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Abstract. While various deep learning methods have been proposed
for low-dose computed tomography (CT) denoising, most of them lever-
age the normal-dose CT images as the ground-truth to supervise the
denoising process. These methods typically ignore the inherent correla-
tion within a single CT image, especially the anatomical semantics of
human tissues, and lack the interpretability on the denoising process. In
this paper, we propose a novel Anatomy-aware Supervised CONtrastive
learning framework, termed ASCON, which can explore the anatomical
semantics for low-dose CT denoising while providing anatomical inter-
pretability. The proposed ASCON consists of two novel designs: an effi-
cient self-attention-based U-Net (ESAU-Net) and a multi-scale anatom-
ical contrastive network (MAC-Net). First, to better capture global-
local interactions and adapt to the high-resolution input, an efficient
ESAU-Net is introduced by using a channel-wise self-attention mecha-
nism. Second, MAC-Net incorporates a patch-wise non-contrastive mod-
ule to capture inherent anatomical information and a pixel-wise con-
trastive module to maintain intrinsic anatomical consistency. Exten-
sive experimental results on two public low-dose CT denoising datasets
demonstrate superior performance of ASCON over state-of-the-art mod-
els. Remarkably, our ASCON provides anatomical interpretability for
low-dose CT denoising for the first time. Source code is available at
https://github.com/hao1635/ASCON.

Keywords: CT denoising · Deep learning · Self-attention · Contrastive
learning · Anatomical semantics.

1 Introdcution

With the success of deep learning in the field of computer vision and image pro-
cessing, many deep learning-based methods have been proposed and achieved
promising results in low-dose CT (LDCT) denoising [1,4–6,9,12,23,24,26]. Typ-
ically, they employ a supervised learning setting, which involves a set of image
pairs, LDCT images and their normal-dose CT (NDCT) counterparts. These
methods typically use a pixel-level loss (e.g. mean squared error or MSE), which
can cause over-smoothing problems.
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To address this issue, a few studies [23,26] used a structural similarity (SSIM)
loss or a perceptual loss [11]. However, they all perform in a sample-to-sample
manner and ignore the inherent anatomical semantics, which could blur details
in areas with low noise levels. Previous studies have shown that the level of
noise in CT images varies depending on the type of tissues [17]; see an example
in Fig. S1 in Supplementary Materials. Therefore, it is crucial to characterize
the anatomical semantics for effectively denoising diverse tissues.

In this paper, we focus on taking advantage of the inherent anatomical se-
mantics in LDCT denoising from a contrastive learning perspective [7, 25, 27].
To this end, we propose a novel Anatomy-aware Supervised CONtrastive learn-
ing framework (ASCON), which consists of two novel designs: an efficient self-
attention-based U-Net (ESAU-Net) and a multi-scale anatomical contrastive net-
work (MAC-Net). First, to ensure that MAC-Net can effectively extract anatom-
ical information, diverse global-local contexts and a larger input size are neces-
sary. However, operations on full-size CT images with self-attention are com-
putationally unachievable due to potential GPU memory limitations [20]. To
address this limitation, we propose an ESAU-Net that utilizes a channel-wise
self-attention mechanism [2, 22, 28] which can efficiently capture both local and
global contexts by computing cross-covariance across feature channels.

Second, to exploit inherent anatomical semantics, we present the MAC-Net
that employs a disentangled U-shaped architecture [25] to produce global and lo-
cal representations. Globally, a patch-wise non-contrastive module is designed to
select neighboring patches with similar semantic context as positive samples and
align the same patches selected in denoised CT and NDCT which share the same
anatomical information, using an optimization method similar to the BYOL
method [7]. This is motivated by the prior knowledge that adjacent patches often
share common semantic contexts [27]. Locally, to further improve the anatom-
ical consistency between denoised CT and NDCT, we introduce a pixel-wise
contrastive module with a hard negative sampling strategy [21], which randomly
selects negative samples from the pixels with high similarity around the positive
sample within a certain distance. Then we use a local InfoNCE loss [18] to pull
the positive pairs and push the negative pairs.

