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Abstract. Multi-sequence MRI is valuable in clinical settings for re-
liable diagnosis and treatment prognosis, but some sequences may be
unusable or missing for various reasons. To address this issue, MRI syn-
thesis is a potential solution. Recent deep learning-based methods have
achieved good performance in combining multiple available sequences for
missing sequence synthesis. Despite their success, these methods lack the
ability to quantify the contributions of different input sequences and es-
timate the quality of generated images, making it hard to be practical.
Hence, we propose an explainable task-specific synthesis network, which
adapts weights automatically for specific sequence generation tasks and
provides interpretability and reliability from two sides: (1) visualize the
contribution of each input sequence in the fusion stage by a trainable
task-specific weighted average module; (2) highlight the area the network
tried to refine during synthesizing by a task-specific attention module.
We conduct experiments on the BraTS2021 dataset of 1251 subjects,
and results on arbitrary sequence synthesis indicate that the proposed
method achieves better performance than the state-of-the-art methods.
Our code is available at https://github.com/fiy2W/mri_seq2seq.

Keywords: Missing-Sequence MRI Synthesis · Multi-Sequence Fusion ·
Task-Specific Attention.
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1 Introduction

Magnetic resonance imaging (MRI) consists of a series of pulse sequences, e.g.
T1-weighted (T1), contrast-enhanced (T1Gd), T2-weighted (T2), and T2-fluid-
attenuated inversion recovery (Flair), each showing various contrast of water and
fat tissues. The intensity contrast combination of multi-sequence MRI provides
clinicians with different characteristics of tissues, extensively used in disease di-
agnosis [16], lesion segmentation [17], treatment prognosis [7], etc. However, some
acquired sequences are unusable or missing in clinical settings due to incorrect
machine settings, imaging artifacts, high scanning costs, time constraints, con-
trast agents allergies, and different acquisition protocols between hospitals [5].
Without rescanning or affecting the downstream pipelines, the MRI synthesis
technique can generate missing sequences by leveraging redundant shared infor-
mation between multiple sequences [18].

Many studies have demonstrated the potential of deep learning methods for
image-to-image synthesis in the field of both nature images [12,11,8] and medical
images [2,19,13]. Most of these works introduce an autoencoder-like architecture
for image-to-image translation and employ adversarial loss to generate more
realistic images. Unlike these one-to-one approaches, MRI synthesis faces the
challenge of fusing complementary information from multiple input sequences.
Recent studies about multi-sequence fusion can specifically be divided into two
groups: (1) image fusion and (2) feature fusion. The image fusion approach is
to concatenate sequences as a multi-channel input. Sharma et al. [18] design
a network with multi-channel input and output, which combines all the avail-
able sequences and reconstructs the complete sequences at once. Li et al. [14]
add an availability condition branch to guide the model to adapt features for
different input combinations. Dalmaz et al. [9] equip the synthesis model with
residual transformer blocks to learn contextual features. Image-level fusion is
simple and efficient but unstable – zero-padding inputs for missing sequences
lead to training unstable and slight misalignment between images can easily
cause artifacts. In contrast, efforts have been made on feature fusion, which can
alleviate the discrepancy across multiple sequences, as high-level features focus
on the semantic regions and are less affected by input misalignment compared
to images. Zhou et al. [23] design operation-based (e.g. summation, product,
maximization) fusion blocks to densely combine the hierarchical features. And
Li et al. [15] employ self-attention modules to integrate multi-level features. The
model architectures of these methods are not flexible and difficult to adapt to
various sequence combinations. More importantly, recent studies only focus on
proposing end-to-end models, lacking quantifying the contributions for different
sequences and estimating the qualities of generated images.

