight the superior performance
and robustness of our proposed model compared to the state-of-the-art
approaches. Ablation studies further prove the outstanding performance
of all the proposed components. The proposed method provides a promis-
ing solution for surgical scene understanding, and opens up a primary
step in the Artificial Intelligence (AI)-based VQLA system for surgical
training. Our code is available at github.com/longbai1006/CAT-ViL.

1 Introduction

Specific knowledge in the medical domain needs to be acquired through exten-
sive study and training. When faced with a surgical scenario, patients, medical
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students, and junior doctors usually come up with various questions that need
to be answered by surgical experts, and therefore, to better understand com-
plex surgical scenarios. However, the number of expert surgeons is always in-
sufficient, and they are often overwhelmed by academic and clinical workloads.
Therefore, it is difficult for experts to find the time to help students individ-
ually [23, 25]. Automated solutions have been proposed to help students learn
surgical knowledge, skills, and procedures, such as pre-recorded videos, surgical
simulation and training systems [14,19], etc. Although students may learn knowl-
edge and skills from these materials and practices, their questions still need to
be answered by experts. Recently, several approaches [23,25] have demonstrated
the feasibility of developing safe and reliable VQA models in the medical field.
Specifically, Surgical-VQA [23] made effective answers regarding tools and or-
gans in robotic surgery, but they were still unable to help students make sense
of complex surgical scenarios. For example, suppose a student asks a question
about the tool-tissue interaction for a specific surgical tool, the VQA model can
only simply answer the question, but cannot directly indicate the location of the
tool and tissue in the surgical scene. Students will still need help understanding
this complex surgical scene. Another problem with Surgical-VQA is that their
sentence-based VQA model requires datasets with annotation in the medical
domain, and manual annotation is time-consuming and laborious.

Currently, extensive research and progress have been made on VQA tasks in
the computer vision domain [18]. Models using long-short term memory mod-
ules [30], attention modules [25], and Transformer [18] significantly boost the
performance in VQA tasks. Furthermore, FindIt [17] proposed a unified Trans-
former model for joint object detection and ViL tasks. However, firstly, most of
these models acquire the visual features of key targets through object detection
models. In this case, the VQA performance strongly depends on the object de-
tection results, which hinders the global understanding of the surgical scene [24],
and makes the overall solution not fully end-to-end. Second, many VQA mod-
els employ simple additive, averaging, scalar product, or attention mechanisms
when fusing heterogeneous visual and textual features. Nevertheless, in hetero-
geneous feature fusion, each feature represents different meanings, and simple
techniques cannot achieve the best intermediate representation from heteroge-
neous features. Finally, the VQA model cannot highlight specific regions in the
image relevant to the question and answer. Supposing the location of the object
in the surgical scene can be known along with the answer by VQLA models,
students can compare it with the surrounding tissues, different surgical scenes,
preoperative scan data, etc., to better understand the surgical scene [4].

In this case, we propose CAT-ViL DeiT for VQLA tasks in surgical scene
understanding. Specifically, our contributions are three-fold: (1) We carefully
design a Transformer-based VQLA model that can relate the surgical VQA and
localization tasks at an instance level, demonstrating the potential of AI-based
VQLA system in surgical training and surgical scene understanding. (2) In our
proposed CAT-ViL embedding, the co-attention module allows the text em-
beddings to have instructive interaction with visual embeddings, and the gated
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module works to explore the best intermediate representation for heterogeneous
embeddings. (3) With extensive experiments, we demonstrate the extraordinary
performance and robustness of our CAT-ViL DeiT in localizing and answering
questions in surgical scenarios. We compare the performance of detection-based
and detection-free feature extractors. We remove the computationally costly and
error-prone detection proposals to achieve superior representation learning and
end-to-end real-time applications.

2 Methodology

2.1 Preliminaries

VisualBERT [18] generates text embeddings (including token embedding et,
segment embedding es, and position embedding ep) based on the strategy of
natural language model BERT [10], and uses object detection model to extract
visual embeddings (consisting of visual features representation fv, segment em-
bedding fs and position embedding fp). Then, it concatenates visual and text
embeddings before feeding the subsequent multilayer Transformer module.