Our contributions are summarized as follows. 1) We propose a novel ASCON
framework to explore inherent anatomical information in LDCT denoising, which
is important to provide interpretability for LDCT denoising. 2) To better explore
anatomical semantics in MAC-Net, we design an ESAU-Net, which utilizes a
channel-wise self-attention mechanism to capture both local and global contexts.
3) We propose a MAC-Net that employs a disentangled U-shaped architecture
and incorporates both global non-contrastive and local contrastive modules. This
enables the exploitation of inherent anatomical semantics at the patch level,
as well as improving anatomical consistency at the pixel level. 4) Extensive
experimental results demonstrate that our ASCON outperforms other state-of-
the-art methods, and provides anatomical interpretability for LDCT denoising.
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Fig. 1. Overview of our proposed ASCON. (a) Efficient self-attention-based U-
Net (ESAU-Net); and (b) multi-scale anatomical contrastive network (MAC-Net).

2 Methodology

2.1 Overview of the proposed ASCON

Fig. 1 presents the overview of the proposed ASCON, which consists of two
novel components: ESAU-Net and MAC-Net. First, given an LDCT image, X ∈
R1×H×W , where H×W denotes the image size. X is passed through the ESAU-
Net to capture both global and local contexts using a channel-wise self-attention
mechanism and obtain a denoised CT image Y ′ ∈ R1×H×W .

Then, to explore inherent anatomical semantics and remain inherent anatom-
ical consistency, the denoised CT Y ′ and NDCT Y are passed to the MAC-Net
to compute a global MSE loss Lglobal in a patch-wise non-contrastive module
and a local infoNCE loss Llocal in a pixel-wise contrastive module. During train-
ing, we use an alternate learning strategy to optimize ESAU-Net and MAC-Net
separately, which is similar to GAN-based methods [10]. Please refer to Alg. 1
in Supplementary Materials for a detailed optimization.

2.2 Efficient Self-attention-based U-Net

To better leverage anatomical semantic information in MAC-Net and adapt to
the high-resolution input, we design the ESAU-Net that can capture both local
and global contexts during denoising. Different from previous works that only
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use self-attention in the coarsest level [20], we incorporate a channel-wise self-
attention mechanism [2,28] at each up-sampling and down-sampling level in the
U-Net [22] and add an identity mapping in each level, as shown in Fig. 1(a).

Specifically, in each level, given the feature map Fl−1 as the input, we first
apply a 1×1 convolution and a 3×3 depth-wise convolution to aggregate channel-
wise contents and generate query (Q), key (K), and value (V ) followed by
a reshape operation, where Q ∈ RC×HW , K ∈ RC×HW , and V ∈ RC×HW

(see Fig. 1(a)). Then, a channel-wise attention map A ∈ RC×C is generated
through a dot-product operation by the reshaped query and key, which is more
efficient than the regular attention map of size HW ×HW [3], especially for
high-resolution input. Overall, the process is defined as

Attention(F ) = w(V TA) = w(V T · Softmax(KQT /α)), (1)

where w(·) first reshapes the matrix back to the original size C×H×W and then
performs 1 × 1 convolution; α is a learnable parameter to scale the magnitude
of the dot product of K and Q. We use multi-head attention similar to the
standard multi-head self-attention mechanism [3]. The output of the channel-
wise self-attention is represented as: F ′

l−1 = Attention(Fl−1) + Fl−1. Finally,
the output Fl of each level is defined as: Fl = Conv(F ′

l−1) + Iden(Fl−1), where
Conv(·) is a two-layer convolution and Iden(·) is an identity mapping using a
1× 1 convolution; refer to Fig. S2(a) for the details of ESAU-Net.

2.3 Multi-scale Anatomical Contrastive Network

Overview of MAC-Net. The goal of our MAC-Net is to exploit anatomi-
cal semantics and maintain anatomical embedding consistency, First, a disen-
tangled U-shaped architecture [22] is utilized to learn global representation Fg

∈ R512× H
16×

W
16 after four down-sampling layers, and learn local representation

Fl∈ R64×H×W by removing the last output layer. And we cut the connection
between the coarsest feature and its upper level to make Fg and Fl more in-
dependent [25] (see Fig. S2(b)). The online network and the target network,
both using the same architecture above, handle denoised CT Y ′ and NDCT
Y , respectively, with F ′

g and F ′
l generated by the online network, and Fg and

Fl generated by the target network (see Fig. 1(b)). The parameters of the tar-
get network are an exponential moving average of the parameters in the online
network, following the previous works [7, 8]. Next, a patch-wise non-contrastive
module uses Fg and F ′

g to compute a global MSE loss Lglobal, while a pixel-wise
contrastive module uses Fl and F ′

l to compute a local infoNCE loss Llocal. Let
us describe these two loss functions specifically.
Patch-wise non-contrastive module. To better learn anatomical repre-
sentations, we introduce a patch-wise non-contrastive module, also shown in
Fig. 1(b). Specifically, for each pixel f (i)

g ∈ R512 in the Fg where i ∈ {1, 2, . . . , HW
256 }

is the index of the pixel location, it can be considered as a patch due to the
expanded receptive field achieved through a sequence of convolutions and down-
sampling operations [19]. To identify positive patch indices, we adopt a neighbor-
ing positive matching strategy [27], assuming that a semantically similar patch
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f
(j)
g exists in the vicinity of the query patch f