In this work, we propose an explainable task-specific fusion sequence-to-
sequence (TSF-Seq2Seq) network, which has adaptive weights for specific synthe-
sis tasks with different input combinations and targets. Specially, this framework
can be easily extended to other tasks, such as segmentation. Our primary con-
tributions are as follows: (1) We propose a flexible network to synthesize the
target MRI sequence from an arbitrary combination of inputs; (2) The network
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Fig. 1. Overview of the TSF-Seq2Seq network. By giving the task-specific code, TSF-
Seq2Seq can synthesize a target sequence from existing sequences, and meanwhile,
output the weight of input sequences ω and the task-specific enhanced map (TSEM).

shows interpretability for fusion by quantifying the contribution of each input
sequence; (3) The network provides reliability for synthesis by highlighting the
area the network tried to refine.

2 Methods

Figure 1 illustrates the overview of the proposed TSF-Seq2Seq network. Our
network has an autoencoder-like architecture including an encoder E, a multi-
sequence fusion module, and a decoder G. Available MRI sequences are first
encoded to features by E, respectively. Then features from multiple input se-
quences are fused by giving the task-specific code, which identifies sources and
targets with a binary code. Finally, the fused features are decoded to the tar-
get sequence by G. Furthermore, to explain the mechanism of multi-sequence
fusion, our network can quantify the contributions of different input sequences
and visualize the TSEM.

To leverage shared information between sequences, we use E and G from
Seq2Seq [10], which is a one-to-one synthetic model that integrates arbitrary
sequence synthesis into single E and G. They can reduce the distance between
different sequences at the feature level to help more stable fusion. Details of the
multi-sequence fusion module and TSEM are described in the following sections.

2.1 Multi-Sequence Fusion

Define a set of N sequences MRI: X = {Xi|i = 1, ..., N} and corresponding avail-
able indicator A ⊂ {1, ..., N} and A ≠ ∅. Our goal is to predict the target set
XT = {Xi|i /∈ A} by giving the available set XA = {Xi|i ∈ A} and the corre-
sponding task-specific code c = {csrc, ctgt} ∈ Z2N . As shown in Fig. 1, csrc and
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ctgt are zero-one codes for the source and the target set, respectively. To fuse mul-
tiple sequences at the feature level, we first encode images and concatenate the
features as f⃗ = {E(Xi)|i = 1, ..., N}. Specifically, we use zero-filled placeholders
with the same shape as E(Xi) to replace features of i /∈ A to handle arbitrary
input sequence combinations. The multi-sequence fusion module includes: (1)
a task-specific weighted average module for the linear combination of available
features; (2) a task-specific attention module to refine the fused features.

Task-Specific Weighted Average. The weighted average is an intuitive fusion
strategy that can quantify the contribution of different sequences directly. To
learn the weight automatically, we use a trainable fully connected (FC) layer to
predict the initial weight ω0 ∈ RN from c.

ω0 = softmax(cW + b) + ϵ (1)

where W and b are weights and bias for the FC layer, ϵ = 10−5 to avoid dividing
0 in the following equation. To eliminate distractions and accelerate training, we
force the weights of missing sequences in ω0 to be 0 and guarantee the output
ω ∈ RN to sum to 1.

ω =
ω0 · csrc
⟨ω0, csrc⟩

(2)

where · refers to the element-wise product and ⟨·, ·⟩ indicates the inner product.

With the weights ω, we can fuse multi-sequence features as f̂ by the linear
combination.

f̂ = ⟨f⃗ , ω⟩ (3)

Specially, f̂ ≡ E(Xi) when only one sequence i is available, i.e. A = {i}. It
demonstrates that the designed ω can help the network excellently inherit the
synthesis performance of pre-trained E and G. In this work, we use ω to quantify
the contribution of different input combinations.

Task-Specific Attention. Apart from the sequence-level fusion of f̂ , a task-
specific attention module GA is introduced to refine the fused features at the
pixel level. The weights of GA can adapt to the specific fusion task with the
given target code. To build a conditional attention module, we replace convo-
lutional layers in convolutional block attention module (CBAM) [20] with Hy-
perConv [10]. As shown in Fig. 1, channel attention and spatial attention can
provide adaptive feature refinement guided by the task-specific code c to generate
residual attentional fused features fA.

fA = GA(f⃗ |c) (4)

Loss function. To force both f̂ and f̂ + fA can be reconstructed to the target
sequence by the conditional G, a supervised reconstruction loss is given as,

Lrec =λr · ∥X ′ −Xtgt∥1 + λp · Lp(X
′, Xtgt)

+λr · ∥X ′
A −Xtgt∥1 + λp · Lp(X

′
A, Xtgt)

(5)
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where X ′ = G(f̂ |ctgt), X ′
A = G(f̂ + fA|ctgt), Xtgt ∈ XT , ∥ · ∥1 refers to a L1

loss, and Lp indicates the perceptual loss based on pre-trained VGG19. λr and
λp are weight terms and are experimentally set to be 10 and 0.01.

