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Abstract. To obtain high-quality positron emission tomography (PET)
scans while reducing radiation exposure to the human body, various ap-
proaches have been proposed to reconstruct standard-dose PET (SPET)
images from low-dose PET (LPET) images. One widely adopted tech-
nique is the generative adversarial networks (GANs), yet recently, diffu-
sion probabilistic models (DPMs) have emerged as a compelling alter-
native due to their improved sample quality and higher log-likelihood
scores compared to GANs. Despite this, DPMs suffer from two major
drawbacks in real clinical settings, i.e., the computationally expensive
sampling process and the insufficient preservation of correspondence be-
tween the conditioning LPET image and the reconstructed PET (RPET)
image. To address the above limitations, this paper presents a coarse-to-
fine PET reconstruction framework that consists of a coarse prediction
module (CPM) and an iterative refinement module (IRM). The CPM
generates a coarse PET image via a deterministic process, and the IRM
samples the residual iteratively. By delegating most of the computational
overhead to the CPM, the overall sampling speed of our method can be
significantly improved. Furthermore, two additional strategies, i.e., an
auxiliary guidance strategy and a contrastive diffusion strategy, are pro-
posed and integrated into the reconstruction process, which can enhance
the correspondence between the LPET image and the RPET image, fur-
ther improving clinical reliability. Extensive experiments on two human
brain PET datasets demonstrate that our method outperforms the state-
of-the-art PET reconstruction methods. The source code is available at
https://github.com/Show-han/PET-Reconstruction.
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1 Introduction

Positron emission tomography (PET) is a widely-used molecular imaging tech-
nique that can help reveal the metabolic and biochemical functioning of body
tissues. According to the dose level of injected radioactive tracer, PET images
can be roughly classified as standard-(SPET) and low-dose PET (LPET) images.
SPET images offer better image quality and more information in diagnosis com-
pared to LPET images containing more noise and artifacts. However, the higher
radiation exposure associated with SPET scanning poses potential health risks
to the patient. Consequently, it is crucial to reconstruct SPET images from cor-
responding LPET images to produce clinically acceptable PET images.

In recent years, deep learning-based PET reconstruction approaches [7,9,13]
have shown better performance than traditional methods. Particularly, genera-
tive adversarial networks (GANs) [8] have been widely adopted [12,14,15,18,26,27]
due to their capability to synthesize PET images with higher fidelity than
regression-based models [29,30]. For example, Kand et al. [11] applied a Cycle-
GAN model to transform amyloid PET images obtained with diverse radiotrac-
ers. Fei et al. [6] made use of GANs to present a bidirectional contrastive frame-
work for obtaining high-quality SPET images. Despite the promising achieve-
ment of GAN, its adversarial training is notoriously unstable [22] and can lead
to mode collapse [17], which may result in a low discriminability of the generated
samples, reducing their confidence in clinical diagnosis.

Fortunately, likelihood-based generative models offer a new approach to ad-
dress the limitations of GANs. These models learn the distribution’s probability
density function via maximum likelihood and could potentially cover broader
data distributions of generated samples while being more stable to train. As
an example, Cui et al. [3] proposed a model based on Nouveau variational au-
toencoder for PET image denoising. Among likelihood-based generative models,
diffusion probabilistic models (DPMs) [10,23] are noteworthy for their capacity
to outperform GANs in various tasks [5], such as medical imaging [24] and text-
to-image generation [20]. DPMs consist of two stages: a forward process that
gradually corrupts the given data and a reverse process that iteratively samples
the original data from the noise. However, sampling from a diffusion model is
computationally expensive and time-consuming [25], making it inconvenient for
real clinical applications. Besides, existing conditional DPMs learn the input-
output correspondence implicitly by adding a prior to the training objective,
while this learned correspondence is prone to be lost in the reverse process [33],
resulting in the RPET image missing crucial clinical information from the LPET
image. Hence, the clinical reliability of the RPET image may be compromised.

