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Abstract. We propose a novel image registration method based on im-
plicit neural representations that addresses the challenging problem of
registering a pair of brain images with similar anatomical structures,
but where one image contains additional features or artifacts that are
not present in the other image. To demonstrate its effectiveness, we use
2D microscopy in situ hybridization gene expression images of the mar-
moset brain. Accurately quantifying gene expression requires image reg-
istration to a brain template, which is difficult due to the diversity of
patterns causing variations in visible anatomical brain structures. Our
approach uses implicit networks in combination with an image exclusion
loss to jointly perform the registration and decompose the image into a
support and residual image. The support image aligns well with the tem-
plate, while the residual image captures individual image characteristics
that diverge from the template. In experiments, our method provided
excellent results and outperformed other registration techniques.

Keywords: brain · deep learning · gene expression · implicit neural
representations · registration

1 Introduction

Image registration is a crucial prerequisite for image comparison, data integra-
tion, and group studies in contemporary medical and neuroscience research. In
research and clinical settings, pairs of images often show similar anatomical
structures but may contain additional features or artifacts, such as specific stain-
ing, electrodes, or lesions, that are not present in the other image. This difficulty
of finding corresponding structures for automatically aligning images compli-
cates image registration. In this work, we address the challenging problem of the
gene expression image registration in the marmoset brain. Brain atlases of gene
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expression, created using images of brain tissue processed through in situ hy-
bridization (ISH), offer single-cell resolution of spatial gene expression patterns
across the entire brain [2,7]. However, accurately quantifying gene expression re-
quires brain image registration to spatially align ISH images to a common atlas
space. The diversity of gene expression patterns in ISH images causes variations
in visible anatomical brain structures with respect to the template image. ISH
microscopy images are also susceptible to tissue processing artifacts, resulting in
non-specific staining and tissue deformations.

Traditional pair-wise image registration methods use optimization algorithms
to find the deformation field that maximizes the similarity between a pair of
images. While several deep learning methods based on convolutional neural net-
works (CNNs) have been proposed for calculating the deformation field between
two images [3], such models typically require large training sets and may suffer
from generalization issues when applied to images presenting texture patterns
that diverge from the training data. Therefore, classic algorithms, such as Ad-
vanced Normalization Tools (ANTs) [1], are still preferred as off-the-shelf tools
for image registration in neuroscience due to scarce experimental data and the
diversity of data acquisition protocols and registration tasks. Recently, implicit
neural representations (INRs) have been utilized for image registration in MRI
and CT [14,16], offering a hybrid approach that connects modern deep learning
techniques with per-case optimization as used in classical approaches. INRs are
defined on continuous coordinate spaces, making them suitable for registration
of images that differ in geometry.

In this work, we propose a novel INR-based framework well-suited to address
the challenging problem of gene expression brain image registration. We associate
the registration problem with an image decomposition task. We utilize implicit
neural networks to decompose the ISH image into two separate images: a support
image and a residual image. The support image corresponds to the part of the
ISH image that is well-aligned with the registration template image in respect
to the texture. On the contrary, the residual image presents features of the
ISH image, such as artifacts or texture patterns (e.g. gene expression), which
presumably undermine the registration procedure. The support image is used to
improve the deformation field calculations. We also introduce an exclusion loss to
encourage clearer separation of the support and residual images. The usefulness
of the proposed method is demonstrated using 2D ISH gene expression images
of the marmoset brain.

2 Methods

2.1 Registration with implicit networks

The goal of the pairwise image registration is to determine a spatial transfor-
mation that maximizes the similarity between the moving image M and the
target fixed template image F . INRs serve as a continuous, coordinate based ap-
proximation of the deformation field obtained through a fully connected neural
network. In this study, as the backbone for our method, we utilized the standard
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approach to registration with INRs, as described in [14,16]. We used a single im-
plicit deformation network D to map 2D spatial coordinates x̄ ∈ [−1, 1]2 of the
moving image M to a displacement vector ∆x̄ ∈ R2. Next, the transformation
field was determined as Φ(x̄) = x̄+∆x̄ and the bilinear interpolation algorithm
was applied to obtain the corresponding moved image TΦ(M).

