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Abstract. Three-dimensional microscopy is often limited by anisotropic
spatial resolution, resulting in lower axial resolution than lateral resolu-
tion. Current State-of-The-Art (SoTA) isotropic reconstruction methods
utilizing deep neural networks can achieve impressive super-resolution
performance in fixed imaging settings. However, their generality in prac-
tical use is limited by degraded performance caused by artifacts and blur-
ring when facing unseen anisotropic factors. To address these issues, we
propose DiffuseIR, an unsupervised method for isotropic reconstruction
based on diffusion models. First, we pre-train a diffusion model to learn
the structural distribution of biological tissue from lateral microscopic
images, resulting in generating naturally high-resolution images. Then we
use low-axial-resolution microscopy images to condition the generation
process of the diffusion model and generate high-axial-resolution recon-
struction results. Since the diffusion model learns the universal structural
distribution of biological tissues, which is independent of the axial reso-
lution, DiffuseIR can reconstruct authentic images with unseen low-axial
resolutions into a high-axial resolution without requiring re-training. The
proposed DiffuseIR achieves SoTA performance in experiments on EM
data and can even compete with supervised methods.

Keywords: Isotropic reconstruction · Unsupervised method · Diffusion
model

1 Introduction

Three-dimensional (3D) microscopy imaging is crucial in revealing biological in-
formation from the nanoscale to the microscale. Isotropic high resolution across
all dimensions is desirable for visualizing and analyzing biological structures.
However, most three-dimensional imaging techniques often have lower axial (z)
resolution than lateral (xy) resolution, due to physical slicing interval limita-
tion (serial section transmission electron microscopy, automated tape-collecting
ultra-microtome scanning electron microscopy, etc.) [18] or time-saving consider-
ation (focused ion beam scanning electron microscopy, fluorescence microscopy,
etc.) [8,31,28,23]. Therefore, effective isotropic super-resolution algorithms are
critical for high-quality 3D image reconstructions, such as electron microscopy
and fluorescence microscopy.
⋆ Equal contribution
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Recently, deep learning methods have made significant progress in image
analysis [9,25,14,13]. To address the isotropic reconstruction problem, [9] em-
ploys isotropic EM images to generate HR-LR pairs at axial and train a super-
resolution model in a supervised manner, demonstrating the feasibility of in-
ferring HR structures from LR images. [29,30] use 3D point spread function
(PSF) as a prior for self-supervised super-resolution. However, isotropic high-
resolution images or 3D point spread function (PSF) physical priors are difficult
to obtain in practical settings, thus limiting these algorithms. Some methods
like [3,21] have skillfully used cycleGAN [32] architecture to train axial super-
resolution models without depending on isotropic data or physical priors. They
learn from unpaired matching between high-resolution 2D slices in the lateral
plane and low-resolution 2D slices in the axial plane, achieving impressive perfor-
mance. However, these methods train models in fixed imaging settings and suffer
from degraded performance caused by artifacts and blurring when facing unseen
anisotropic factors. This limits their generality in practice [6]. In conclusion, a
more robust paradigm needs to be proposed. Recently, with the success of the
diffusion model in the image generation field [26,19,4,17,11], researchers applied
the diffusion model to various medical image generation tasks and achieved im-
pressive results [25,22,1,12,20]. Inspired by these works, we attempt to introduce
diffusion models to address the isotropic reconstruction problem.

This paper proposes DiffuseIR, an unsupervised method based on diffusion
models, to address the isotropic reconstruction problem. Unlike existing meth-
ods, DiffuseIR does not train a specific super-resolution model from low-axial-
resolution to high-axial-resolution. Instead, we pre-train a diffusion model ϵθ to
learn the structural distribution pθ(Xlat) of biological tissue from lateral micro-
scopic images Xlat, which resolution is naturally high. Then, as shown in Fig.
1, we propose a Sparse Spatial Condition Sampling (SSCS) to condition the
reverse-diffusion process of ϵθ. SSCS extracts sparse structure context from low-
axial-resolution slice xaxi and generate reconstruction result x0 ∼ pθ(Xlat|xaxi).
Since ϵθ learns the universal structural distribution pθ, which is independent of
the axial resolution, DiffuseIR can leverage the flexibility of SSCS to reconstruct
authentic images with unseen anisotropic factors without requiring re-training.
To further improve the quality of reconstruction, we propose a Refine-in-loop
strategy to enhance the authenticity of image details with fewer sampling steps.