Multi-Head Attention [27] can focus limited attention on key and high-
value information. In each head hi, give the certain query q ∈ Rdq , key matrix
K ∈ Rdk , value matrix V ∈ Rdv , the attention for each head is calculated as hi =

A
(
W

(q)
i q,W

(K)
i K,W

(V )
i V

)
. W

(q)
i ∈ Rpq×dq , W

(k)
i ∈ Rpk×dk , W

(v)
i ∈ Rpv×dv

are learnable parameters, and A represents the function of single-head attention
aggregation. A linear conversion is then applied for the attention aggregation
from multiple heads: h = MA(Wo [h1∥ . . . ∥hh]). Wo ∈ Rpo×hpv is the learnable
parameters in multiple heads. Each head may focus on a different part of the
input to achieve the optimal output.

2.2 CAT-ViL DeiT

We present CAT-ViL DeiT to process the information from different modalities
and implement the VQLA task in the surgical scene. DeiT [26] serves as the
backbone of our network. As shown in Fig. 1, the network consists of a vision
feature extractor, a customized trained tokenizer, a co-attention gated embed-
ding module, a standard DeiT module, and task-specific heads.

Feature Extraction: Taking a given image and the associated question, conven-
tional VQA models usually extract visual features via object proposals [18, 30].
Instead, we employ ResNet18 [12] pre-trained on ImageNet [9] as our visual fea-
ture extractor. This design enables faster inference speed and global understand-
ing of given surgical scenes. The text embeddings are acquired via a customized
pre-trained tokenizer [23]. The CAT-ViL embedding module then processes and
fuses the input embeddings from different modalities.

CAT-ViL Embedding: In the following, the extracted features are processed
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into visual and text embeddings following VisualBERT [18] as described in Sec-
tion 2.1. However, VisualBERT [18] and VisualBERT ResMLP [23] naively con-
catenate the embeddings from different modalities without optimizing the in-
termediate representation between heterologous embeddings. In this case, infor-
mation and statistical representations from different modalities cannot interact
perfectly and serve subsequent tasks.
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Fig. 1. The proposed network architecture. The network components include a vi-
sual feature extractor, tokenizer, CAT-ViL embedding module (embedding setup, co-
attention learning, gated module), per-trained DeiT block, and task-specific heads.
‘Attn’ represents ‘Attention’.

Inspired by [3, 30], we replace the naive concatenation operation with a co-
attention gated ViL module. The gated module can explore the best combination
of the two modalities. Co-attention learning enables active information inter-
action between visual and text embeddings. Specifically, the guided-attention
module is applied to infer the correlation between the visual and text embed-
dings. The normal self-attention module contains the multi-head attention layer,
a feed-forward layer, and ReLU activation. The guide-attention module also con-
tains the above components, but its input is from both two modalities, in which
the q is from visual embeddings and K,V are from text embeddings:

hi = A
(
W

(q)
i qvisual,W

(K)
i Ktext,W

(V)
i Vtext

)
(1)

Therefore, the visual embeddings shall be reconstructed with the original query,
and the key and value of the text embeddings, which can realize the text embed-
dings to have instructive information interaction with the visual embeddings,
and help the model to focus on the targeted image context related to the ques-
tion. Six guided-attention layers are applied in our network. Thus, the correlation
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between questions and image regions can be gradually constructed. Besides, we
also build six self-attention blocks for both visual and text embeddings to boost
the internal relationship within each modality. This step can also avoid ‘over’
guidance and seek a trade-off. Then, the attended text embeddings and text-
guided attended visual embedding shall be output from the co-attention module
and propagated through the gated module.

Compared to the naive concatenation [8], summation [28], or the multilayer
perceptron (MLP) layer [30], this learnable gated neuron-based model can con-
trol the contribution of multimodal input to output through selective activation
(set as tanh here). The gate node α is employed to control the weight for selec-
tive visual and text embedding aggregation. The equations of the gated module
are:

Eo = w ∗ tanh (θv ·Ev) + (1−w) ∗ tanh (θt ·Et)

w = α (θw · [Ev∥Et])
(2)

Ev and Et denotes visual and text embeddings, respectively. (θω, θv, θt) are set
as learnable parameters. [· ∥ ·] means the concatenation operation. Eo is the final
output embeddings. The activation function internally encodes the text and vi-
sual embeddings separately, and the gate weights are used for embedding fusion.
This method is uncomplicated and effective, and can optimize the intermediate
aggregation of visual and text embeddings while constraining the model.