To train the deformation network, the following loss function based on corre-
lation coefficients was applied to assess the similarity between the moved image
TΦ(M) and the fixed template image F :

Lcc(F, TΦ(M)) =
1

2N

∑
x̄

(
NCC(F, TΦ(M)) + LNCC(F, TΦ(M))

)
, (1)

where NCC and LNCC stand for the normalized cross-correlation and local nor-
malized cross-correlation based loss functions averaged over the entire image
domain consisting of N elements. NCC was used to stabilize the training of
the network, while LNCC ensured good local registration results. Additionally,
following the standard approach to INR based registration, we regularized the
deformation field based on the Jacobian matrix determinant |JΦ(x̄)| using fol-
lowing equation [16]:

Lreg(Φ(x̄)) =
1

N

∑
x̄

|1− |JΦ(x̄)||. (2)

2.2 Registration guided image decomposition

Our aim is to improve the registration performance associated with the implicit
deformation network D. The proposed framework is presented in Fig. 1. We
assume that the moving image M can be decomposed with separate implicit
networks, S and R, into two images: the support image MS and the residual
image MR. Ideally, the support image should correspond to the part of the
moving image that contributes to the registration performance. On the contrary,
we expect the residual image to include image artifacts and texture patterns (e.g.
ISH gene expression patterns) that diverge from the fixed template image and
undermine the registration procedure. We impose the following condition based
on the mean squared error loss function for the decomposition of the moving
image:

Lrec(M,MS +MR) =
1

N

∑
x̄

(M −MS −MR)
2, (3)

stating that the support MS and residual MR images should sum up to the
moving image M . To ensure that the support image MS contributes to the reg-
istration with respect to the fixed image F , we utilize the cross-correlation based
loss function Lcc(F, TΦ(MS)) (eq. 1), where TΦ(MS) stands for the transformed
support image MS . Therefore, the deformation network is trained to provide
the transformation field Φ(x) both for the moving image and the support image
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Fig. 1. We use implicit networks S and R to decompose the moving image into the
support and residual images. The moving and support images are jointly registered to
the fixed template image, which guides the image decomposition procedure to generate
a support image that is well-aligned to the fixed image with respect to the texture. The
residual image includes the remaining moving image contents that do not contribute
to the registration, such as local gene expression patterns or image artifacts.

using two cross-correlation based loss functions. This way the training of the de-
formation network is guided to provide a more detailed transformation field for
the contents of the moving image that actually correspond to the fixed template
image. Moving image texture patterns that do not correspond to the fixed image
have lower impact on the training of the deformation network.

In practice, it might be beneficial, following INR based methods for obstruc-
tion and rain removal, to additionally constrain the image decomposition proce-
dure to obtain more clearly separated support MS and residual MR images [10].
For this, we utilize the following exclusion loss to encourage the gradient struc-
ture of the implicit networks S and R to be decorrelated [4]:

Lexcl(MS ,MR) =
1

N

∑
x̄

∑
i,j

|Γ (JS(x̄), JR(x̄))| (4)

where Γ (JMS
(x̄), JMR

(x̄)) = tanh(JS(x̄)) ⊗ tanh(JR(x̄)), ⊗ indicates element-
wise multiplication and indices i, j go over all elements of the matrix Γ .

In our framework, we jointly optimize all three implicit networks (D, S and
R) using the following composite loss function:

Loss = α1Lcc(F, TΦ(M)) + α2Lcc(F, TΦ(MS)) + α3Lreg(Φ(x̄))

+ α4Lrec(M,MS +MR) + α5Lexcl(MS ,MR).
(5)

The first row of eq. 5 can be perceived as a standard registration loss, while the
second row stands for a regularized image reconstruction loss.
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2.3 Evaluation

We designed the proposed method with the aim to address the problem of ISH
gene expression image registration. For the evaluation, we used neonate mar-
moset brain ISH images collected at the Laboratory for Molecular Mechanisms
of Brain Development, RIKEN Center for Brain Science, Wako, Japan (gene-
atlas.brainminds.jp) [6,12]. We prepared manual annotations for 2D images from
50 gene expression datasets. Atlas template images were created using ANTs [1],
based on semi-automatically aligned sets of 2D ISH images from 1942 gene ex-
pression datasets. ISH images used to generate the template were converted to
gray-scale to meet ANTs requirements and better highlight brain tissue inter-
faces.

Performance of the proposed approach was compared to the SynthMorph
network and the ANTs SyN registration algorithm based on mutual informa-
tion metric, as these two methods do not require pre-training and can serve
as off-the-shelf registration tools for neuroscience [1,5]. We conducted an abla-
tion study to assess the effectiveness of the proposed representation decomposi-
tion approach with and without the exclusion loss. Registration methods were
evaluated quantitatively based on Dice scores using manual 2D segmentations
prepared for the following five brain structures ranging in size and shape com-
plexity: aqueduct (AQ, 95 masks), hippocampus area (HA, 570 masks), dorsal
lateral geniculate (DLG, 370 masks), inferior colliculus (IC, 70 masks) and vi-
sual cortex area (VCA, 68 masks). Segmentations were outlined both for the
template and ISH 2D images, resulting in 1114 image pairs corresponding to
the same brain regions. We also calculated the percentage of the non-positive
Jacobian determinant values to assess the deformation field folding. Moreover,
we determined the structural similarity index (SSIM) between the moved images
and the template fixed images.

