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Abstract. To obtain high-quality positron emission tomography (PET) images 
while minimizing radiation exposure, various methods have been proposed for 
reconstructing standard-dose PET (SPET) images from low-dose PET (LPET) 
sinograms directly. However, current methods often neglect boundaries during 
sinogram-to-image reconstruction, resulting in high-frequency distortion in the 
frequency domain and diminished or fuzzy edges in the reconstructed images. 
Furthermore, the convolutional architectures, which are commonly used, lack the 
ability to model long-range non-local interactions, potentially leading to inaccu-
rate representations of global structures. To alleviate these problems, in this pa-
per, we propose a transformer-based model that unites triple domains of sino-
gram, image, and frequency for direct PET reconstruction, namely TriDo-For-
mer. Specifically, the TriDo-Former consists of two cascaded networks, i.e., a 
sinogram enhancement transformer (SE-Former) for denoising the input LPET 
sinograms and a spatial-spectral reconstruction transformer (SSR-Former) for re-
constructing SPET images from the denoised sinograms. Different from the va-
nilla transformer that splits an image into 2D patches, based specifically on the 
PET imaging mechanism, our SE-Former divides the sinogram into 1D projec-
tion view angles to maintain its inner-structure while denoising, preventing the 
noise in the sinogram from prorogating into the image domain. Moreover, to mit-
igate high-frequency distortion and improve reconstruction details, we integrate 
global frequency parsers (GFPs) into SSR-Former. The GFP serves as a learnable 
frequency filter that globally adjusts the frequency components in the frequency 
domain, enforcing the network to restore high-frequency details resembling real 
SPET images. Validations on a clinical dataset demonstrate that our TriDo-For-
mer outperforms the state-of-the-art methods qualitatively and quantitatively.   

Keywords: Positron Emission Tomography (PET), Triple-Domain, Vision 
Transformer, Global Frequency Parser, Direct Reconstruction. 
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1 Introduction 

As an in vivo nuclear medical imaging technique, positron emission tomography (PET) 
enables the visualization and quantification of molecular-level activity and has been 
extensively applied in hospitals for disease diagnosis and intervention [1,2]. In clinic, 
to ensure that more diagnostic information can be retrieved from PET images, physi-
cians prefer standard-dose PET scanning which is obtained by injecting standard-dose 
radioactive tracers into human bodies. However, the use of radioactive tracers inevita-
bly induces potential radiation hazards. On the other hand, reducing the tracer dose 
during the PET scanning will introduce unintended noise, thus leading to degraded im-
age quality with limited diagnostic information. To tackle this clinical dilemma, it is of 
high interest to reconstruct standard-dose PET (SPET) images from the corresponding 
low-dose PET (LPET) data (i.e., sinograms or images). 

In the past decade, deep learning has demonstrated its promising potential in the 
field of medical images [3-6]. Along the research direction of PET reconstruction, 
most efforts have been devoted to indirect reconstruction methods [7-16] which lever-
age the LPET images pre-reconstructed from the original projection data (i.e., LPET 
sinograms) as the starting point to estimate SPET images. For example, inspired by 
the preeminent performance of generative adversarial network (GAN) in computer vi-
sion [17, 18], Wang et al. [9] proposed a 3D conditional generative adversarial net-
work (3D-cGAN) to convert LPET images to SPET images. However, beginning 
from the pre-reconstructed LPET images rather than the original LPET sinograms, 
these indirect methods may lose or blur details such as edges and small-size organs in 
the pre-reconstruction process, leading to unstable and compromised performance. 

To remedy the above limitation, several studies focus on the more challenging direct 
reconstruction methods [19-27] which complete the reconstruction from the original 
sinogram domain (i.e., LPET sinograms) to the image domain (i.e., SPET images). Par-
ticularly, Haggstrom et al. [19] proposed DeepPET, employing a convolutional neural 
network (CNN)-based encoder-decoder network to reconstruct SPET images from 
LPET sinograms. Although these direct methods achieve excellent performance, they 
still have the following limitations. First, due to the lack of consideration for the bound-
aries, the reconstruction from the sinogram domain to the image domain often leads to 
distortion of the reconstructed image in the high-frequency part of the frequency do-
main, which is manifested as blurred edges. Second, current networks ubiquitously em-
ploy CNN-based architecture which is limited in modeling long-range semantic de-
pendencies in data. Lacking such non-local contextual information, the reconstructed 
images may suffer from missing or inaccurate global structure. 

