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Abstract. Limited by imaging systems, the reconstruction of Magnetic
Resonance Imaging (MRI) images from partial measurement is essen-
tial to medical imaging research. Benefiting from the diverse and com-
plementary information of multi-contrast MR images in different imag-
ing modalities, multi-contrast Super-Resolution (SR) reconstruction is
promising to yield SR images with higher quality. In the medical sce-
nario, to fully visualize the lesion, radiologists are accustomed to zoom-
ing the MR images at arbitrary scales rather than using a fixed scale,
as used by most MRI SR methods. In addition, existing multi-contrast
MRI SR methods often require a fixed resolution for the reference im-
age, which makes acquiring reference images difficult and imposes limi-
tations on arbitrary scale SR tasks. To address these issues, we proposed
an implicit neural representations based dual-arbitrary multi-contrast
MRI super-resolution method, called Dual-ArbNet. First, we decouple
the resolution of the target and reference images by a feature encoder,
enabling the network to input target and reference images at arbitrary
scales. Then, an implicit fusion decoder fuses the multi-contrast features
and uses an Implicit Decoding Function (IDF) to obtain the final MRI
SR results. Furthermore, we introduce a curriculum learning strategy to
train our network, which improves the generalization and performance
of our Dual-ArbNet. Extensive experiments in two public MRI datasets
demonstrate that our method outperforms state-of-the-art approaches
under different scale factors and has great potential in clinical practice.

Keywords: MRI Super-resolution · Multi-contrast · Arbitrary scale ·
Implicit nerual representation.

1 Introduction

Magnetic Resonance Imaging (MRI) is one of the most widely used medical
imaging modalities, as it is non-invasive and capable of providing superior soft
tissue contrast without causing ionizing radiation. However, it is challenging
to acquire high-resolution MR images in practical applications [8] due to the
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inherent shortcomings of the systems [19,23] and the inevitable motion artifacts
of the subjects during long acquisition sessions.

Super-resolution (SR) techniques are a promising way to improve the quality
of MR images without upgrading hardware facilities. Clinically, multi-contrast
MR images, e.g., T1, T2 and PD weighted images are obtained from differ-
ent pulse sequences [14,21], which can provide complementary information to
each other [3,7]. Although weighted images reflect the same anatomy, they ex-
cel at demonstrating different physiological and pathological features. Different
time is required to acquire images with different contrast. In this regard, it is
promising to leverage an HR reference image with a shorter acquisition time
to reconstruct the modality with a longer scanning time. Recently, some efforts
have been dedicated to multi-contrast MRI SR reconstruction. Zeng et al. pro-
posed a deep convolution neural network to perform single- and multi-contrast
SR reconstruction [27]. Dar et al. concatenated information from two modalities
into the generator of a generative adversarial network(GAN) [6], and Lyu et

al. introduced a GAN-based progressive network to reconstruct multi-contrast
MR images [15]. Feng et al. used a multi-stage feature fusion mechanism for
multi-contrast SR [7]. Li et al. adopted a multi-scale context matching and ag-
gregation scheme to gradually and interactively aggregate multi-scale matched
features [12]. Despite their effectiveness, these networks impose severe restric-
tions on the resolution of the reference image, largely limiting their applications.
In addition, most existing multi-contrast SR methods only work with fixed in-
teger scale factors and treat different scale factors as independent tasks. For
example, they train a single model for a certain integer scale factor (×2, ×4).
In consequence, using these fixed models for arbitrary scale SR is inadequate.
Furthermore, in practical medical applications, it is common for radiologists to
zoom in on MR images at will to see localized details of the lesion. Thus, there
is an urgent need for an efficient and novel method to achieve super-resolution
of arbitrary scale factors in a single model.

In recent years, several methods have been explored for arbitrary scale super-
resolution tasks on natural images, such as Meta-SR [9] and Arb-SR [24]. Al-
though they can perform arbitrary up-sampling within the training scales, their
generalization ability is limited when exceeding the training distribution, espe-
cially for large scale factors. Inspired by the success of implicit neural repre-
sentation in modeling 3D shapes [18,16,5,10,20], several works perform implicit
neural representations to the 2D image SR problem [4,17]. Since these methods
can sample pixels at any position in the spatial domain, they can still perform
well beyond the distribution of the training scale. Also, there is an MRI SR
method that combines the meta-upscale module with GAN and performs ar-
bitrary scale SR [22]. However, the GAN-based method generates unrealistic
textures, which affects the diagnosis accuracy.