Subsequently, the fused embeddings Eo shall feed the pre-trained DeiT-
Base [26] module before the task-specific heads. The pre-trained DeiT-Base
module can learn the joint representation, resolve ambiguous groundings from
multimodel information, and maximize performance.

Prediction Heads: The classification head, following the normal classification
strategy, is a linear layer with Softmax activation. Regarding the localization
head, we follow the setup in Detection with Transformers (DETR) [7]. A simple
feed-forward network (FFN) with a 3-layer perceptron, ReLU activation, and a
linear projection layer is employed to fit the coordinates of the bounding boxes.
The entire network is therefore built end-to-end without multi-stage training.

Loss Function: Normally, the cross-entropy loss LCE serves as our classifica-
tion loss. The combination of L1-norm and Generalized Intersection over Union
(GIoU) loss [22] is adopted to conduct bounding box regression. GIoU loss [22]
further emphasizes both overlapping and non-overlapping regions of bounding
boxes. Then, the final loss function is L = LCE + (LGIoU + L1).

3 Experiments

3.1 Dataset

EndoVis 2018 Dataset is a public dataset with 14 robotic surgery videos from
MICCAI Endoscopic Vision Challenge [1]. The VQLA annotations are publicly
accessible by [4], in which the QA pairs are from [24] and the bounding box
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Q: Where is bipolar forceps located?

Ground Truth: left bottom

VisualBERT: left bottom

VisualBERT ResMLP: left bottom

CAT-ViL DeiT (Ours): left bottom

MCAN: left bottom

VQA-DeiT: left top

Q: What is the state of monopolar 
curved scissors?

Ground Truth: Cutting

VisualBERT: Idle

VisualBERT ResMLP: Cutting

CAT-ViL DeiT (Ours): Cutting

MCAN: Cutting

VQA-DeiT: Idle

MUTAN: Cutting

MFH: Cutting

BlockTucker: Cutting

MUTAN : left bottom

MFH: left bottom

BlockTucker: left top

Fig. 2. Qualitative comparison on the VQLA task. Our CAT-ViL DeiT (Yellow) dis-
plays state-of-the-art (SOTA) performance on generating the answers and location
against VisualBERT (light blue) [18], VisualBERT ResMLP (green) [23], MCAN (or-
ange) [30], VQA-DeiT (purple) [26], MUTAN (gray) [5], MFH (dark blue) [31], and
BlockTucker (pink) [6]. The Ground Truth bounding box is red.

annotations are from [15]. Specifically, the QA pairs include 18 different single-
word answers regarding organs, surgical tools, and tool-organ interactions. When
the question is about organ-tool interactions, the bounding box will contain both
the organ and the tool. We follow [23] to use video [1, 5, 16] as the test set and
the remaining as the training set. Statistically, the training set includes 1560
frames and 9014 QA pairs, and the test set has 447 frames and 2769 QA pairs.

EndoVis 2017 Dataset is also a publicly available dataset from the MIC-
CAI Endoscopic Vision Challenge 2017 [2], and the annotations are also available
by [4]. We employ this dataset as an external validation dataset to demonstrate
the generalization capability of our model in various surgical domains. Specifi-
cally, we manually select and annotate frames with common organs, tools, and
interactions in EndoVis 2017 Dataset, generating 97 frames with 472 QA pairs.
We conduct no training but only testing on this external validation dataset.

3.2 Implementation Details

We conduct our comparison experiments against VisualBERT [18], VisualBERT
ResMLP [23], MCAN [30], VQA-DeiT [26], MUTAN [5], MFH [31], and Block-
Tucker [6]. In VQA-DeiT, we use pre-trained DeiT-Base block [26] to replace
the multilayer Transformer module in VisualBERT [18]. To keep a fair compar-
ison of VQLA tasks, we use the same prediction heads in and loss function in
Section 2.2. The evaluation metrics are accuracy, f-score, and mean intersection
over union (mIoU) [22]. All models are trained on NVIDIA RTX 3090 GPUs
using Adam optimizer [16] with PyTorch. The epoch, batch size, and learning
rate are set to 80, 64, and 1 × 10−5, respectively. The experimental results are
the average results with five different random seeds.

3.3 Results

Fig. 2 presents the visualization and qualitative comparison of the surgical VQLA
system. Quantitative evaluation in Table 1 presents that our proposed model us-
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Table 1. Comparison experiments on EndoVis-18 and EndoVis-17 datasets.