In this paper, to resolve the first limitation above, we propose to represent the recon-
structed SPET images in the frequency domain, then encourage them to resemble the 
corresponding real SPET images in the high-frequency part. As for the second limita-
tion, we draw inspiration from the remarkable progress of vision transformer [28] in 
medical image analysis [29, 30]. Owing to the intrinsic self-attention mechanism, the 
transformer can easily correlate distant regions within the data and capture non-local 
information. Hence, the transformer architecture is considered in our work.  
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Overall, we propose an end-to-end transformer model dubbed TriDo-Former that 
unites triple domains of sinogram, image, and frequency to directly reconstruct the clin-
ically acceptable SPET images from LPET sinograms. Specifically, our TriDo-Former 
is comprised of two cascaded transformers, i.e., a sinogram enhancement transformer 
(SE-Former) and a spatial-spectral reconstruction transformer (SSR-Former). The SE-
Former aims to predict denoised SPET-like sinograms from LPET sinograms, so as to 
prevent the noise in sinograms from propagating into the image domain. Given that 
each row of the sinogram is essentially the projection at a certain imaging views angle, 
dividing it into 2D patches and feeding them directly into the transformer will inevita-
bly break the continuity of each projection view. Therefore, to retain the inner-structure 
of sinograms and filter the noise, we split a sinogram by rows and obtain a set of 1D 
sequences of different imaging view angles. Then, the relations between view angles 
are modeled via the self-attention mechanism in the SE-Former. Note that the SE-
Former is designed specifically for the sinogram domain of LPET to effectively reduce 
noise based on the imaging mechanisms of PET. The denoised sinograms can serve as 
a better basis for the subsequent sinogram-to-image reconstruction. The SSR-Former is 
designed to reconstruct SPET images from the denoised sinograms. In pursuit of better 
image quality, we construct the SSR-Former by adopting the powerful swin transformer 
[31] as the backbone. To compensate for the easily lost high-frequency details, we pro-
pose a global frequency parser (GFP) and inject it into the SSR-Former. The GFP acts 
as a learnable frequency filter to globally modify the components of specific frequen-
cies of the frequency domain, forcing the network to learn accurate high-frequency de-
tails and produce construction results with shaper boundaries. Through the above triple-
domain supervision, our TriDo-Former exhausts the model representation capability, 
thereby achieving better reconstructions. 

The contributions of our proposed method can be described as follows. (1) To fully 
exploit the triple domains of sinogram, image, and frequency while capturing global 
context, we propose a novel triple-domain transformer to directly reconstruct SPET 
images from LPET sinograms. To our knowledge, we are the first to leverage both 
triple-domain knowledge and transformer for PET reconstruction. (2) We develop a 
sinogram enhancement transformer (SE-Former) that is tailored for the sinogram do-
main of LPET to suppress the noise while maintaining the inner-structure, thereby pre-
venting the noise in sinograms from propagating into the image domain during the si-
nogram-to-image reconstruction. (3) To reconstruct high-quality PET images with 

 
Fig. 1. Overview of the proposed TriDo-Former. 
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clear-cut details, we design a spatial-spectral transformer (SS-Former) incorporated 
with the global frequency parser (GFP) which globally calibrates the frequency com-
ponents in the frequency domain for recovering high-frequency details. (4) Experi-
mental results demonstrate the superiority of our method both qualitatively and quanti-
tatively, compared with other state-of-the-art methods. 