2.2 Task-Specific Enhanced Map

As fA is a contextual refinement for fused features, analyzing it can help us
understand more what the network tried to do. Many studies focus on visualizing
the attention maps to interpret the principle of the network, especially for the
transformer modules [1,6]. However, visualization of the attention map is limited
by its low resolution and rough boundary. Thus, we proposed the TSEM by
subtracting the reconstructed target sequences with and without fA, which has
the same resolution as the original images and clear interpretation.

TSEM = |X ′
A −X ′| (6)

3 Experiments

3.1 Dataset and Evaluation Metrics

We use brain MRI images of 1,251 subjects from Brain Tumor Segmentation 2021
(BraTS2021) [3,4,17], which includes four aligned sequences, T1, T1Gd, T2, and
Flair, for each subject. We select 830 subjects for training, 93 for validation, and
328 for testing. All the images are intensity normalized to [−1, 1] and central
cropped to 128×192×192. During training, for each subject, a random number
of sequences are selected as inputs and the rest as targets. For validation and
testing, we fixed the input combinations and the target for each subject.

Target Pix2Pix MM-GAN DiamondGAN ResViT

Hi-Net MMgSN-Net Seq2Seq w/o fA Proposed

Fig. 2. Examples of synthetic T2 of comparison methods given the combination of
T1Gd and Flair.
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Table 1. Results for a set of sequences to a target sequence synthesis on BraTS2021.

Number of inputs Methods PSNR↑ SSIM↑ LPIPS↓

1

Pix2Pix [12] 25.6±3.1 0.819±0.086 15.85±9.41
MM-GAN [18] 27.3±2.4 0.864±0.039 11.47±3.76
DiamondGAN[14] 27.0±2.3 0.857±0.040 11.95±3.65
ResViT [9] 26.8±2.1 0.857±0.037 11.82±3.54
Seq2Seq [10] 27.7±2.4 0.869±0.038 10.49±3.63
TSF-Seq2Seq (w/o fA) 27.8±2.4 0.871±0.039 10.15±3.67
TSF-Seq2Seq 27.8±2.4 0.872±0.039 10.16±3.69

2

Pix2Pix [12] (Average) 26.2±2.7 0.834±0.054 15.84±6.05
MM-GAN [18] 28.0±2.3 0.878±0.037 10.33±3.58
DiamondGAN[14] 27.7±2.3 0.872±0.038 10.82±3.36
ResViT [9] 27.7±2.2 0.875±0.035 10.53±3.26
Hi-Net [23] 27.1±2.3 0.866±0.039 11.11±3.76
MMgSN-Net [15] 27.1±2.7 0.865±0.044 11.38±4.37
Seq2Seq [10] (Average) 28.2±2.2 0.879±0.035 11.11±3.72
TSF-Seq2Seq (w/o fA) 28.0±2.4 0.875±0.039 9.89±3.63
TSF-Seq2Seq 28.3±2.4 0.882±0.038 9.48±3.58

3

Pix2Pix [12] (Average) 26.6±2.5 0.842±0.041 15.77±5.08
MM-GAN [18] 28.5±2.5 0.883±0.040 9.65±3.57
DiamondGAN[14] 28.2±2.5 0.877±0.041 10.20±3.33
ResViT [9] 28.3±2.4 0.882±0.039 9.87±3.30
Seq2Seq [10] (Average) 28.5±2.3 0.880±0.038 11.61±3.87
TSF-Seq2Seq (w/o fA) 28.3±2.6 0.876±0.044 9.61±4.00
TSF-Seq2Seq 28.8±2.6 0.887±0.042 8.89±3.80

The synthesis performance is quantified using the metrics of peak signal noise
rate (PSNR), structural similarity index measure (SSIM), and learned perceptual
image patch similarity (LPIPS) [21], which evaluate from intensity, structure,
and perceptual aspects.