To address these issues, we propose an arbitrary-scale multi-contrast MRI
SR framework. Specifically, we introduce the implicit neural representation to
multi-contrast MRI SR and extend the concept of arbitrary scale SR to the
reference image domain. Our contributions are summarized as follows:
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Fig. 1. Overall architecture of the proposed Dual-ArbNet. Our Dual-ArbNet includes
a share-weighted image encoder and an implicit fusion decoder which contains a
lightweight fusion branch and an implicit decoding function.

1) We propose a new paradigm for multi-contrast MRI SR with the implicit
neural representation, called Dual-ArbNet. It allows arbitrary scale SR at any
resolution of reference images.

2) We introduce a curriculum learning [2] strategy called Cur-Random to
improve the stability, generalization, and multi-contrast fusion performance of
the network.

3) Our extensive experiments can demonstrate the effectiveness of our method.
Our Dual-ArbNet outperforms several state-of-the-art approaches on two bench-
mark datasets: fastMRI [26] and IXI [1].

2 Methodology

2.1 Background: Implicit Neural Representations

As we know, computers use 2D pixel arrays to store and display images dis-
cretely. In contrast to the traditional discrete representation, the Implicit Neu-
ral Representation (INR) can represent an image I ∈ RH×W in the latent space
F ∈ RH×W×C , and use a local neural network (e.g., convolution with kernel
1) to continuously represent the pixel value at each location. This local neural
network fits the implicit function of the continuous image, called Implicit De-
coding Function (IDF). In addition, each latent feature represents a local piece
of continuous image [4], which can be used to decode the signal closest to itself
through IDF. Thus, by an IDF f(·) and latent feature F , we can arbitrarily
query pixel value at any location, and restore images of arbitrary resolution.

2.2 Network Architecture

The overall architecture of the proposed Dual-ArbNet is shown in Fig.1. The
network consists of an encoder and an implicit fusion decoder. The encoder
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performs feature extraction and alignment of the target LR and the reference
image. The implicit fusion decoder predicts the pixel values at any coordinate
by fusing the features and decoding through IDF, thus achieving reconstruction.
Encoder. In the image encoder, Residual Dense Network (RDN) [29] is used to
extract image latent features for the network, and the reference image branch
shares weights with the target LR image branch to achieve consistent feature
extraction and reduce parameters. To aggregate the neighboring information in
the reconstruction process, we further unfold the features of 3×3 neighborhoods
around each pixel, expanding the feature channels nine times.

Since the resolution of target LR and reference image are different, we have
to align them to target HR scale for further fusion. With the target image
shaped Htar × W tar and reference image shaped Href × W ref , we use near-
est interpolation to efficiently up-sample their feature maps to the target HR
scale HHR ×WHR by two different factors Sref and Star:

Fz↑ = Upsample(RDN(Iz), Sz) (1)

where z ∈ {ref, tar} indicates the reference and target image, Itar and Iref
are the input target LR and reference image. In this way, we obtain the latent
feature nearest to each HR pixel for further decoding, and our method can
handle Arbitrary scale SR for target images with Arbitrary resolution of reference
images (Dual-Arb).
Decoder. As described in Sec. 2.1, the INR use a local neural network to fit the
continuous image representation, and the fitting can be referred to as Implicit
Decoding Function (IDF). In addition, we propose a fusion branch to efficiently
fuse the target and reference latent features for IDF decoding. The overall de-
coder includes a fusion branch and a shared IDF, as shown in Figure 1(see right).

Inspired by [29,25], to better fuse the reference and target features in dif-
ferent dimensions, we use ResBlock with Channel Attention (CA) and Spatial
Attention (SA) in our fusion branch. This 5 layers lightweight architecture can
capture channel-wise and spatial-wise attention information and fuse them effi-
ciently. The fusion process can be expressed as:

F
(0)
fusion = cat(Ftar↑, Fref↑)

F
(i)
fusion = Li(F

(i−1)
fusion) + F

(i−1)
fusion, i = 1, 2, ..., 5

(2)

where Li indicates the i-th fusion layer. Then, we equally divide the fused feature

F
(i)
fusion by channel into F

(i)
fusion,tar and F

(i)
fusion,ref for decoding respectively.

