Abstract
Designing a dental crown is a time-consuming and labor-intensive process. Our goal is to simplify crown design and minimize the tediousness of making manual adjustments while still ensuring the highest level of accuracy and consistency. To this end, we present a new end-to-end deep learning approach, coined Dental Mesh Completion (DMC), to generate a crown mesh conditioned on a point cloud context. The dental context includes the tooth prepared to receive a crown and its surroundings, namely the two adjacent teeth and the three closest teeth in the opposing jaw. We formulate crown generation in terms of completing this point cloud context. A feature extractor first converts the input point cloud into a set of feature vectors that represent local regions in the point cloud. The set of feature vectors is then fed into a transformer to predict a new set of feature vectors for the missing region (crown). Subsequently, a point reconstruction head, followed by a multi-layer perceptron, is used to predict a dense set of points with normals. Finally, a differentiable point-to-mesh layer serves to reconstruct the crown surface mesh. We compare our DMC method to a graph-based convolutional neural network which learns to deform a crown mesh from a generic crown shape to the target geometry. Extensive experiments on our dataset demonstrate the effectiveness of our method, which attains an average of 0.062 Chamfer Distance. The code is available at: https://github.com/Golriz-code/DMC.git
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
https://www.healthdirect.gov.au/dental-crown-procedure (2021)
Hwang, J.-J., Azernikov , S., Efros, A.A., Yu, S.X.: Learning beyond human expertise with generative models for dental restorations (2018)
Yuan, F., et al.: Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks. Int. J. Numer. Methods Biomed. Eng. 36(5), e3321 (2020)
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A. : Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Lessard, O., Guibault, F., Keren, J., Cheriet, F.: Dental restoration using a multi-resolution deep learning approach. In: IEEE 19th International Symposium on Biomedical Imaging, (ISBI) (2022)
Zhu, H., Jia, X., Zhang, C., Liu, T.: ToothCR: a two-stage completion and reconstruction approach on 3D dental model. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds.) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. LNCS, vol. 13282. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05981-0_13
Ping, Y., Wei, G., Yang, L., Cui, Z., Wang, W.: Self-attention implicit function networks for 3D dental data completion. Comput. Aided Geometr. Design 90, 102026 (2021)
Hosseinimanesh, G., et al. : Improving the quality of dental crown using a transformer-based method. Medical Imaging 2023: Physics of Medical Imaging, vol. 12463. SPIE (2023)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4
Huang, Z., Yu, Y., Xu, J., Ni, F., Le, X.: PF-Net: point fractal network for 3D point cloud completion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7662–7670 (2020)
Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: PoinTr: diverse point cloud completion with geometry-aware transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12498–12507
Fei, B., Yang, W., Chen, W., Li, Z., et al.: Comprehensive review of deep learning-based 3D point clouds completion processing and analysis. arXiv Prepr. arXiv2203.03311 (2022)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. Deep Hierarchical Feature Learning on Point Sets in a Metric Space (2017)
Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 206–215 (2018)
Xiang, P., et al.: SnowflakeNet: point cloud completion by snowflake point deconvolution with skip-transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5499–5509 (2021). https://doi.org/10.48550/arxiv.2108.04444
Peng, S., Jiang, C., Liao, Y., Niemeyer, M., Pollefeys, M., Geiger, A.: Shape as points: a differentiable poisson solver. Journal, Advances in Neural Information Processing Systems (2021)
Litany, O., Bronstein, A., Bronstein, M., Makadia, A.: Deformable shape completion with graph convolutional autoencoders. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1886–1895 (2017)
Hui, K.-H., Li, R., Hu, J., Fu, C.-W.: Neural template: topology-aware reconstruction and disentangled generation of 3D meshes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18572–18582 (2022)
Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 3DV, pp. 728–737 (2018)
Alsheghri, A., et al. : Semi-supervised segmentation of tooth from 3D scanned dental arches. In: Medical Imaging, SPIE (2022)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high-resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 87, pp. 163–169, New York, NY, USA, 1987. Association for Computing Machinery
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. Journal, arXiv preprint arXiv:1711.05101 (2017)
Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3D reconstruction networks learn? CoRR, abs/1905.03678 (2019)
Foti, S., et al.: Clarkson: intraoperative liver surface completion with graph convolutional VAE. In: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, pp. 198–207 (2020)
Sarkar, K., Varanasi, K., Stricker, D.: Learning quadrangulated patches for 3D shape parameterization and completion. In: International Conference on 3D Vision (3DV), pp. 383–392 (2017)
Kazhdan, M., Hoppe, H.: Johns Hopkins University: screened poisson surface reconstruction. ACM Trans. Graph. 32(3), 1–13 (2013)
Chen, X., et al.: Shape registration with learned deformations for 3D shape reconstruction from sparse and incomplete point clouds. J. Med. Image Anal. 74, 102228 (2021). Elsevier
Wang, Y., et al.: Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. (TOG) 38, 1–12 (2019)
Acknowledgments
This work was funded by Kerenor Dental Studio, Intellident Dentaire Inc..
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hosseinimanesh, G., Ghadiri, F., Guibault, F., Cheriet, F., Keren, J. (2023). From Mesh Completion to AI Designed Crown. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14228. Springer, Cham. https://doi.org/10.1007/978-3-031-43996-4_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-43996-4_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-43995-7
Online ISBN: 978-3-031-43996-4
eBook Packages: Computer ScienceComputer Science (R0)