3.2 Implementation Details

The models are implemented with PyTorch and trained on the NVIDIA GeForce
RTX 3090 Ti GPU. The E and G from Seq2Seq are pre-trained using the Adam
optimizer with an initial learning rate of 2 × 10−4 and a batch size of 1 for
1,000,000 steps, taking about 60 hours. Then we finetune the TSF-Seq2Seq with
the frozen E using the Adam optimizer with an initial learning rate of 10−4 and
a batch size of 1 for another 300,000 steps, taking about 40 hours.

3.3 Quantitative Results

We compare our method with one-to-one translation, image-level fusion, and
feature-level fusion methods. One-to-one translation methods include Pix2Pix [12]
and Seq2Seq [10]. Image-level fusion methods consist of MM-GAN [18], Dia-
mondGAN [14], and ResViT [9]. Feature-level fusion methods include Hi-Net [23]
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(a) (b)

(c) (d)

Fig. 3. Bar chart for the weights of the input set of sequences to synthesize different
target sequences: (a) T1; (b) T1Gd; (c) T2; (d) Flair.

and MMgSN-Net [15]. Figure 2 shows the examples of synthetic T2 of compari-
son methods input with the combinations of T1Gd and Flair. Table 1 reports the
sequence synthesis performance for comparison methods organized by the differ-
ent numbers of input combinations. Note that, for multiple inputs, one-to-one
translation methods synthesize multiple outputs separately and average them
as one. And Hi-Net [23] and MMgSN-Net [15] only test on the subset with two
inputs due to fixed network architectures. As shown in Table 1, the proposed
method achieves the best performance in different input combinations.

3.4 Ablation Study

We compare two components of our method, including (1) task-specific weighted
average and (2) task-specific attention, by conducting an ablation study be-
tween Seq2Seq, TSF-Seq2Seq (w/o fA), and TSF-Seq2Seq. TSF-Seq2Seq (w/o
fA) refers to the model removing the task-specific attention module. As shown
in Table 1, when only one sequence is available, our method can inherit the
performance of Seq2Seq and achieve slight improvements. For multi-input situ-
ations, the task-specific weighted average can decrease LPIPS to achieve better
perceptual performance. And task-specific attention can refine the fused features
to achieve the best synthesis results.
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Target

TSEM

ResViT

Case 1 Case 2 Case 3 Case 4

Fig. 4. Examples of the proposed TSEM and the attention maps extracted by
ResViT [9] when generating T1Gd by given with T1, T2, and Flair.

Table 2. Results of PSNR for regions highlighted or not highlighted by TSEM.

Number of inputs TSEM > 99% TSEM < 99% Total

1 18.0±3.2 28.3±2.4 27.8±2.4
2 18.8±3.7 28.8±2.4 28.3±2.4
3 19.5±4.0 29.3±2.5 28.8±2.6

3.5 Interpretability Visualization

The proposed method not only achieves superior synthesis performance but also
has good interpretability. In this section, we will visualize the contribution of
different input combinations and TSEM.

Sequence Contribution. We use ω in Eq. 2 to quantify the contribution of
different input combinations for synthesizing different target sequences. Figure 3
shows the bar chart for the sequence contribution weight ω with different task-
specific code c. As shown in Fig. 3, both T1 and T1Gd contribute greatly to
the sequence synthesis of each other, which is expected because T1Gd are T1-
weighted scanning after contrast agent injection, and the enhancement between
these two sequences is indispensable for cancer detection and diagnosis. The less
contribution of T2, when combined with T1 and/or T1Gd, is consistent with the
clinical findings [23,22] that T2 can be well-synthesized by T1 and/or T1Gd.
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TSEM vs. Attention Map. Figure 4 shows the proposed TSEM and the
attention maps extracted by ResViT [9]. As shown in Fig. 4, TSEM has a higher
resolution than the attention maps and can highlight the tumor area which is
hard to be synthesized by the networks. Table 2 reports the results of PSNR for
regions highlighted or not highlighted by TSEM with a threshold of the 99th
percentile. To assist the synthesis models deploying in clinical settings, TSEM
can be used as an attention and uncertainty map to remind clinicians of the
possible unreliable synthesized area.