To sum up, our contributions are as follows:

(1) We are the first to introduce diffusion models to isotropic reconstruc-
tion and propose DiffuseIR. Benefiting from the flexibility of SSCS, DiffuseIR
is naturally robust to unseen anisotropic spatial resolutions. (2) We propose a
Refine-in-loop strategy, which maintains performance with fewer sampling steps
and better preserves the authenticity of the reconstructed image details. (3)
We perform extensive experiments on EM data with different imaging settings
and achieve SOTA performance. Our unsupervised method is competitive with
supervised methods and has much stronger robustness.
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Fig. 1: Method Pipeline. DiffuseIR progressively conditions the denoising pro-
cess with SSCS. For SSCS, we perform intra-row padding on input Xlat using the
anisotropy factor α to obtain spatially aligned structural context, which is then
merged with the diffusion model’s output. Iterative SSCS refines reconstruction.

2 Methodology

As shown in Fig. 1, DiffuseIR address isotropic reconstruction by progressively
conditions the denoising process of a pre-trained diffusion model ϵθ. Our method
consists of three parts: DDPM pre-train, Sparse Spatial Condition Sampling and
Refine-in-loop strategy.

DDPM Pretrain on lateral Our method differs from existing approaches that
directly train super-resolution models. Instead, we pre-train a diffusion model to
learn the distribution of high-resolution images at lateral, avoiding being limited
to a specific axial resolution. Diffusion models [10,19] employ a Markov Chain
diffusion process to transform a clean image x0 into a series of progressively
noisier images during the forward process. This process can be simplified as:

q(xt|x0) = N(xt;
√
αtx0, (1− αt)I), (1)

where αt controls the scale of noises. During inference, the model ϵθ predicts
xt−1 from xt. A U-Net ϵθ is trained for denoising process pθ, which gradually
reverses the diffusion process. This denoising process can be represented as:

pθ(xt−1|xt) = N(xt−1; ϵθ(xt, t), σ
2
t I), (2)

During training, we use 2D lateral slices, which is natural high-resolution to
optimize ϵθ by mean-matching the noisy image obtained in Eq. 1 using the MSE
loss [10]. Only HR slices at lateral plane Xlat were used for training, so the
training process is unsupervised and independent of the specific axial resolution.
So that ϵθ learns the universal structural distribution of biological tissues and
can generate realistic HR images following pθ(Xlat).

Sparse Spatial Condition Sampling on axial We propose Sparse Spatial
Condition Sampling (SSCS) to condition the generation process of ϵθ and gener-
ate high-axial-resolution reconstruction results. SSCS substitutes every reverse-
diffusion step Eq. 2. We first transform the input axial LR slice xaxi to match the
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Algorithm 1: Isotropic reconstruction using basic DiffuseIR
Input: axial slice xaxi, anisotropic factor α, refine-in-loop counts K

1 xcon
0 ,M ← padding(xaxi, α)

2 for t = T, ..., 1 do
3 xcon

t−1 ∼ N(
√
αtx

con
0 , (1− αt)I)

4 for i = 1, ...,K do
5 x∗

t−1 ∼ N(xt−1; ϵθ(xt, t), σ
2
t I)

6 xt−1 = M ∗ xcon
t−1 + (1−M) ∗ x∗

t−1

7 if t > 1 and i < K then
8 xt ∼ N(

√
1− βtxt−1, βtI)

9 end
10 end
11 end
12 return x0

lateral resolution by intra-row padding: (α − 1) rows of zero pixels are inserted
between every two rows of original pixels, where α is the anisotropic spatial
factor. We denote M as the mask for original pixels in xcon

0 , while (1−M) rep-
resents those empty pixels inserted. In this way, we obtain xcon

0 , which reflects
the sparse spatial content at axial, and further apply Eq. 1 to transform noise
level:

xcon
t−1 ∼ N(

√
αtx

con
0 , (1− αt)I) (3)

Then, SSCS sample xt−1 at any time step t, conditioned on xcon
t−1. The process

can be described as follows:

xt−1 = M ⊙ xcon
t−1 + (1−M)⊙ x∗

t−1) (4)

where x∗
t−1 is obtained by sampling from the model ϵθ using Eq. 2, with xt of the

previous iteration. x∗
t−1 and xcon

t−1 are combined with M . By iterative denoising,
we obtain the reconstruction result x0. It conforms to the distribution pθ(Xlat)
learned by the pre-trained diffusion model and maintains semantic consistency
with the input LR axial slice. Since SSCS is parameter-free and decoupled from
the model training process, DiffuseIR can adapt to various anisotropic spatial
resolutions by modifying the padding factor according to α while other methods
require re-training. This makes DiffuseIR a more practical and versatile solution
for isotropic reconstruction.

Refine-in-loop Strategy We can directly use SSCS to generate isotropic re-
sults, but the reconstruction quality is average. The diffusion model is capable
of extracting context from the sparse spatial condition. Still, we have discov-
ered a phenomenon of texture discoordination at the mask boundaries, which
reduces the reconstruction quality. For a certain time step t, the content of x∗

t−1

may be unrelated to xcon
t−1, resulting in disharmony in xt−1 generated by SSCS.