(i)
g , as neighboring patches of-

ten share a semantic context with the query. We empirically consider a set of 8
neighboring patches. To sample patches with similar semantics around the query
patch f

(i)
g , we measure the semantic closeness between the query patch f

(i)
g and

its neighboring patches f
(j)
g using the cosine similarity, which is formulated as

s(i, j) = (f (i)
g )⊤(f (j)

g )/∥f (i)
g ∥2∥f (j)

g ∥2. (2)

We then select the top-4 positive patches {f (j)
g }j∈P(i) based on s(i, j), where

P(i) is a set of selected patches (i.e., |P(i)| = 4). To obtain patch-level fea-
tures g(i) ∈ R512 for each patch f

(i)
g and its positive neighbors, we aggregate

their features using global average pooling (GAP) in the patch dimension. For
the local representation of f ′(i)

g , we select positive patches as same as P(i),
i.e., {f ′(j)

g }j∈P(i) . Formally,

g(i) := GAP(f (i)
g , {f (j)

g }j∈P(i)), g′(i) := GAP(f ′(i)
g , {f ′(j)

g }j∈P(i)). (3)

From the patch-level features, the online network outputs a projection z′
g
(i)

=

p′g(g
′(i)) and a prediction q′(z′

g
(i)
) while target network outputs the target pro-

jection zg
(i) = pg(g

(i)). The projection and prediction are both multi-layer per-
ceptron (MLP). Finally, we compute the global MSE loss between the normalized
prediction and target projection [7],

Lglobal =
∑

i∈N g
pos

∥∥q′(z′
g
(i)
)−zg

(i)
∥∥2
2
=

∑
i∈N g

pos

2−2 · ⟨q′(z′
g
(i)),zg

(i)⟩
∥q′(z′

g
(i))∥2·∥zg

(i)∥2
, (4)

where N g
pos is the indices set of positive samples in the patch-level embedding.

Pixel-wise contrastive module. In this module, we aim to improve anatom-
ical consistency between the denoised CT and NDCT using a local InfoNCE
loss [18] (see Fig. 1(b)). First, for a query f ′

l
(i) ∈ R64 in the F ′

l and its posi-
tive sample f

(i)
l ∈ R64 in the Fl (i ∈ {1, 2, . . . ,HW} is the location index), we

use a hard negative sampling strategy [21] to select “diffcult” negative samples
with high probability, which enforces the model to learn more from the fine-
grained details. Specifically, candidate negative samples are randomly sampled
from Fl as long as their distance from f

(i)
l is less than m pixels (m=7). We

also use cosine similarity in Eq. (2) to select a set of semantically closest pix-
els, i.e. {f (j)

l }
j∈N (i)

neg
. Then we concatenate f ′(i)

l ,f
(i)
l , and {f (j)

l }
j∈N (i)

neg
and map

them to a K-dimensional vector (K=256) through a two-layer MLP, obtaining
The local InfoNCE loss in the pixel level is defined as

Llocal = −
∑

i∈N l
pos

log
exp

(
v′(i)

l ·v(i)
l /τ

)
exp

(
v′(i)

l ·v(i)
l /τ

)
+
∑|N(i)

neg|
j=1 exp

(
v′(i)

l ·v(j)
l /τ

) , (5)

where N l
pos is the indices set of positive samples in the pixel level. v′(i)

l , vl
(i),

and v
(j)
l ∈ R256 are the query, positive, and negative sample in z

(i)
l , respectively.
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2.4 Total Loss Function

The final loss is defined as L = Lglobal + Llocal + λLpixel, where Lpixel consists
of two common supervised losses: MSE and SSIM, defined as Lpixel = LMSE +
LSSIM. λ is empirically set to 10.