Motivated to address the above limitations, in this paper, we propose a
coarse-to-fine PET reconstruction framework, including a coarse prediction mod-
ule (CPM) and an iterative refinement module (IRM). The CPM generates
a coarse prediction by invoking a deterministic prediction network only once,
while the IRM, which is the reverse process of the DPMs, iteratively samples
the residual between this coarse prediction and the corresponding SPET image.
By combining the coarse prediction and the predicted residual, we can obtain
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RPET images much closer to the SPET images. To accelerate the sampling speed
of IRM, we manage to delegate most of the computational overhead to the CPM
[2,28], hoping to narrow the gap between the coarse prediction and the SPET
initially. Additionally, to enhance the correspondence between the LPET image
and the generated RPET image, we propose an auxiliary guidance strategy at
the input level based on the finding that auxiliary guidance can help to facilitate
the reverse process of DPMs, and reinforce the consistency between the LPET
image and RPET image by providing more LPET-relevant information to the
model. Furthermore, at the output level, we suggest a contrastive diffusion strat-
egy inspired by [33] to explicitly distinguish between positive and negative PET
slices. To conclude, the contributions of our method can be described as follows:

– We introduce a novel PET reconstruction framework based on DPMs, which,
to the best of our knowledge, is the first work that applies DPMs to PET
reconstruction.

– To mitigate the computational overhead of DPMs, we employ a coarse-to-fine
design that enhances the suitability of our framework for real-world clinical
applications.

– We propose two novel strategies, i.e., an auxiliary guidance strategy and a
contrastive diffusion strategy, to improve the correspondence between the
LPET and RPET images and ensure that RPET images contain reliable
clinical information.

2 Background: Diffusion Probabilistic Models

Diffusion probabilistic models (DPMs): DPMs [10,23] define a forward

process, which corrupts a given image data x0 ∼ q(x0) step by step via a fixed
Markov chain q(xt|xt−1) that gradually adds Gaussian noise to the data:

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I), t = 1, 2, · · · , T, (1)

where α1:T is the constant variance schedule that controls the amount of noise
added at each time step, and q(xT ) ∼ N (xT ; 0, I) is the stationary distribution.
Owing to the Markov property, a data xt at an arbitrary time step t can be
sampled in closed form:

q(xt|x0) = N (xt;
√
γtx0, (1− γt)I);xt =

√
γtx0 +

√
1− γtǫ, ǫ ∼ N (0, I), (2)

where γt =
∏t

i=1 αi. Furthermore, we can derive the posterior distribution of
xt−1 given (x0, xt) as q(xt−1|x0, xt) = N (xt−1; µ̂(x0, xt), σ

2
t I), where µ̂(x0, xt)

and σ2
t are subject to x0, xt and α1:T . Based on this, we can leverage the reverse

process from xT to x0 to gradually denoise the latent variables by sampling from
the posterior distribution q(xt−1|x0, xt). However, since x0 is unknown during
inference, we use a transition distribution pθ(xt−1|xt) := q(xt−1|Hθ(xt, t), xt) to
approximate q(xt−1|x0, xt), where Hθ(xt, t) manages to reconstruct x0 from xt

and t, and it is trained by optimizing a variational lower bound of logpθ(x).
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Conditional DPMs: Given an image x0 with its corresponding condition c,
conditional DPMs try to estimate p(x0|c). To achieve that, condition c is con-
catenated with xt [21] as the input of Hθ, denoted as Hθ(c, xt, t).
Simplified training objective: Instead of training Hθ to reconstruct the x0

directly, we use an alternative parametrization Dθ named denoising network [10]
trying to predict the noise vector ǫ ∼ N (0, I) added to x0 in Eq.2, and derive
the following training objective:

LDPM = E(c,x0)∼ptrain
Eǫ∼N (0,I)Eγ∼pγ

‖Dθ(c,
√
γx0 +

√
1− γǫ, γ)− ǫ‖1, (3)

where the distribution pγ is the one used in WaveGrad [1]. Note that we also
leverage techniques from WaveGrad to let the denoising network Dθ conditioned
directly on the noise schedule γ rather than time step t, and this gives us more
flexibility to control the inference steps.