2 Methodology 

The overall architecture of our proposed TriDo-Former is depicted in Fig. 1, which 
consists of two cascaded sub-networks, i.e., a sinogram enhancement transformer (SE-
Former) and a spatial-spectral reconstruction transformer (SSR-Former). Overall, tak-
ing the LPET sinograms as input, the SE-Former first predicts the denoised SPET-like 
sinograms which are then sent to SSR-Former to reconstruct the estimated PET (de-
noted as EPET) images. A detailed description is given in the following sub-sections. 

2.1 Sinogram Enhancement Transformer (SE-Former) 

As illustrated in Fig.1 (a), the SE-Former which is responsible for denoising in the input 
LPET sinograms consists of three parts, i.e., a feature embedding module, transformer 
encoder (TransEncoder) blocks, and a feature mapping module. Given that each row of 
sinogram is the 1D projection at an imaging view angle, we first divide the LPET sino-
grams by rows and perform linear projection in the feature embedding module to obtain 
a set of 1D sequences, each contains consistent information of a certain view angle. 
Then, we perform self-attention in the TransEncoder blocks to model the interrelations 
between projection view angles, enabling the network to better model the general char-
acteristics under different imaging views which is crucial for sinogram denoising. After 
that, the feature mapping module predicts the residual between the LPET and SPET 
sinograms which is finally added to the input LPET sinograms to generate the EPET 
sinograms as the output of SE-Former. We argue that the introduction of residual learn-
ing allows the SE-Former to focus only on learning the difference between LPET and 
SPET sinograms, facilitating faster convergence. 
Feature Embedding: We denote the input LPET sinogram as 𝑆𝑆𝐿𝐿 ∈ ℝ𝐶𝐶𝑠𝑠×𝐻𝐻𝑠𝑠×𝑊𝑊𝑠𝑠, where 
𝐻𝐻𝑠𝑠, 𝑊𝑊𝑠𝑠 are the height, width and 𝐶𝐶𝑠𝑠 is the channel dimension. As each row of sinogram 
is a projection view angle, the projection at the 𝑖𝑖-th (𝑖𝑖 = 1,2, …𝐻𝐻𝑠𝑠) row can be defined 
as 𝑠𝑠𝐿𝐿𝑖𝑖 ∈ ℝ𝐶𝐶𝑠𝑠×𝑊𝑊𝑠𝑠. Therefore, by splitting the sinogram by rows, we obtain a set of 1D 
sequence data 𝑆𝑆𝐿𝐿∗ = {𝑠𝑠𝐿𝐿𝑖𝑖 }𝑖𝑖=1

𝐻𝐻𝑠𝑠 ∈ ℝ𝐻𝐻𝑠𝑠×𝐷𝐷, where 𝐻𝐻𝑠𝑠 is the number of projection view angles 
and 𝐷𝐷 = 𝐶𝐶𝑠𝑠 × 𝑊𝑊𝑠𝑠 equals to the pixel number in each sequence data. Then, 𝑆𝑆𝐿𝐿∗ is linearly 
projected to sequence �̃�𝑆𝐿𝐿∗ ∈ ℝ𝐻𝐻𝑠𝑠×𝑑𝑑 , where 𝑑𝑑 is the output dimension of the projection. 
To maintain the position information of different view angles, we introduce a learnable 
position embedding 𝑆𝑆𝑝𝑝𝑝𝑝𝑠𝑠 = {𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖 }𝑖𝑖=1

𝐻𝐻𝑠𝑠 ∈ ℝ𝐻𝐻𝑠𝑠×𝑑𝑑 and fuse it with �̃�𝑆𝐿𝐿∗ by element-wise ad-
dition, thus creating the input feature embedding 𝐹𝐹0 = 𝑆𝑆𝑝𝑝𝑝𝑝𝑠𝑠 + �̃�𝑆𝐿𝐿∗ which is further sent 
to 𝑇𝑇 stacked TransEncoder blocks to model global characteristics between view angles. 
TransEncoder: Following the standard transformer architecture [28], each TransEn-
coder block contains a multi-head self-attention (MSA) module and a feed forward 
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network (FFN) respectively accompanied by layer normalization (LN). For 𝑗𝑗-th (𝑗𝑗 =
1,2, … ,𝑇𝑇) TransEncoder block, the calculation process can be formulated as:  