3 Experiments

3.1 Dataset and Implementation Details

We use two publicly available low-dose CT datasets released by the NIH AAPM-
Mayo Clinic Low-Dose CT Grand Challenge in 2016 [15] and lately released in
2020 [16], denoted as Mayo-2016 and Mayo-2020, respectively. There is no over-
lap between the two datasets. Mayo-2016 includes normal-dose abdominal CT
images of 10 anonymous patients and corresponding simulated quarter-dose CT
images. Mayo-2020 provides the abdominal CT image data of 100 patients with
25% of the normal dose, and we randomly choose 20 patients for our experiments.

For the Mayo-2016, we choose 4800 pairs of 512×512 images from 8 patients
for the training and 1136 pairs from the rest 2 patients as the test set. For the
Mayo-2020, we employ 9600 image pairs with a size of 256× 256 from randomly
selected 16 patients for training and 580 pairs of 512 × 512 images from rest 4
patients for testing. The use of large-size training is to adapt our MAC-Net to
exploit inherent semantic information. The default sampling hyper-parameters
for Mayo-2016 are |N l

pos| = 32, |N g
pos| = 512, |N (i)

neg| = 24, while |N l
pos| = 16,

|N g
pos| = 256, |N (i)

neg| = 24 for Mayo-2020. We use a binary function to filter the
background while selecting queries in MAC-Net. For the training strategy, we
employ a window of [−1000, 2000] HU. We train our network for 100 epochs
on 2 NVIDIA GeForce RTX 3090, and use the AdamW optimizer [14] with the
momentum parameters β1 = 0.9, β2 = 0.99 and the weight decay of 1.0× 10−9.
We initialize the learning rate as 1.0×10−4, gradually reduced to 1.0×10−6 with
the cosine annealing [13]. Since MAC-Net is only implemented during training,
the testing time of ASCON is close to most of the compared methods.

3.2 Performance Comparisons

Quantitative evaluations. We use three widely-used metrics such as peak
signal-to-noise ratio (PSNR), root-mean-square error (RMSE), and SSIM. Ta-
ble 1 presents the testing results on Mayo-2016 and Mayo-2020 datasets. We
compare our methods with 5 state-of-the-art methods, including RED-CNN [1],
WGAN-VGG [26], EDCNN [12], DU-GAN [9], and CNCL [6]. Table 1 shows
that our ESAU-Net with MAC-Net achieves the best performance on both the
Mayo-2016 and the Mayo-2020 datasets. Compared to the ESAU-Net, ASCON
further improves the PSNR by up to 0.54 dB on Mayo-2020, which demonstrates
the effectiveness of the proposed MAC-Net and the importance of the inherent
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Table 1. Performance comparison on the Mayo-2016 and Mayo-2020 datasets in terms
of PSNR [dB], RMSE [×10−2], and SSIM [%]

Methods Mayo-2016 Mayo-2020
PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑

U-Net [22] 44.13±1.19 0.64±0.12 97.38±1.09 47.67±1.64 0.43±0.09 99.19±0.23

RED-CNN [1] 44.23±1.26 0.62±0.09 97.34±0.86 48.05±2.14 0.41±0.11 99.28±0.18

WGAN-VGG [26] 42.49±1.28 0.76±0.12 96.16±1.30 46.88±1.81 0.46±0.10 98.15±0.20

EDCNN [12] 43.14±1.27 0.70±0.11 96.45±1.36 47.90±1.27 0.41±0.08 99.14±0.17

DU-GAN [9] 43.06±1.22 0.71±0.10 96.34±1.12 47.21±1.52 0.44±0.10 99.00±0.21

CNCL [6] 43.06±1.07 0.71±0.10 96.68±1.11 45.63±1.34 0.53±0.11 98.92±0.59

ESAU-Net (ours) 44.38±1.26 0.61±0.09 97.47±0.87 48.31±1.87 0.40±0.12 99.30±0.18

ASCON (ours) 44.48±1.32 0.60±0.10 97.49±0.86 48.84±1.68 0.37±0.11 99.32±0.18

21.8633 dB 27.0113 dB 26.3161 dB 25.9499 dB 27.0947 dB 27.1587 dB

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Transverse CT images and corresponding difference images from the Mayo-2016
dataset: (a) NDCT; (b) LDCT; (c) RED-CNN [1]; (d) EDCNN [12]; (e) DU-GAN [9];
(f) ESAU-Net (ours); and (g) ASCON (ours). The display window is [-160, 240] HU.