Fig. 1. Overall architecture of our proposed framework.

3 Methodology

Our proposed framework (Fig. 1(a)) has two modules, i.e., a coarse prediction
module (CPM) and an iterative refinement module (IRM). The CPM predicts
a coarse-denoised PET image from the LPET image, while the IRM models the
residual between the coarse prediction and the SPET image iteratively. By com-
bining the coarse prediction and residual, our framework can effectively generate
high-quality RPET images. To improve the correspondence between the LPET
image and the RPET image, we adopt an auxiliary guidance strategy (Fig. 1(b))
at the input level and a contrastive diffusion strategy (Fig. 1(c)) at the output
level. The details of our method are described in the following subsections.
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3.1 Coarse-to-Fine Framework

To simplify notation, we use a single conditioning variable c to represent the
input required by both CPM and IRM, which includes the LPET image xlpet

and the auxiliary guidance xaux. During inference, CPM first generates a coarse
prediction xcp = Pθ(c), where Pθ is the deterministic prediction network in
CPM. The IRM, which is the reverse process of DPM, then tries to sample the
residual r0 (i.e., x0 in Section 2) between the coarse prediction xcp and the SPET
image y via the following iterative process:

r′t−1 ∼ pθ(rt−1|rt, c), t = T, T − 1, · · · , 1. (4)

Herein, the prime symbol above the variable indicates that it is sampled from
the reverse process instead of the forward process. When t = 1, we can obtain
the final sampled residual r0, and the RPET image y′ can be derived by r′0+xcp.

In practice, both CPM and IRM use the same network architecture shown in
Fig. 1(c). CPM generates the coarse prediction xcp by using Pθ only once, but
the denoising network Dθ in IRM will be invoked multiple times during inference.
Therefore, it is rational to delegate more computation overhead to Pθ to obtain
better initial results while keeping Dθ small, since the reduction in computation
cost in Dθ will be accumulated by multiple times. To this end, we set the channel
number in Pθ much larger than that in the denoising network Dθ. This leads to
a larger network size for Pθ compared to Dθ.

3.2 Auxiliary Guidance Strategy

In this section, we will describe our auxiliary guidance strategy in depth which is
proposed to enhance the reconstruction process at the input level by incorporat-
ing two auxiliary guidance, i.e., neighboring axial slices (NAS) and the spectrum.
Our findings indicate that incorporating NAS provides insight into the spatial
relationship between the current slice and its adjacent slices, while incorporating
the spectrum imposes consistency in the frequency domain.

To effectively incorporate these two auxiliary guidances, as illustrated in
Fig. 1(c), we replace the ResBlock in the encoder with a Guided ResBlock as done
in [19]. During inference, the auxiliary guidance xaux is first downsampled by a
factor of 2k as xk

aux, where k = 1, · · · ,M , and M is the number of downsampling
operations in the U-net encoder. Then xk

aux is fed into a feature extractor Fθ to
generate its corresponding feature map fk

aux = Fθ(x
k
aux), which is next injected

into the Guided ResBlock matching its resolution through 1× 1 convolution.
To empower the feature extractor to contain information of its high-quality

counterpart yaux, we constrain it with L1 loss through a convolution layer Cθ(·):

Lopt
G =

M∑

k=1

‖Cθ(Fθ(x
k
aux))− ykaux‖1, (5)

where opt ∈{NAS, spectrum} denotes the kind of auxiliary guidance.
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3.3 Contrastive Diffusion Strategy

In addition to the auxiliary guidance at the input level, we also develop a con-
trastive diffusion strategy at the output level to amplify the correspondence be-
tween the condition LPET image and the corresponding RPET image. In detail,
we introduce a set of negative samples Neg =