The IDF in our method is stacked by convolution layer with kernel size
1 (conv1) and sin activation function sin(·). The conv1 and sin(·) are used to
transform these inputs to higher dimension space [17], thus achieving a better
representation of the IDF. Since conv1(x) can be written as W ·x+b without using
any adjacent features, this decoding function can query SR value at any given
coordinate. Akin to many previous works [4,17], relative coordinate information
P (x, y) and scale factors Sref , Star are necessary for the IDF to decode results
continuously. At each target pixel (x, y), we only use local fused feature Ffusion,
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which represents a local piece of continuous information, and coordinate P (x, y)
relative to the nearest fused feature, as well as scale factors {Sref , Star}, to
query in the IDF. Corresponding to the fusion layer, we stack 6 convolution
with activation layers. i-th layer’s decoding function f (i) can be express as:

f (0)(x, y, z) = sin
(

W (0) · cat (Star, Sref , P (x, y)) + b(0)
)

f (i)(x, y, z) = sin
((

W (i) · f (i−1)(x, y, z) + b(i)
)

⊙ F
(i)
fusion,z(x, y)

) (3)

where (x, y) is the coordinate of each pixel, and z ∈ {ref, tar} indicates the
reference and target image. ⊙ denotes element-wise multiplication, and cat is
the concatenate operation. W (i) and b(i) are weight and bias of i-th convolution
layer. Moreover, we use the last layer’s output f (5)(·) as the overall decoding
function f(·). By introducing the IDF above, the pixel value at any coordinates
Iz,SR(x, y) can be reconstructed:

Iz,SR(x, y) = f(x, y, z) + Skip(Fz↑) (4)

where Skip(·) is skip connection branch with conv1 and sin(·), z ∈ {ref, tar} .
Loss Function. An L1 loss between target SR results Itarget,SR and HR images
IHR is utilized as reconstruction loss to improve the overall detail of SR images,
named as Lrec. The reconstructed SR images may lose some frequency infor-
mation in the original HR images. K-Loss [30] is further introduced to alleviate
the problem. Specifically, KSR and KHR denote the fast Fourier transform of
Itarget,SR and IHR. In k-space, the value of mask M is set to 0 in the high-
frequency cut-off region mentioned in Sec. 3, otherwise set to 1. L2 loss is used
to measure the error between KSR and KHR. K-Loss can be expressed as:

LK = ‖(KSR −KHR) ·M‖2 (5)

To this end, the full objective of the Dual-ArbNet is defined as:

Lfull = Lrec + λKLK (6)

We set λK = 0.05 empirically to balance the two losses.

2.3 Curriculum Learning Strategy

Curriculum learning [2] has shown powerful capabilities in improving model gen-
eralization and convergence speed. It mimics the human learning process by
allowing the model to start with easy samples and gradually progress to com-
plex samples. To achieve this and stabilize the training process with different
references, we introduce curriculum learning to train our model, named Cur-
Random. This training strategy is divided into three phases, including warm-up,
pre-learning, and full-training. Although our image encoder can be fed with ref-
erence images of arbitrary resolution, it is more common to use LR-ref (scale
as target LR) or HR-ref (scale as target HR) in practice. Therefore, these two
scales of reference images are used as our settings.
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In the warm-up stage, we fix the integer SR scale to integer (2×, 3× and 4×)
and use HR-Ref to stable the training process. Then, in the pre-learning stage,
we use arbitrary scale target images and HR reference images to quickly improve
the network’s migration ability by learning texture-rich HR images. Finally, in
the full-training stage, we train the model with a random scale for reference and
target images, which further improves the generalization ability of the network.

3 Experiments

Datasets. Two public datasets are utilized to evaluate the proposed Dual-
ArbNet network, including fastMRI [26] (PD as reference and FS-PD as target)
and IXI dataset [1] (PD as reference and T2 as target). All the complex-valued
images are cropped to integer multiples of 24 (as the smallest common multiple
of the test scale). We adopt a commonly used down-sampling treatment to crop
the k-space. Concretely, we first converted the original image into the k-space
using Fourier transform. Then, only data in the central low-frequency region are
kept, and all high-frequency information is cropped out. For the down-sampling
factors k, only the central 1

k2 frequency information is kept. Finally, we used
the inverse Fourier transform to convert the down-sampled data into the image
domain to produce the LR image.