Models
Visual Feature EndoVis-18 EndoVis-17

Detection
Inference

Speed
Acc F-Score mIoU Acc F-Score mIoU

VisualBERT [18]

FRCNN [21] 55.28 ms

0.5973 0.3223 0.7340 0.4382 0.3743 0.6822
VisualBERT R [23] 0.6064 0.3226 0.7305 0.4267 0.3506 0.6947

MCAN [30] 0.6084 0.3428 0.7257 0.4258 0.3035 0.6832
VQA-DeiT [26] 0.6089 0.3217 0.7338 0.4492 0.3213 0.7134

MUTAN [5] 0.6049 0.3238 0.7217 0.4364 0.3206 0.6870
MFH [31] 0.6179 0.3158 0.7227 0.3729 0.2048 0.7183

BlockTucker [6] 0.6067 0.3414 0.7313 0.4364 0.3210 0.6825
CAT-ViL DeiT (Ours) 0.6192 0.3521 0.7482 0.4555 0.3676 0.7049

VisualBERT [18]

% 6.64 ms

0.6268 0.3329 0.7391 0.4005 0.3381 0.7073
VisualBERT R [23] 0.6301 0.3390 0.7352 0.4190 0.3370 0.7137

MCAN [30] 0.6285 0.3338 0.7526 0.4137 0.2932 0.7029
VQA-DeiT [26] 0.6104 0.3156 0.7341 0.3797 0.2858 0.6909

MUTAN [5] 0.6283 0.3395 0.7639 0.4242 0.3482 0.7218
MFH [31] 0.6283 0.3254 0.7592 0.4103 0.3500 0.7216

BlockTucker [6] 0.6201 0.3286 0.7653 0.4221 0.3515 0.7288
CAT-ViL DeiT (Ours) 0.6452 0.3321 0.7705 0.4491 0.3622 0.7322

1 2 3 4 5
Severity Level

0.54

0.56

0.58

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

Robustness Evaluation on the Question-Answering Task
VB
VBRM
MCAN
VQA-DeiT
MUTAN
MFH
BT
CAT-ViL

1 2 3 4 5
Severity Level

0.70

0.72

0.74

0.76

0.78

0.80

m
Io

U

Robustness Evaluation on the Localization Task
VB
VBRM
MCAN
VQA-DeiT
MUTAN
MFH
BT
CAT-ViL

Fig. 3. Robustness experiments on the EndoVis-18 dataset. We process the data with
18 corruption methods at each severity level and average the prediction results.

ing ResNet18 [12] feature extractor suppresses all SOTAmodels significantly. Ad-
ditionally, we compare the performance between using object proposals (Faster
RCNN [21]) and using features from the entire image (ResNet18 [12]). The ex-
perimental results in EndoVis-18 show that removing the object proposal model
improves the performance appreciably on both question-answering and localiza-
tion tasks, which demonstrates the impact of this approach in correcting po-
tential false detections. Meanwhile, in the external validation set - EndoVis-17,
our CAT-ViL DeiT with RCNN feature extractor suffers from domain shift and
class imbalance problems, thus achieving poor performance. However, our final
model, CAT-ViL DeiT with ResNet18 feature extractor, endows the network
with global awareness and outperforms all baselines in terms of accuracy and
mIoU, proving the superiority of our method. The inference speed is also enor-
mously accelerated, demonstrating its potential in real-time applications.
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Table 2. Ablation study on different fusion strategies. All experiments use the same
feature extractor, DeiT backbone, and prediction heads. ‘Attn’ denotes ‘Attention’.