{
y1, y2, ..., yN

}
, which consists of

N SPET slices, each from a randomly selected subject that is not in the current
batch for training. Then, for the noisy latent residual rt at time step t, we obtain
its corresponding intermediate RPET ỹ, and draw it close to the corresponding
SPET y while pushing it far from the negative sample yi ∈ Neg. Before this, we
need to estimate the intermediate residual corresponding to rt firstly, denoted
as r̃0. According to section 2, the denoising network Dθ manages to predict the
Gaussian noise added to r0, enabling us to calculate r̃0 directly from rt:

r̃0 =
rt − (

√
1− γt)Dθ(c, rt, γt)√

γt
. (6)

Then r̃0 is added to the coarse prediction xcp to obtain the intermediate
RPET ỹ = xcp + r̃0. Note that ỹ is a one-step estimated result rather than the
final RPET y′. Herein, we define a generator p̃θ(y|rt, c) to represent the above
process. Subsequently, the contrastive learning loss LCL is formulated as:

LCL = Eq(y)[−logp̃θ(y|rt, c)]−
∑

yi∈Neg

Eq(yi)[−logp̃θ(y
i|rt, c)]. (7)

Intuitively, as illustrated in Fig. 1(b), the LCL aims to minimize the dis-
crepancy between the training label y and the intermediate RPET ỹ at each
time step (first term), while simultaneously ensuring that ỹ is distinguishable
from the negative samples, i.e., the SPET images of other subjects (second
term). The contrastive diffusion strategy extends contrastive learning to each
time step, which allows LPET images to establish better associations with their
corresponding RPET images at different denoising stages, thereby enhancing the
mutual information between the LPET and RPET images as done in [33].

3.4 Training Loss

Following [28], we modify the objective LDPM in Eq.3, and train CPM and IRM
jointly by minimizing the following loss function:

Lmain = E(c,y)∼ptrain
Eǫ∼N (0,I)Eγ∼pγ

‖Dθ(c,
√
γ(y − Pθ(c)) +

√
1− γǫ, γ)− ǫ‖1.

(8)
In summary, the final loss function is:

Ltotal = Lmain +mLNAS
G + nLspectrum

G + kLCL, (9)

where m, n and k are the hyper-parameters controlling the weights of each loss.
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3.5 Implementation Details

The proposed method is implemented by the Pytorch framework using an NVIDIA
GeForce RTX 3090 GPU with 24GB memory. The IRM in our framework is built
upon the architecture of SR3 [21], a standard conditional DPM. The number of
downsampling operations M is 3, and the negative sample set number N is 10.
4 neighboring slices are used as the NAS guidance and the spectrums are ob-
tained through discrete Fourier transform. As for the weights of each loss, we set
m=n=1, and k=5e-5 following [33]. We train our model for 500,000 iterations
with a batch size of 4, using an Adam optimizer with a learning rate of 1e-4.
The total diffusion steps T are 2,000 during training and 10 during inference.

4 Experiments and Results

Datasets and Evaluation: We conducted most of our low-dose brain PET
image reconstruction experiments on a public brain dataset, which is obtained
from the Ultra-low Dose PET Imaging Challenge 2022 [4]. Out of the 206 18F-
FDG brain PET subjects acquired using a Siemens Biograph Vision Quadra, 170
were utilized for training and 36 for evaluation. Each subject has a resolution of
128× 128× 128, and 2D slices along the z-coordinate were used for training and
evaluation. To simulate LPET images, we applied a dose reduction factor of 100
to each SPET image. To quantify the effectiveness of our method, we utilized
three common evaluation metrics: the peak signal-to-noise (PSNR), structural
similarity index (SSIM), and normalized mean squared error (NMSE). Addition-
ally, we also used an in-house dataset, which was acquired on a Siemens Biograph
mMR PET-MR system. This dataset contains PET brain images collected from
16 subjects, where 8 subjects are normal control (NC) and 8 subjects are mild
cognitive impairment (MCI). To evaluate the generalizability of our method, all
the experiments on this in-house dataset are conducted in a cross-dataset man-
ner, i.e., training exclusively on the public dataset and inferring on the in-house
dataset. Furthermore, we perform NC/MCI classification on this dataset as the
clinical diagnosis experiment. Please refer to the supplementary materials