𝐹𝐹𝑗𝑗 = 𝐹𝐹𝑗𝑗−1 + 𝑀𝑀𝑆𝑆𝑀𝑀 �𝐿𝐿𝐿𝐿�𝐹𝐹𝑗𝑗−1�� + 𝐹𝐹𝐹𝐹𝐿𝐿(𝐿𝐿𝐿𝐿(𝐹𝐹𝑗𝑗−1 + 𝑀𝑀𝑆𝑆𝑀𝑀(𝐿𝐿𝐿𝐿(𝐹𝐹𝑗𝑗−1)))) , (1) 
where 𝐹𝐹𝑗𝑗  denotes the output of 𝑗𝑗-th TransEncoder block. After applying 𝑇𝑇 identical 
TransEncoder blocks, the non-local relationship between projections at different view 
angles is accurately preserved in the output sequence 𝐹𝐹𝑇𝑇 ∈ ℝ𝐻𝐻𝑠𝑠×𝑑𝑑. 
Feature Mapping: The feature mapping module is designed for projecting the se-
quence data back to the sinogram. Concretely, 𝐹𝐹𝑇𝑇 is first reshaped to ℝ𝐶𝐶′×𝐻𝐻𝑠𝑠×𝑊𝑊𝑠𝑠 (𝐶𝐶′ =
𝑑𝑑
𝑊𝑊𝑠𝑠

) and then fed into a linear projection layer to reduce the channel dimension from 𝐶𝐶′ 
to 𝐶𝐶𝑠𝑠. Through these operations, the residual sinogram 𝑆𝑆𝑅𝑅 ∈ ℝ𝐶𝐶𝑠𝑠×𝐻𝐻𝑠𝑠×𝑊𝑊𝑠𝑠 of the same di-
mension as 𝑆𝑆𝐿𝐿, is obtained. Finally, following the spirit of residual learning, 𝑆𝑆𝑅𝑅 is di-
rectly added to the input 𝑆𝑆𝐿𝐿 to produce the output of SE-Former, i.e., the predicted de-
noised sinogram 𝑆𝑆𝐸𝐸 ∈ ℝ𝐶𝐶𝑠𝑠×𝐻𝐻𝑠𝑠×𝑊𝑊𝑠𝑠. 

2.2 Spatial-Spectral Reconstruction Transformer (SSR-Former) 

The SSR-Former is designed to reconstruct the denoised sinogram obtained from the 
SE-Former to the corresponding SPET images. As depicted in Fig.1 (b), SSR-Former 
adopts a 4-level U-shaped structure, where each level is formed by a spatial-spectral 
transformer block (SSTB). Furthermore, each SSTB contains two spatial-spectral trans-
former layers (SSTLs) and a convolution layer for both global and local feature extrac-
tion. Meanwhile, a 3 × 3 convolution is placed as a projection layer at the beginning 
and the end of the network. For detailed reconstruction and invertibility of sampling, 
we employ the pixel-unshuffle and pixel-shuffle operators for down-sampling and up-
sampling. In addition, skip connections are applied for multi-level feature aggregation. 
Spatial-Spectral Transformer Layer (SSTL): As shown in Fig. 1(d), an SSTL con-
sists of a window-based spatial multi-head self-attention (W-SMSA) followed by FFN 
and LN. Following swin transformer [31], a window shift operation is conducted be-
tween the two SSTLs in each SSTB for cross-window information interactions. More-
over, to capture the high-frequency details which can be easily lost, we devise global 
frequency parsers (GFPs) that encourage the model to recover the high-frequency com-
ponent of the frequency domain through the global adjustment of specific frequencies. 
Generally, the W-SMSA is leveraged to guarantee the essential global context in the 
reconstructed PET images, while GFP is added to enrich the high-frequency boundary 
details. The calculations of the core W-SMSA and GFP are described as follows. 
Window-based Spatial Multi-Head Self-Attention (W-SMSA): Denoting the input 
feature embedding of certain W-SMSA as 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ ℝ𝐶𝐶𝐼𝐼×𝐻𝐻𝐼𝐼×𝑊𝑊𝐼𝐼, where 𝐻𝐻𝐼𝐼, 𝑊𝑊𝐼𝐼 and 𝐶𝐶𝐼𝐼 rep-
resent the height, width and channel dimension, respectively. As depicted in Fig. 1(c), 
a window partition operation is first conducted in spatial dimension with a window size 
of 𝑀𝑀. Thus, the whole input features are divided into 𝐿𝐿 (𝐿𝐿 = 𝐻𝐻𝐼𝐼×𝑊𝑊𝐼𝐼