2.4 Implementation

We utilized sinusoidal representation networks to determine the implicit repre-
sentations [13]. Each network contained five fully connected hidden layers with
256 neurons. We used the Fourier mapping with six frequencies to encode the
input coordinates [15]. The coordinates and the encoded coordinates were ad-
ditionally concatenated within the middle layer of the network. Weights of the
networks were initialized following the original paper except for the last lin-
ear layer of the deformation network D, for which we uniformly sampled the
weights from [-0.0001, 0.0001] interval to ensure small deformations at initial
epochs. Additional details about the network architecture can be found in the
supplementary materials. Networks were trained for 1000 epochs using AdamW
optimizer with learning rate of 0.0001 on a server equipped with several NVIDIA
A100 GPUs [8]. ISH images of size 360x420 were downsampled to 256x256.
Each epoch corresponded to a batch of all image pixel coordinates [13]. After
some initial experiments, we set the composite loss function weights (eq. 5) to
α1=α2=α3=α5=1 and α4=100, partially following the previous studies on INRs
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[10,14,16]. The window size for the LNCC loss was set to [32, 32]. Our PyTorch
implementation of the proposed INR based registration method is available at
https://github.com/BrainImageAnalysis/ImpRegDec.

Fig. 2. Illustration of the moving image decomposition obtained with the proposed
method (dec). Incorporation of the exclusion loss (excl) resulted in clearer separation
of the gene expression texture patterns in the residual images.

3 Results

3.1 Qualitative results

Support and residual images generated with the proposed method are shown in
Fig.2. The support images retain the main style and content of the fixed template
image, while the residual images include the remaining image contents, along
with gene expression patterns not present in the template image. Utilization of
the exclusion loss resulted in a clearer and more visually plausible separation
between the support and residual images, particularly for gene expression pat-
terns. Fig. 3 further highlights the usefulness of the proposed registration guided
image decomposition technique. First, our method can be applied to extract mi-
croscopy image artifacts, and therefore mitigate their impact on the registration.
Second, the proposed method is general and can also be applied to register an
ISH gene expression image to a Nissl image. In this case, the color distribution
of the support image corresponds to that of a Nissl image, while the residual
image presents the local contents of the gene expression image. We also used the
proposed method to register an ISH brain image to another ISH image with a
different gene expression. For this example, the residual image highlighted the
gene expression patterns of the moving image, while the support image showed
the gene expression patterns of the fixed image.

Fig. 4 visually compares the registration performance of the proposed tech-
nique, equipped with the exclusion loss, to ANTs. We found that the proposed
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method provided good results both in respect to the image registration and the
transformation of the manual segmentations.

3.2 Quantitative results

Table 1 shows Dice scores obtained for the selected marmoset brain regions.
Registration techniques based on INRs outperformed the other methods on four

Fig. 3. Proposed technique can be useful for the extraction of microscope image arti-
facts (e.g. diagonal lines in the first row of images). It can also be applied to register
ISH brain images to Nissl images or other ISH images. For such cases the support
image presents image style of the fixed image, while the residual image includes local
image patterns of the moving image.

Fig. 4. Comparison of the proposed registration technique based on implicit networks
and ANTs. AQ, HA, DLG, IC and VCA indicate the aqueduct, hippocampus area,
dorsal lateral geniculate, inferior colliculus and visual cortex area, respectively.



8 Michal Byra, Charissa Poon, Tomomi Shimogori, Henrik Skibbe

Table 1. Dice scores (mean±std) determined for the aqueduct (AQ), hippocampus
area (HA), dorsal lateral geniculate (DLG), inferior colliculus (IC) and visual cortex
are (VCA). Best results are shown in bold. dec and excl stand for the proposed image
decomposition technique and the exclusion loss.

Method AQ ↑ HA ↑ DLG ↑ IC ↑ VCA ↑
None 0.497±0.194 0.311±0.132 0.612±0.141 0.742±0.169 0.848±0.051

ANTs SyN 0.673±0.102 0.644±0.141 0.757±0.130 0.831±0.133 0.941±0.015

SynthMorph 0.625±0.129 0.503±0.190 0.719±0.146 0.798±0.157 0.922±0.034

INRs 0.734±0.071 0.657±0.127 0.756±0.130 0.804±0.191 0.922±0.022

INRs, dec 0.748±0.067 0.662±0.138 0.767±0.125 0.839±0.142 0.916±0.033

INRs, dec+excl 0.749±0.063 0.665±0.134 0.766±0.128 0.845±0.143 0.920±0.017

Table 2. Structural similarity index (SSIM) and the percentage of the non-positive
Jacobian determinant values (mean±std) calculated for the investigated registration
methods. Best results are shown in bold. dec and excl indicate the proposed image
decomposition technique and the exclusion loss, respectively.