for the experimental results on the in-house dataset.
Comparison with SOTA Methods: We compare the performance of our
method with 6 SOTA methods, including DeepPET [9] (regression-based method),
Stack-GAN [27], Ea-GAN [31], AR-GAN [16], 3D CVT-GAN [32] (GAN-based
method) and NVAE [3] (likelihood-based method) on the public dataset. Since
the IRM contains a stochastic process, we can also average multiple sampled
(AMS) results to obtain a more stable reconstruction, which is denoted as Ours-
AMS. Results are provided in Table 1. As can be seen, our method significantly
outperforms all other methods in terms of PSNR, SSIM, and NMSE, and the
performance can be further amplified by averaging multiple samples. Specifi-
cally, compared with the current SOTA method 3D CVT-GAN, our method
(or ours-AMS) significantly boosts the performance by 0.558dB (or 0.796dB) in
terms PSNR, 0.003 (or 0.004) in terms of SSIM, and 0.006 (or 0.007) in terms of
NMSE. Moreover, 3D CVT-GAN uses 3D PET images as input. Since 3D PET
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Table 1. Quantitative comparison results on the public dataset. *: We implemented
this method ourselves as no official implementation was provided.

PSNR↑ SSIM↑ NMSE↓ MParam.

regression-based method DeepPET [9] 23.078 0.937 0.087 11.03

GAN-based method

Stack-GAN [27] 23.856 0.959 0.071 83.65
Ea-GAN [31] 24.096 0.962 0.064 41.83
AR-GAN [16] 24.313 0.961 0.055 43.27
3D CVT-GAN [32] 25.080 0.971 0.039 28.72

likelihood-based method
*NVAE [3] 23.629 0.956 0.064 58.24
Ours 25.638 0.974 0.033 34.10
Ours-AMS 25.876 0.975 0.032 34.10

SPET LPET DeepPET Stack-GAN Ea-GAN AR-GAN Ours Ours-AMSNVAE3D CVT-GAN

Fig. 2. Visual comparison with SOTA methods.

images contain much more information than 2D PET images, our method has
greater potential for improvement when using 3D PET images as input. Visu-
alization results are illustrated in Fig. 2. Columns from left to right show the
SPET, LPET, and RPET results output by different methods. Rows from top
to bottom display the reconstructed results, zoom-in details, and error maps. As
can be seen, our method generates the lowest error map while the details are
well-preserved, consistent with the quantitative results.
Ablation Study: To thoroughly evaluate the impact of each component in our
method, we perform an ablation study on the public dataset by breaking down
our model into several submodels. We begin by training the SR3 model as our
baseline (a). Then, we train a single CPM with an L2 loss (b), followed by the
incorporation of the IRM to calculate the residual (c), and the addition of the
auxiliary NAS guidance (d), the spectrum guidance (e), and the LCL loss term
(f). Quantitative results are presented in Table 2. By comparing the results of
(a) and (c), we observe that our coarse-to-fine design can significantly reduce the
computational overhead of DPMs by decreasing MParam from 128.740 to 31.020
and BFLOPs from 5973 to 132, while achieving better results. The residual gen-
erated in (c) also helps to improve the result of the CPM in (b), leading to more
accurate PET images. Moreover, our proposed auxiliary guidance strategy and
contrastive learning strategy further improve the reconstruction quality, as seen
by the increase in PSNR, SSIM, and NMSE scores from (d) to (f). Additionally,
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Table 2. Quantitative results of the ablation study on the public dataset.