During the denoising of the next time step t − 1, the model tries to repair the
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disharmony of xt−1 to conform to pθ distribution. Meanwhile, this process will
introduce new inconsistency and cannot converge on its own. To overcome this
problem, we propose the Refine-in-loop strategy: For xt−1 generated by SSCS
at time step t, we apply noise to it again and obtain a new xt and then repeat
SSCS at time step t. Our discovery showed that this uncomplicated iterative
refinement method addresses texture discoordination significantly and enhances
semantic precision.

The total number of inference steps in DiffuseIR is given by Ttotal = T ·K.
As Ttotal increases, it leads to a proportional increase in the computation time
of our method. However, larger Ttotal means more computational cost. Recent
works such as [24,15,16] have accelerated the sampling process of diffusion mod-
els by reducing T while maintaining quality. For DiffuseIR, adjusting the sam-
pling strategy is straightforward. Lowering T and raising refinement iterations
K improves outcomes with a fixed Ttotal. We introduce and follow the approach
presented in DDIM [24] as an example and conducted detailed ablation experi-
ments in Sec. 3 to verify this. Our experiments show that DiffuseIR can benefit
from advances in the community and further reduce computational overhead in
future work.

3 Experiments and Discussion

Dataset and implement details. To evaluate the effectiveness of our method,
we conducted experiments on two widely used public EM datasets, FIB-25 [27]
and Cremi [5]. FIB-25 contains isotropic drosophila medulla connectome data
obtained with FIB-SEM. We partitioned it into subvolumes of 256x256x256 as
ground truth and followed [9] to perform average-pooling by factor α(x2,x4,x8)
along the axis to obtain downsampled anisotropic data. Cremi consists of drosophila
brain data with anisotropic spatial resolution. We followed [3] to generate LR
images with a degradation network and conduct experiments on lateral slices.
All resulting images were randomly divided into the training (70%), validation
(15%) and test (15%) set. For the pre-training of the diffusion model, we follow
[19] by using U-Net with multi-head attention and the same training hyper-
parameters. We use 256×256 resolution images with a batch size of 4 and train
the model on 8×V100 GPUs. For our sampling setting, we set T,K = 25, 40,
which is a choice selected from the ablation experiments in Sec. 3 that balances
performance and speed.

Quantitative and Visual Evaluation. To evaluate the effectiveness of our
method, we compared DiffuseIR with SoTA methods and presented the quan-
titative results in Tab. 1. We use cubic interpolation as a basic comparison.
3DSRUNet [9] is a seminal isotropic reconstruction method based on deep learn-
ing, which requires high-resolution and low-resolution pairs as ground truth for
supervised training. CycleGAN-IR [3] proposed an unsupervised approach using
a CycleGAN [32] architecture, learning from unpaired axial and lateral slices.
It is worth noting that these methods train specialized models based on a fixed
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Table 1: Quantitative evaluation of DiffuseIR against baselines. PSNR↑
and SSIM↑ are used as evaluation metrics. We evaluated the FIB25 and Cremi
datasets, considering three anisotropic spatial resolutions, α = 2, 4, 8. Unlike
other baselines which train a dedicated model for each α, our method only trains
a single, generalizable model.

Method
FIB25 Cremi

x2 x4 x8 x2 x4 x8

Interplation
PSNR 33.21 30.29 29.19 31.44 29.34 28.27
SSIM 0.854 0.722 0.538 0.782 0.574 0.451

†3DSRUNet
PSNR 33.84 32.31 30.97 32.04 31.12 30.28
SSIM 0.877 0.824 0.741 0.820 0.761 0.719

CycleGAN-IR
PSNR 33.54 31.77 29.94 31.71 30.47 29.04
SSIM 0.869 0.798 0.640 0.794 0.721 0.560

DiffuseIR (ours)
PSNR 33.81 32.37 31.09 31.97 31.24 30.24
SSIM 0.881 0.832 0.774 0.819 0.783 0.726

† Supervised method.

anisotropic spatial setting. In addition, they need to be retrained when facing
different anisotropic factors α. Various anisotropic factors α are shown in Tab. 1.
Despite the model θ is trained solely for denoising tasks and having no exposure
to axial slices during training, DiffuseIR outperforms unsupervised baselines and
is even competitive with the supervised method [9]. As shown in Fig. 2, using our
proposed refine-in-loop strategy, the results produced by DiffuseIR exhibit more
significant visual similarity to the Ground Truth compared to other methods,
which may be more prone to causing distortion and blurriness of some details.
Notably, the versatility afforded by SSCS allows DiffuseIR to achieve excellent
results using only one model, even under different isotropic resolution settings.
This indicates that DiffuseIR overcomes the issue of generalization to some ex-
tent in practical scenarios, as users no longer need to retrain the model after
modifying imaging settings.