𝑀𝑀2 ) non-overlapping 
patches 𝑒𝑒𝑖𝑖𝑖𝑖∗ = {𝑒𝑒𝑖𝑖𝑖𝑖𝑚𝑚}𝑚𝑚=1

𝑁𝑁 . Then, a regular spatial self-attention is performed separately 
for each window after partition. After that, the output patches are gathered through the 
window reverse operation to obtain the spatial representative feature 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠 ∈ ℝ𝐶𝐶𝐼𝐼×𝐻𝐻𝐼𝐼×𝑊𝑊𝐼𝐼.  
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Global Frequency Parser (GFP): After passing the W-SMSA, the feature 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠 are 
already spatially representative, but still lack accurate spectral representations in the 
frequency domain. Hence, we propose a GFP module to rectify the high-frequency 
component in the frequency domain. As illustrated in Fig. 1(e), the GFP module is 
comprised of a 2D discrete Fourier transform (DFT), an element-wise multiplication 
between the frequency feature and the learnable global filter, and a 2D inverse discrete 
Fourier transform (IDFT). Our GFP can be regarded as a learnable version of frequency 
filters. The main idea is to learn a parameterized attentive map applying on the fre-
quency domain features. Specifically, we first convert the spatial feature 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠 to the 
frequency domain via 2D DFT, obtaining the spectral feature 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠 = 𝐷𝐷𝐹𝐹𝑇𝑇(𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠). Then, 
we modulate the frequency components of 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠 by multiplying a learnable parameter-
ized attentive map 𝑀𝑀 ∈ ℝ𝐶𝐶𝐼𝐼×𝐻𝐻𝐼𝐼×𝑊𝑊𝐼𝐼 to 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠, which can be formulated as: 

𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠′ = 𝑀𝑀 · 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠 , (2) 
The parameterized attentive map 𝑀𝑀 can adaptively adjust the frequency components of 
the frequency domain and compel the network to restore the high-frequency part to 
resemble that of the supervised signal, i.e., the corresponding real SPET images (ground 
truth), in the training process. Finally, we reverse 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠′  back to the image domain by 
adopting 2D IDFT, thus obtaining the optimized feature 𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠′ = 𝐷𝐷𝐹𝐹𝑇𝑇(𝑒𝑒𝑠𝑠𝑝𝑝𝑠𝑠′ ). In this 
manner, more high-frequency details are preserved for generating shaper constructions. 

2.3 Objective Function 

The objective function for our TriDo-Former is comprised of two aspects: 1) a sinogram 
domain loss 𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝 and 2) an image domain loss 𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖.  

The sinogram domain loss aims to narrow the gap between the real SPET sinograms 
𝑆𝑆𝑆𝑆 and the EPET sinograms 𝑆𝑆𝐸𝐸 that are denoised from the input LPET sinograms. Con-
sidering the critical influence of sinogram quality, we apply the L2 loss to increase the 
error punishment, thus forcing a more accurate prediction. It can be expressed as: 

𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝 = 𝐸𝐸𝑆𝑆𝑆𝑆,𝑆𝑆𝐸𝐸~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑆𝑆𝑆𝑆,𝑆𝑆𝐸𝐸)||𝑆𝑆𝑆𝑆 − 𝑆𝑆𝐸𝐸||2 , (3) 
For the image domain loss, the L1 loss is leveraged to minimize the error between 

the SPET images 𝐼𝐼𝑆𝑆 and the EPET images 𝐼𝐼𝐸𝐸 while encouraging less blurring, which 
can be defined as: 

𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖 = 𝐸𝐸𝐼𝐼𝑆𝑆,𝐼𝐼𝐸𝐸~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐼𝐼𝑆𝑆,𝐼𝐼𝐸𝐸)||𝐼𝐼𝑆𝑆 − 𝐼𝐼𝐸𝐸||1 , (4) 
Overall, the final objective function is formulated by the weighted sum of the above 

losses, which is defined as: 
𝐿𝐿𝑡𝑡𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 = 𝐿𝐿𝑠𝑠𝑖𝑖𝑖𝑖𝑝𝑝 + 𝜆𝜆𝐿𝐿𝑖𝑖𝑚𝑚𝑖𝑖. (5) 

where 𝜆𝜆 is the hyper-parameters to balance these two terms. 

2.4 Details of Implementation 

Our network is implemented by Pytorch framework and trained on an NVIDIA Ge-
Force GTX 3090 with 24 GB memory. The whole network is trained end-to-end for 
150 epochs in total using Adam optimizer with the batch size of 4. The learning rate is 
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initialized to 4e-4 for the first 50 epochs and decays linearly to 0 for the remaining 100 
epochs. The number 𝑇𝑇 of the TransEncoder in SE-Former is set to 2 and the window 
size 𝑀𝑀 is set to 4 in the W-SMSA of the SSR-Former. The weighting coefficient 𝜆𝜆 in 
Eq. (6) is empirically set as 10. 

3 Experiments and Results 

Datasets: We train and validate our proposed TriDo-Former on a real human brain 
dataset including 8 normal control (NC) subjects and 8 mild cognitive impairment 
(MCI) subjects. All PET scans are acquired by a Siemens Biograph mMR system 
housed in Biomedical Research Imaging Center. A standard dose of 18F-Flurodeoxy-
glucose ([18F] FDG) was administered. According to standard protocol, SPET sino-
grams were acquired in a 12-minute period within 60-minute of radioactive tracer in-
jection, while LPET sinograms were obtained consecutively in a 3-minute shortened 
acquisition time to simulate the acquisition at a quarter of the standard dose. The SPET 
images which are utilized as the ground truth in this study were reconstructed from the 
corresponding SPET sinograms using the traditional OSEM algorithm [32]. 
Experimental Settings: Due to the limited computational resources, we slice each 3D 
scan of size 128 × 128 × 128 into 128 2D slices with a size of 128 × 128. The Leave-
One-Out Cross-Validation (LOOCV) strategy is applied to enhance the stability of the 
model with limited samples. To evaluate the performance, we adopt three typical quan-
titative evaluation metrics including peak signal-to-noise (PSNR), structural similarity 
index (SSIM), and normalized mean squared error (NMSE). Note that, we restack the 
2D slices into complete 3D PET scans for evaluation. 

Comparative Experiments: We compare our TriDo-Former with four direct recon-
struction methods, including (1) OSEM [32] (applied on the input LPET sinograms, 
serving as the lower bound), (2) DeepPET [19], (3) Sino-cGAN [23], and (4) LCPR-

Table 1. Quantitative comparison with five PET reconstruction methods in terms of PSNR, 
SSIM, and NMSE. The best performance is marked as bold. 

Method NC subject MCI subject Params GFLOPs PSNR SSIM NMSE PSNR SSIM NMSE 
OSEM [32] 20.684 0.979 0.0530 21.541 0.977 0.0580 - - 

DeepPET [19] 23.991 0.982 0.0248 24.125 0.982 0.0272 60M 49.20 
Sino-cGAN [23] 24.191 0.985 0.0254 24.224 0.985 0.0269 39M 19.32 
LCPR-Net [24] 24.313 0.985 0.0227 24.607 0.985 0.0257 77M 77.26 
3D-cGAN [9] 24.024 0.983 0.0231 24.617 0.981 0.0256 127M 70.38 

Proposed 24.912 0.987 0.0203 25.288 0.987 0.0228 38M 16.05 

 