Single Sampling Averaged Multiple Sampling
PSNR↑ SSIM↑ NMSE↓ MParam. BFLOPs PSNR↑ SSIM↑ NMSE↓ SD

(a)baseline 23.302 0.962 0.058 128.740 5973 23.850 0.968 0.052 6.16e-3
(b)CPM 24.354 0.963 0.049 24.740 38 - - - -
(c)+IRM 24.015 0.966 0.044 31.020 132 24.339 0.967 0.041 3.78e-3
(d)+NAS 24.668 0.969 0.046 33.040 140 24.752 0.970 0.044 3.41e-3
(e)+spec. 25.208 0.972 0.044 34.100 145 25.376 0.973 0.043 3.30e-3
(f)+LCL 25.638 0.974 0.033 34.100 145 25.876 0.975 0.032 2.49e-3

we calculate the standard deviation (SD) of the averaged multiple sampling re-
sults to measure the input-output correspondence. The standard deviation (SD)
of (c) (6.16e-03) is smaller compared to (a) (3.78e-03). This is because a coarse
RPET has been generated by the deterministic process. As such, the stochastic
process IRM only needs to generate the residual, resulting in less output variabil-
ity. Then, the SD continues to decrease (3.78e-03 to 2.49e-03) as we incorporate
more components into the model, demonstrating the improved input-output cor-
respondence.

5 Conclusion

In this paper, we propose a DPM-based PET reconstruction framework to recon-
struct high-quality SPET images from LPET images. The coarse-to-fine design
of our framework can significantly reduce the computational overhead of DPMs
while achieving improved reconstruction results. Additionally, two strategies,
i.e., the auxiliary guidance strategy and the contrastive diffusion strategy, are
proposed to enhance the correspondence between the input and output, further
improving clinical reliability. Extensive experiments on both public and private
datasets demonstrate the effectiveness of our method.

Acknowledgements. This work is supported by National Natural Science
Foundation of China (NSFC 62071314), Sichuan Science and Technology Pro-
gram 2023YFG0263, 2023YFG0025, 2023NSFSC0497.
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1 Experimental Results on the In-house Dataset Using

Cross-dataset Setup

Table 1. Quantitative results compared with SOTA methods on the in-house dataset
using a cross-dataset experimental setup. All models in comparison are trained using
the public dataset mentioned in the full paper and directly applied on the in-house
dataset without finetuning. Our approach achieves the best result in terms of PSNR,
and the second-best result in terms of SSIM and NMSE with negligible lags. * indicates
our own implementation of this method as no official code was provided.

PSNR↑ SSIM↑ NMSE↓

regression-based method DeepPET 7.452 0.904 0.676

GAN-based method

Stack-GAN 11.274 0.945 0.292
Ea-GAN 17.079 0.971 0.075
AR-GAN 16.470 0.968 0.087
3D CVT-GAN 20.241 0.985 0.032

likelihood-based method
*NVAE 19.126 0.979 0.047
Ours 20.409 0.983 0.035
Ours-AMS 20.536 0.983 0.034

SPET LPET DeepPET Stack-GAN Ea-GAN AR-GAN Ours Ours-AMSNVAE3D CVT-GAN

Fig. 1. Qualitative comparison on the in-house dataset using a cross-dataset experi-
mental setup. The visual results demonstrate the high generalizability of our approach,
which generates high-quality RPET images with the lowest residual error on an unseen
dataset. Conversely, DeepPET method tends to overfit to the training dataset, leading
to corrupted images on the in-house dataset. These results confirm the superior per-
formance of our method in the challenging task of cross-dataset PET reconstruction.
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Fig. 2. Results of clinical NC/MCI diagnosis using a cross-dataset experimental setup.
In particular, we trained a multi-layer CNN classification network on SPET images to
differentiate NC and MCI subjects. We then employed PET images reconstructed by
different methods for testing. Our evaluation demonstrates that our method achieves
the highest clinical reliability, as it generates RPET images better maintaining clinic
relevant information.
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