We compared our Dual-ArbNet with several recent state-of-the-art methods,
including two multi-contrast SR methods: McMRSR [12], WavTrans [13], and
three arbitrary scale image SR methods: Meta-SR [9], LIIF [4], Diinn [17].
Experimental Setup. Our proposed Dual-ArbNet is implemented in PyTorch
with NVIDIA GeForce RTX 2080 Ti. The Adam optimizer is adopted for model
training, and the learning rate is initialized to 10−4 at the full-training stage for
all the layers and decreases by half for every 40 epochs. We randomly extract
6 LR patches with the size of 32×32 as a batch input. Following the setting
in [9], we augment the patches by randomly flipping horizontally or vertically
and rotating 90◦. The training scale factors of the Dual-ArbNet vary from 1
to 4 with stride 0.1, and the distribution of the scale factors is uniform. The
performance of the SR reconstruction is evaluated by PSNR and SSIM.
Quantitative Results. Table 1 reports the average SSIM and PSNR with re-
spect to different datasets under in-distribution and out-of-distribution large
scales. Since the SR scale of McMRSR [12] and WavTrans [13] is fixed to 2× and
4×, we use a 2× model and down-sample the results when testing 1.5×. We use
the 4× model and up-sample the results to test 6× and 8×, and down-sample
the results to test 3× results. Here, we provide the results with the reference
image at HR resolution. As can be seen, our method yields the best results in all
datasets. Notably, for out-of-distribution scales, our method performs even sig-
nificantly better than existing methods. The results confirm that our framework
outperforms the state-of-the-art in terms of performance and generalizability.
Qualitative Evaluation. Figure 2 provides the reconstruction results and the
corresponding error maps of the in-distribution scale (4×) and out-of-distribution
scale (6×). The more obvious the texture in the error map, the worse the re-
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Table 1. Quantitative comparison with other methods. Best and second best results
are highlighted and underlined.

Dataset Methods
In distribution

Out-of
distribution

Average

×1.5 ×2 ×3 ×4 ×6 ×8 PSNR SSIM

fast

McMRSR[12] 37.773 34.546 31.087 30.141 27.859 26.200 31.268 0.889
WavTrans[13] 36.390 32.841 31.153 30.197 28.360 26.722 30.944 0.890
Meta-SR[9] 37.243 33.867 31.047 29.604 27.552 24.536 30.642 0.880
LIIF[4] 37.868 34.320 31.717 30.301 28.485 26.273 31.494 0.892
Diinn[17] 37.405 34.182 31.666 30.243 28.382 24.804 31.114 0.887
Ours 38.139 34.722 32.046 30.707 28.693 26.419 31.788 0.896

IXI

McMRSR[12] 37.450 37.046 34.416 33.910 29.765 27.239 33.304 0.914
WavTrans[13] 39.118 38.171 37.670 35.805 31.037 27.832 34.940 0.958
Meta-SR[9] 42.740 36.115 32.280 29.219 25.129 23.003 31.414 0.916
LIIF[4] 41.724 36.818 33.001 30.366 26.502 24.194 32.101 0.934
Diinn[17] 43.277 37.231 33.285 30.575 26.585 24.458 32.569 0.936
Ours 43.964 40.768 38.241 36.816 33.186 29.537 37.085 0.979

construction means. As can be observed, our reconstructed images can eliminate
blurred edges, exhibit fewer blocking artifacts and sharper texture details, espe-
cially in out-of-distribution scales.

Table 2. Ablation study on different training strategies (top) and key components (bot-
tom) under fastMRI dataset. Best results are highlighted.

TrainRef TestRef ×1.5 ×2 ×3 ×4 ×6 ×8 average
LR LR 37.911 34.475 31.705 30.219 28.137 24.245 31.115
LR HR 36.954 34.232 31.615 30.031 27.927 24.455 30.869
HR LR 35.620 33.007 30.268 28.789 26.624 24.942 29.875
HR HR 36.666 34.274 31.916 30.766 28.392 26.359 31.395

Random LR 38.143 34.423 31.669 30.173 27.975 25.182 31.261
Random HR 38.140 34.640 32.025 30.712 28.647 26.355 31.753

Cur-Random LR 38.063 34.489 31.684 30.177 28.038 25.264 31.286
Cur-Random HR 38.139 34.722 32.046 30.707 28.693 26.419 31.788