 
Fig. 2. Visual comparison of the reconstruction methods. 
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Net [24] as well as one indirect reconstruction methods, i.e., (5) 3D-cGAN [9]. The 
comparison results are given in Table 1, from which we can see that our TriDo-Former 
achieves the best results among all the evaluation criteria. Compared with the current 
state-of-the-art LCPR-Net, our proposed method still enhances the PSNR and SSIM by 
0.599 dB and 0.002 for NC subjects, and 0.681 dB and 0.002 for MCI subjects, respec-
tively. Moreover, our model also has minimal parameters and GLOPs of 38M and 
16.05, respectively, demonstrating its speed and feasibility in clinical applications. We 
also visualize the results of our method and the compared approaches in Fig. 2, where 
the differences in global structure are highlighted with circles and boxes while the dif-
ferences in edge details are marked by arrows. As can be seen, compared with other 
methods which have inaccurate structure and diminished edges, our TriDo-Former 
yields the best visual effect with minimal error in both global structure and edge details. 

Evaluation on clinical diagnosis: To further prove the clinical value of our method, 
we further conduct an Alzheimer’s disease diagnosis experiment as the downstream 
task. Specifically, a multi-layer CNN is firstly trained by real SPET images to distin-
guish between NC and MCI subjects with 90% accuracy. Then, we evaluate the PET 
images reconstructed by different methods on the trained classification model. Our in-
sight is that, if the model can discriminate between NC and MCI subjects from the 
reconstructed images more accurately, the quality of the reconstructed images and 
SPET images (whose quality is preferred in clinical diagnosis) are closer. As shown in 
Fig. 3, the classification accuracy of our proposed method (i.e., 88.6%) is the closest to 
that of SPET images (i.e., 90.0%), indicating the huge clinical potential of our method 
in facilitating disease diagnosis. 

Ablation study: To verify the effectiveness of the key components of our TriDo-For-
mer, we conduct the ablation studies with the following variants: (1) replacing SE-
Former and SSR-Former with DnCNN [33] (the famous CNN-based denoising net-
work) and vanilla U-Net (denoted as DnCNN + UNet), (2) replacing DnCNN with SE-
Former (denoted as SE-Former + UNet), (3) replacing the U-Net with our SSR-Former 
but removing GFP (denoted as Proposed w/o GFP), and (4) using the proposed TriDo-

Table 2. Quantitative comparison with models constructed in the ablation study in terms of 
PSNR, SSIM, and NMSE.  

Method 
NC subjects MCI subjects 

PSNR SSIM NMSE PSNR SSIM NMSE 
DnCNN + UNet 23.872 0.981 0.0253 24.153 0.982 0.0266 

SE-Former + UNet 24.177 0.982 0.0249 24.506 0.982 0.0257 
Proposed w/o GFP 24.583 0.984 0.0235 24.892 0.984 0.0250 

Proposed 24.912 0.987 0.0203 25.288 0.987 0.0228 

 

 
Fig. 3. Results of the clinical diagnosis of Alzheimer’s disease (NC/MCI). 
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Former model (denoted as Proposed). According to the results in Table 2, the perfor-
mance of our model progressively improves with the introduction of SE-Former and 
SSR-Former. Particularly, when we remove the GFP in SSR-Former, the performance 
largely decreases as the model fails to recover high-frequency details. Moreover, we 
conduct the clinical diagnosis experiment and the spectrum analysis to further prove 
the effectiveness of the GFP, and the results are included in supplementary material. 

4 Conclusion 

In this paper, we innovatively propose a triple-domain transformer, named TriDo-For-
mer, for directly reconstructing the high-quality PET images from LPET sinograms. 
Our model exploits the triple domains of sinogram, image, and frequency as well as the 
ability of the transformer in modeling long-range interactions, thus being able to recon-
struct PET images with accurate global context and sufficient high-frequency details. 
Experimental results on the real human brain dataset have demonstrated the feasibility 
and superiority of our method, compared with the state-of-the-art PET reconstruction 
approaches. 
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