Method SSIM ↑ |JΦ| ≤ 0 [%] ↓
None 0.619±0.046 —

ANTs 0.656±0.059 <0.001

SynthMorph 0.683±0.039 <0.001

INRs 0.713±0.052 0.353±0.459

INRs, dec 0.725±0.054 0.359±0.415

INRs, dec+excl 0.727±0.054 0.429±0.460

out of five brain regions. ANTs achieved better registration results for only one
structure, the VCA, which was the largest among the annotated brain regions
and already similar in unregistered images with an initial Dice score of 0.848.
Additionally, the Dice score for the VCA was high and comparable across all
investigated registration methods. Our approach achieved significantly better
Dice scores compared to the standard INRs for AQ, HA, DLG and IC (t-test’s
p-values<0.05). Furthermore, incorporating the exclusion loss slightly improved
the Dice scores for three structures.

SSIM values in Table 2 show that the registration based on implicit net-
works provided the most structurally similar results to the template images.
With respect to the SSIM metric, our method significantly outperformed other
approaches (t-test’s p-values<0.05). ANTs and SynthMorph provided smoother
deformation fields compared to the implicit networks, with significantly lower
percentage of folding (t-test’s p-values<0.05). However, the percentage of the
folding obtained for the implicit networks was small and acceptable, as defined
by folds in 0.5% of all pixels [11]. The main disadvantage of the proposed ap-
proach was the relatively long optimization time of about 90 seconds for a single
pairwise registration, resulting from the requirement to jointly train three im-
plicit networks.
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4 Conclusion

Our approach based on implicit networks and registration-guided image decom-
position has demonstrated excellent performance for the challenging task of reg-
istering ISH gene expression images of the marmoset brain. The results show that
our approach outperformed pairwise registration methods based on ANTs and
SynthMorph CNN, highlighting the potential of INRs as versatile off-the-shelf
tools for image registration. Moreover, the proposed registration-guided image
decomposition mechanism not only improved the registration performance, but
also could be used to effectively separate the patterns that diverge from the
target fixed image. In the future, we plan to investigate the possibility of using
image decomposition for simultaneous registration and pattern segmentation,
and methods to speed up the training [9]. We also plan to extend our technique
to 3D and test it on medical images that include pathologies.
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A Network architecture

Implicit sinusoidal representation network (SIREN) utilized in our work is de-
picted in Fig. 5 and has the following form:

z(0) = [x̄,FE(x̄)],

z(l) =

{
ρ
(
W (l)z(l−1) − b(l)

)
, l ∈ {1, ..., L− 1} \ lmid[

ρ
(
W (l)z(l−1) − b(l)

)
, z(0)

]
, l = lmid

∆x̄ = W (L)z(L−1) − b(L),

(6)

where x̄ and ∆x̄ stand the moving image coordinate and the corresponding
displacement vector, respectively. W (l), b(l) and z(l) correspond to network’s
weights, bias and post-activation for the l-th layer, l = 1, ..., lmid, ..., L, with
lmid indicating the middle layer. Number of the hidden layers was equal to 5 in
our work, each consisting of 256 units. Network utilized sine activation function
ρ(y) = sin(ωy) with ω standing for the frequency related parameter and set to
30 [13]. FE(x̄) indicates the positional Fourier encoding that was concatenated
with the input coordinate x̄. Additionally, we formed a residual connection by
concatenating the image coordinate x̄ and the FE(x̄) within the middle layer of
the network. The positional encoding FE(x̄) had the following form [15]:

FE(x̄) = [..., cos(2πσj x̄), sin(2πσj x̄), ...] (7)

for j = 0, ..., N − 1 and N and σ equal to 6 and 2 in our work, respectively.
Regarding the weight initialization, we followed the SIREN paper [13]. Weights

of the network were sampled from the uniform distribution U
(
−
√

c
nω2 ,

√
c

nω2

)
,

with c, ω and n equal to 6, 30 and 256, respectively. However, for the last layer
of the network we sampled the weights from U(−0.0001, 0.0001) to ensure small
displacement vectors ∆x̄ at the initial training epochs.

Fig. 5. Architecture of the implicit network used in this study for joint brain image
registration and decomposition.
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