anatomical semantics during CT denoising. We also compute the contrast-to-
noise ratio (CNR) to assess the detectability of a selected area of low-contrast
lesion and our ASCON achieves the best CNR in Fig. S3.
Qualitative evaluations. Fig. 2 presents qualitative results of three repre-
sentative methods and our ESAU-Net with MAC-Net on Mayo-2016. Although
ASCON and RED-CNN produce visually similar results in low-contrast areas
after denoising. However, RED-CNN results in blurred edges between different
tissues, such as the liver and blood vessels, while ASCON smoothed the noise and
maintained the sharp edges. They are marked by arrows in the regions-of-interest
images. We further visualize the corresponding difference images between NDCT
and the generated images by our method as well as other methods as shown in
the third row of Fig. 2. Note that our ASCON removes more noise components
than other methods; refer to Fig. S4 for extra qualitative results on Mayo-2020.
Visualization of inherent semantics. To demonstrate that our MAC-Net
can exploit inherent anatomical semantics of CT images during denoising, we se-
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(b) (c) (a) 

Fig. 3. Visualization of inherent semantics; (a) NDCT; (b) clustering and t-SNE results
of ASCON w/o MAC-Net; and (c) clustering and t-SNE results of ASCON.

Table 2. Ablation results of Mayo-2020 on the different types of loss functions.

Loss PSNR↑ RMSE↓ SSIM↑

LMSE 48.34±2.22 0.40±0.11 99.27±0.18

LMSE + LPerceptual 47.83±1.99 0.42±0.10 99.13±0.19

LMSE + LSSIM 48.31±1.87 0.40±0.12 99.30±0.18

LMSE + LSSIM + Lglobal 48.58±2.12 0.39±0.10 99.31±0.17

LMSE + LSSIM + Llocal 48.48±2.37 0.38±0.11 99.31±0.18

LMSE + LSSIM+ Llocal + Lglobal 48.84±1.68 0.37±0.11 99.32±0.18

lect the features before the last layer in ASCON without MAC-Net and ASCON
from Mayo-2016. Then we cluster these two feature maps respectively using a
K-means algorithm and visualize them in the original dimension, and finally vi-
sualize the clustering representations using t-SNE, as shown in Fig. 3. Note that
ASCON produces a result similar to organ semantic segmentation after cluster-
ing and the intra-class distribution is more compact, as well as the inter-class
separation is more obvious. To the best of our knowledge, this is the first time
that anatomical semantic information has been demonstrated in a CT denoising
task, providing interpretability to the field of medical image reconstruction.
Ablation studies. We start with a ESAU-Net using MSE loss and gradu-
ally insert some loss functions and our MAC-Net. Table 2 presents the results
of different loss functions. It shows that both the global non-contrastive mod-
ule and local contrastive module are helpful in obtaining better metrics due
to the capacity of exploiting inherent anatomical information and maintaining
anatomical consistency. Then, we add our MAC-Net to two supervised models:
RED-CNN [1] and U-Net [22] but it is less effective, which demonstrates the im-
portance of our ESAU-Net that captures both local and global contexts during
denoising in Table S1. In addition, we evaluate the effectiveness of the training
strategies including alternate learning, neighboring positive matching and hard
negative sampling in Table S2.

4 Conclusion

In this paper, we explore the anatomical semantics in LDCT denoising and
take advantage of it to improve the denoising performance. To this end, we
propose an Anatomy-aware Supervised CONtrastive learning framework (AS-
CON), consisting of an efficient self-attention-based U-Net (ESAU-Net) and a



Anatomy-aware Low-dose CT Denoising 9

multi-scale anatomical contrastive network (MAC-Net), which can capture both
local and global contexts during denoising and exploit inherent anatomical infor-
mation. Extensive experimental results on Mayo-2016 and Mayo-2020 datasets
demonstrate the superior performance of our method, and the effectiveness of
our designs. We also validated that our method introduces interpretability to
LDCT denoising.
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Supplementary Materials
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Fig. S1. The mean and standard deviation of different tissues in an example of an
LDCT image. The standard deviation (std) of an ROI in the liver is 63.23 HU, while
the std of an ROI in the muscle is 44.73 HU.