Fusion Strategies
EndoVis-18 EndoVis-17

Acc F-Score mIoU Acc F-Score mIoU

Concatenation [18] 0.6104 0.3156 0.7341 0.3797 0.2858 0.6909
JCA [20] 0.6024 0.3010 0.7527 0.3750 0.2835 0.7145
MMHCA [11] 0.6096 0.3124 0.7449 0.3581 0.3001 0.7077
MAT [29] 0.6186 0.3179 0.7415 0.3369 0.2850 0.6956
Gated Fusion [3] 0.6071 0.3793 0.7683 0.4030 0.2824 0.7388
Self-Attn [27] 0.5923 0.3095 0.7271 0.3686 0.2673 0.6718
Guided-Attn [30] 0.6194 0.3134 0.7310 0.3517 0.2290 0.7185
Co-Attn (Bi) 0.6056 0.3090 0.7206 0.3644 0.3083 0.7044
Co-Attn (V2T) 0.6392 0.3263 0.7218 0.3453 0.2265 0.7143
Co-Attn (T2V) [30] 0.6136 0.3208 0.7273 0.3805 0.3026 0.6870
Self-Attn Gated (Ours) 0.6249 0.3078 0.7314 0.3263 0.2897 0.7086
Guided-Attn Gated (Ours) 0.6280 0.3127 0.7651 0.3962 0.3337 0.7145
CAT-ViL (Bi) (Ours) 0.6230 0.3121 0.7415 0.4258 0.3593 0.7282
CAT-ViL (V2T) (Ours) 0.6352 0.3259 0.7600 0.4301 0.3543 0.7074
CAT-ViL (T2V) (Ours) 0.6452 0.3321 0.7705 0.4491 0.3622 0.7322

Furthermore, a robustness experiment is conducted to observe the model
stability when test data is corrupted. We set 18 types of corruption on the test
data based on the severity level from 1 to 5 by following [13]. Then, the per-
formance of our model and all comparison methods on each corruption severity
level is presented in Fig. 3. As the severity increases, the performance of all
models degrades. However, our model shows good stability against corruption,
and presents the best prediction results at each severity level. The excellent
robustness of our model brings great potential for real-world applications.

Finally, we conduct an ablation study on different ViL embedding techniques
with the same feature extractors and DeiT backbone in Table 2. We compare
with Concatenation [18], Joint Cross-Attention (JCA) [20], Multimodal Multi-
Head Convolutional Attention (MMHCA) [11], Multimodal Attention Trans-
formers (MAT) [29], Gated Fusion [3], Self-Attention Fusion [27], Guided-Attention
Fusion [30], Co-Attention Fusion (T2V: Text-Guide-Vision) [30]. Besides, we ex-
plore the Co-Attention module with different directions (V2T: Vision-Guide-
Text, and Bidirectional). Furthermore, we also incorporate the Gated Fusion
with different attention mechanisms (Self-Attention, Guided-Attention, Bidi-
rectional Co-Attention, Co-Attention (V2T), Co-Attention (T2V)) for detailed
comparison. They are shown as ‘Self-Attn Gated’, ‘Guided-Attn Gated’, ‘CAT-
ViL (Bi)’, ‘CAT-ViL (V2T)’ and ‘CAT-ViL (T2V)’ in Table 2. The study proves
the superior performance of our ViL embedding strategy against other advanced
methods. We also demonstrate that integrating attention feature fusion tech-
niques and the gated module will bring performance improvement.
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4 Conclusions

This paper presents a Transformer model with CAT-ViL embedding for the sur-
gical VQLA tasks, which can give the localized answer based on a specific surgical
scene and associated question. It brings up a primary step in the study of VQLA
systems for surgical training and scene understanding. The proposed CAT-ViL
embedding module is proven capable of optimally facilitating the interaction and
fusion of multimodal features. Numerous comparative, robustness, and ablation
experiments display the leading performance and stability of our proposed model
against all SOTA methods in both question-answering and localization tasks, as
well as the potential of real-time and real-world applications. Furthermore, our
study opens up more potential VQA-related problems in the medical commu-
nity. Future work can be focused on quantifying and improving the reliability
and uncertainty of these safety-critical tasks in the medical domain.
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Supplementary Materials for “CAT-ViL: Co-Attention
Gated Vision-Language Embedding for Visual Question
Localized-Answering in Robotic Surgery”
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Fig. 4. Visualization of our corrupted data for robustness experiment.

Table 3. Ablation Study on different co-attention layers.

Number of Layers
EndoVis-18 EndoVis-17

Acc F-Score mIoU Acc F-Score mIoU

2 0.6212 0.3100 0.7686 0.4573 0.3399 0.7352
4 0.6255 0.3346 0.7550 0.4364 0.3402 0.7176

6 (Ours) 0.6452 0.3321 0.7705 0.4491 0.3622 0.7322
8 0.6355 0.3070 0.7696 0.4619 0.3265 0.7246
10 0.6306 0.3135 0.7696 0.3877 0.3023 0.7258
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