Setting Ref Scales Coord ×1.5 ×2 ×3 ×4 ×6 ×8 average

w/o ref ✗ ✗ ✓ 37.967 34.477 31.697 30.214 28.154 24.996 31.251

w/o scale ✓ ✗ ✓ 37.951 34.663 32.063 30.681 28.623 26.413 31.732

w/o coord ✓ ✓ ✗ 38.039 34.706 32.036 30.702 28.592 26.288 31.727

Dual-ArbNet ✓ ✓ ✓ 38.139 34.722 32.046 30.707 28.693 26.419 31.788

Ablation Study on different training strategies. We conduct experiments
on different training strategies and reference types to demonstrate the perfor-
mance of Dual-ArbNet and the gain of Cur-Random, as shown in Table 2(top).
Regarding the type of reference image, we use HR, LR, Random, Cur-Random
for training, and HR, LR for testing. As can be seen, the domain gap appears in
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Fig. 2. Qualitative results and error maps of different SR methods on fastMRI and IXI
dataset. The color bar on the right indicates the value of the error map. Our method
can reconstruct fewer blocking artifacts and sharper texture details.

inconsistent training-testing pairs, while Random training can narrow this gap
and enhance the performance. In addition, the HR-Ref performs better than the
LR-Ref due to its rich detail and sharp edges, especially in large scale factors.
Based on the Random training, the Cur-Random strategy can further improve
the performance and achieve balanced SR results.

Ablation Study on key components. In Table 2(bottom), to evaluate the va-
lidity of the key components of Dual-ArbNet, we conducted experiments without
introducing coordinate information, thus verifying the contribution of coordinate
in the IDF, named w/o coord. The setting without introducing scale factors in
implicit decoding is designed to verify the effect of scale factors on model perfor-
mance, named w/o scale. To verify whether the reference image can effectively
provide auxiliary information for image reconstruction and better restore SR
images, we further designed a single-contrast variant model without considering
the reference image features in the model, named w/o ref. All the settings use
Cur-Random training strategy.

As can be seen that the reconstruction results of w/o coord and w/o scale are
not optimal because coordinates and scale can provide additional information for
the implicit decoder. We observe that w/o ref has the worst results, indicating
that the reference image can provide auxiliary information for super-resolving
the target image.
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4 Conclusion

In this paper, we proposed the Dual-ArbNet for MRI SR using implicit neu-
ral representations, which provided a new paradigm for multi-contrast MRI SR
tasks. It can perform arbitrary scale SR on LR images at any resolution of ref-
erence images. In addition, we designed a new training strategy with reference
to the idea of curriculum learning to further improve the performance of our
model. Extensive experiments on multiple datasets show that our Dual-ArbNet
achieves state-of-the-art results both within and outside the training distribu-
tion. We hope our work can provide a potential guide for further studies of
arbitrary scale multi-contrast MRI SR.
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Foundations for the Development of Strategic Emerging Industries of Shenzhen
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Appendix

Table 3. Details of the two datasets we used. The number indicates the target-reference
image pairs we use for training, testing and validation.

Datasets fastMRI IXI

Reference modality PD PD

Target modality FS-PD T2

Train\Valid\Test 488\78\100 890\142\182

Table 4. Setting of each stage in Cur-Random strategy. Arbitrary means scales are
random select form 1 to 4 with interval 0.1, LR/HR-Ref means the resolution of the
reference image is the same as the target LR/HR image.

Stage Target Scale Ref Scale learning rate

warm-up 2x,3x,4x HR 5× 10
−5

pre-learning arbitrary HR 1× 10
−4

full-training arbitrary LR,HR Step LR

Table 5. Ablation study on w/o k-Loss. Best results are highlighted. Introducing
k-Loss can further improve the average performance of our Dual-ArbNet.

Setting K-Loss ×1.5 ×2 ×3 ×4 ×6 ×8 average

w/o k-loss ✗ 38.187 34.679 32.011 30.662 28.631 26.374 31.757

Dual-ArbNet ✓ 38.139 34.722 32.046 30.707 28.693 26.419 31.788
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Fig. 3. Qualitative results (PSNR(dB)) and error maps of different SR methods on
fastMRI and IXI dataset. The color bar on the right indicates the value of the error
map. Our method can reconstruct fewer blocking artifacts and sharper texture details.
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