GT Interpolation CycleGAN-IR Ours3DSRUNet

PSNR/SSIM 30.78/0.731 31.92/0.793 32.54/0.834 32.78/0.847

Fig. 2: Visual comparisons on FIB-25 dataset (α = 4). DiffuseIR can gener-
ate competitive results compared to supervised methods, and the results appear
more visually realistic.
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CycleGAN-IR 3DSRUnet DiffuseIR(Ours) CycleGAN-IR 3DSRUNet DiffuseIR(Ours) GT
FIB25, α=4 à α=8 Cremi à FIB25, α=4

30.21/0.677 30.95/0.738 32.10/0.822 32.04/0.821 32.71/0.838 33.17/0.856

Cremi,  α=4 à α=8 FIB25 à Cremi,   α=4

29.68/0.633 30.66/0.734 31.17/0.768 30.56/0.717 31.34/0.792 31.78/0.820

(a) (b)

Fig. 3: Analysis on robustness. (a) Test on unseen anisotropic factor α. (b)
Test on different datasets with domain shifts (e.g., train on FIB25, test on
Cremi). Our method is robust against various anisotropic factors and domain
shifts between two datasets.

Further analysis on robustness. We examined the robustness of our model
to variations in both Z-axis resolutions and domain shifts. Specifically, we investi-
gated the following: (a) Robustness to unseen anisotropic spatial factors.
The algorithm may encounter unseen anisotropic resolution due to the need for
different imaging settings in practical applications. To assess the model’s ro-
bustness to unseen anisotropic factors, we evaluated the model trained with the
anisotropic factor α = 4. Then we do inference under the scenario of anisotropic
factor α = 8. For those methods with a fixed super-resolution factor, we use
cubic interpolation to upsample the reconstructed result by 2x along the axis.
(b) Robustness to the domain shifts. When encountering unseen data in
the real world, domain shifts often exist, such as differences in biological struc-
ture features and physical resolution, which can impact the model’s performance
[2,7]. To evaluate the model’s ability to handle those domain shifts, we trained
our model on one dataset and tested it on another dataset.

Analysis: As shown in Fig. 3, DiffuseIR shows greater robustness than other
methods. In scenario (a), other methods are trained on specific anisotropic fac-
tors for super-resolution of axial LR to lateral HR. This can result in model
fragility during testing with unseen anisotropic resolutions. In contrast, Diffu-
seIR directly learns the universal structural distribution at lateral through gener-
ation task, applicable to various axial resolutions. All methods exhibit decreased
performance in scenario (b). However, DiffuseIR shows a small performance
degradation with the help of the multi-step generation of the diffusion model
and sparse spatial constraints imposed by SSCS at each reverse-diffusion step.
Further, compared to the previous methods predicting the result by one step,
DiffuseIR makes the generating process more robust and controllable by adding
constraints at each step to prevent the model from being off-limit.
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(b)(a)

Fig. 4: Ablation Study: (a)ablation on SSCS frequency.Experimental re-
sults demonstrates the importance of SSCS. When reducing the frequency
of SSCS usage, performance will severely decline. (b)ablation on different
refine-in-loop settings. The results show that when the number of total steps
is fixed, increase K will lead to higher PSNR.

Ablation Study. We conducted extensive ablation experiments Fig. 4. First,
to demonstrate the effectiveness of SSCS, we use it only in partially alternate
reverse-diffusion steps, such as 1/4 or 1/2 steps. As shown in Fig. 4 (a), increas-
ing the frequency of SSCS significantly improves PSNR while bringing negligible
additional computational costs. This indicates that SSCS have a vital effect on
the model’s performance. Second, for the Refine-in-loop strategy, results show
that keeping the total number of steps unchanged (reducing the number of time
steps T while increasing the refine iterations K) can markedly improve perfor-
mance. Fig. 4 (b) have the following settings: T = {25, 100, 250, 1000} with
K{40, 10, 4, 1} to achieve a total of 5000 steps. The results show that the model
performs best when T = 25 and PSNR gradually increases with the increase of
K. A balanced choice is {T = 25,K = 40}, which improves PSNR by 1.56dB
compared to {T = 1000,K = 1} without using the Refine-in-loop strategy.

4 Conclusion

We introduce DiffuseIR, an unsupervised method for isotropic reconstruction
based on diffusion models. To the best of our knowledge, We are the first to
introduce diffusion models to solve this problem. Our approach employs Sparse
Spatial Condition Sampling (SSCS) and a Refine-in-loop strategy to generate re-
sults robustly and efficiently that can handle unseen anisotropic resolutions. We
evaluate DiffuseIR on EM data. Experiments results show our methods achieve
SoTA methods and yield comparable performance to supervised methods. Addi-
tionally, our approach offers a novel perspective for addressing Isotropic Recon-
struction problems and has impressive robustness and generalization abilities.
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