4 Conclusion

In this work, we introduce an explainable network for multi-to-one synthesis with
extensive experiments and interpretability visualization. Experimental results
based on BraTS2021 demonstrate the superiority of our approach compared
with the state-of-the-art methods. And we will explore the proposed method in
assisting downstream applications for multi-sequence analysis in future works.
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9. Dalmaz, O., Yurt, M., Çukur, T.: Resvit: residual vision transformers for multi-
modal medical image synthesis. IEEE Transactions on Medical Imaging 41(10),
2598–2614 (2022)



10 L. Han et al.

10. Han, L., Tan, T., Zhang, T., Huang, Y., Wang, X., Gao, Y., Teuwen, J., Mann, R.:
Synthesis-based imaging-differentiation representation learning for multi-sequence
3d/4d mri. arXiv preprint arXiv:2302.00517 (2023)

11. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-
image translation. In: Proceedings of the European conference on computer vision
(ECCV). pp. 172–189 (2018)

12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

13. Jung, E., Luna, M., Park, S.H.: Conditional gan with an attention-based gener-
ator and a 3d discriminator for 3d medical image generation. In: Medical Image
Computing and Computer Assisted Intervention–MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part
VI 24. pp. 318–328. Springer (2021)

14. Li, H., Paetzold, J.C., Sekuboyina, A., Kofler, F., Zhang, J., Kirschke, J.S.,
Wiestler, B., Menze, B.: Diamondgan: unified multi-modal generative adversarial
networks for mri sequences synthesis. In: Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2019: 22nd International Conference, Shen-
zhen, China, October 13–17, 2019, Proceedings, Part IV 22. pp. 795–803. Springer
(2019)

15. Li, W., Xiao, H., Li, T., Ren, G., Lam, S., Teng, X., Liu, C., Zhang, J., Lee, F.K.h.,
Au, K.h., et al.: Virtual contrast-enhanced magnetic resonance images synthesis for
patients with nasopharyngeal carcinoma using multimodality-guided synergistic
neural network. International Journal of Radiation Oncology* Biology* Physics
112(4), 1033–1044 (2022)

16. Mann, R.M., Cho, N., Moy, L.: Breast mri: state of the art. Radiology 292(3),
520–536 (2019)

17. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor
image segmentation benchmark (brats). IEEE transactions on medical imaging
34(10), 1993–2024 (2014)

18. Sharma, A., Hamarneh, G.: Missing mri pulse sequence synthesis using multi-modal
generative adversarial network. IEEE transactions on medical imaging 39(4), 1170–
1183 (2019)

19. Uzunova, H., Ehrhardt, J., Handels, H.: Memory-efficient gan-based domain trans-
lation of high resolution 3d medical images. Computerized Medical Imaging and
Graphics 86, 101801 (2020)

20. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: Cbam: Convolutional block attention
module. In: Proceedings of the European conference on computer vision (ECCV).
pp. 3–19 (2018)

21. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018)

22. Zhang, T., Tan, T., Han, L., Wang, X., Gao, Y., Teuwen, J., Beets-Tan, R.,
Mann, R.: Important-net: Integrated mri multi-parameter reinforcement fusion
generator with attention network for synthesizing absent data. arXiv preprint
arXiv:2302.01788 (2023)

23. Zhou, T., Fu, H., Chen, G., Shen, J., Shao, L.: Hi-net: hybrid-fusion network for
multi-modal mr image synthesis. IEEE transactions on medical imaging 39(9),
2772–2781 (2020)


	An Explainable Deep Framework: Towards Task-Specific Fusion for Multi-to-One MRI Synthesis