3x3
conv

ESA Block ESA Block

ESA Block

ESA BlockESA Block

3x3
conv ESA Block

2Cx
H
2 x

W
21xHxW 4Cx

H
4 x

W
4

4Cx
H
4 x

W
4

CxHxW

CxHxW1xHxW CxHxW 2Cx
H
2 x

W
2

8Cx
H
8 x

W
8

3x3 
dconv

1x1
conv

1x1
conv

1x1
conv

R

R

R R

CxHW

CxHW

CxHW
CxC

softmax

HWxC

CxHxW CxHxW

3x3 
dconv

3x3 
dconv

1x1
conv

�

Attention Map (�)�

�

�  �’  

Reshape 
Element-wise Addtion
Matrix Multiplication

3x3 
conv

3x3 
conv

1x1
conv

CxHxW CxHxW

C’xHxW

R

ESA Block

Max-pooling

Bilinear interpolation

CxHxW

skip
connection

skip
connection

skip
connection

double 3x3 conv Max-pooling Bilinear interpolation

64xHxW

512xH16x
W
16

copy

1xHxW

(a) (b)
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(a) (b) (c) (d) (e) (f) (g) (h)
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Fig. S3. Contrast-to-noise ratio (CNR) of the low-contrast lesion from Mayo-2016
dataset. We select the yellow rectangle of every image to visualize (see in (a)). ROIs of
the red rectangle and the blue rectangle are the lesion and the background. (b) NDCT;
(c) LDCT; (d) RED-CNN; (e) WGAN-VGG; (f) CNCL; (g) ESAU-Net (ours); and
(h) ASCON (ours). Note that our proposed method achieves the best performance of
CNR.

29.6849 dB 33.4744 dB 32.1644 dB 32.5215 dB 33.6245 dB 33.7304 dB
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Fig. S4. Transverse CT images and corresponding difference images from the Mayo-
2020 dataset: (a) NDCT; (b) LDCT; (c) RED-CNN; (d) WGAN-VGG; (e) CNCL; (f)
ESAU-Net (ours); and (g) ASCON (ours). Zoomed ROI of the rectangle is shown below
the full-size one. The display window is [-160, 240] HU.



Anatomy-aware Low-dose CT Denoising 13

Algorithm 1 Optimization of alternate learning
1: Input: LDCT X, NDCT Y
2: Networks in ASCON: ESAU-Net and MAC-Net
3: Optimizers: Optimizer_E (ESAU-Net) and Optimizer_M (MAC-Net)
4:
5: Y ′= ESAU-Net.forward(X)
6:
7: # Optimization of MAC-Net
8: Set_requires_grad (MAC-Net, True)
9: MAC-Net .forward(Y ′.detach(), Y )

10: Optimizer_M.zero_grad()
11: Compute Lcontra = Llocal + Lglobal

12: Lcontra.backward ()
13: Optimizer_M.step ()
14:
15: # Optimization of ESAU-Net
16: Set_requires_grad (MAC-Net, False)
17: Optimizer_E.zero_grad ()
18: Compute L = Lpixel + Lcontra

19: L.backward ()
20: Optimizer_E.step ()

Table S1. Ablation results on different supervised models with MAC-Net. Note that
the performance of RED-CNN and Unet decreases when adding a MAC-Net. It verifies
the importance of our ESAU-Net that captures both local and global contexts during
denoising.

Mayo-2016 Dataset Mayo-2020 Dataset
Method PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑

RED-CNN 44.23 0.62 97.34 48.05 0.41 99.28
±1.26 ±0.09 ±0.86 ±2.14 ±0.11 ±0.18

RED-CNN w/ MAC-Net 43.55 0.67 97.11 47.85 0.42 99.27
±1.16 ±0.11 ±0.85 ±2.08 ±0.10 ±0.21

Unet 44.13 0.64 97.38 47.67 0.43 99.19
±1.19 ±0.12 ±1.09 ±1.64 ±0.09 ±0.23

Unet w/ MAC-Net 44.04 0.65 97.35 47.66 0.43 99.20
±1.15 ±0.11 ±0.98 ±1.82 ±0.10 ±0.21

ESAU-Net 44.38 0.61 97.47 48.31 0.40 99.30
±1.26 ±0.09 ±0.87 ±1.87 ±0.12 ±0.18

ASCON (proposed) 44.48 0.60 97.49 48.84 0.37 99.32
±1.32 ±0.10 ±0.86 ±1.68 ±0.11 ±0.18
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Table S2. Ablation results of Mayo-2020 on the different training strategies in terms
of PSNR, RMSE, and SSIM.

Method PSNR ↑ RMSE↓ SSIM↑

w/o alternate training 48.57±1.82 0.38±0.10 99.28±0.19
w/o neighboring positive matching strategy 48.51±1.61 0.39±0.10 99.31±0.17
w/o hard negative sampling 48.41±1.73 0.40±0.09 99.29±0.19
ASCON (proposed) 48.84±1.68 0.37±0.11 99.32±0.18
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