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Abstract. Understanding how assignments of instances to clusters can
be attributed to the features can be vital in many applications. However,
research to provide such feature attributions has been limited. Cluster-
ing algorithms with built-in explanations are scarce. Common algorithm-
agnostic approaches involve dimension reduction and subsequent visual-
ization, which transforms the original features used to cluster the data; or
training a supervised learning classifier on the found cluster labels, which
adds additional and intractable complexity. We present FACT (feature
attributions for clustering), an algorithm-agnostic framework that pre-
serves the integrity of the data and does not introduce additional mod-
els. As the defining characteristic of FACT, we introduce a set of work
stages: sampling, intervention, reassignment, and aggregation. Further-
more, we propose two novel FACT methods: SMART (scoring metric
after permutation) measures changes in cluster assignments by custom
scoring functions after permuting selected features; IDEA (isolated effect
on assignment) indicates local and global changes in cluster assignments
after making uniform changes to selected features.

Keywords: Interpretable clustering · explainable AI · feature
attributions · algorithm-agnostic · effect · importance · FACT ·
SMART · IDEA

1 Introduction

Recent efforts have focused on making machine learning models interpretable,
both via model-agnostic interpretation methods and novel interpretable model
types [27], which is referred to as interpretable machine learning or explainable
artificial intelligence in different contexts. Unfortunately, success in addressing
cluster interpretability has been limited [3]. In the context of our paper, feature
attributions (FAs) either provide information regarding the importance of fea-
tures for assigning instances to clusters (overall and to specific clusters); or how
isolated changes in feature values affect the assignment of single instances or
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the entire data set to each cluster. Interpretable clustering algorithms [3,23,31]
provide some insight into the constitution of clusters, e.g., relationships between
features within clusters, but often fall short of providing FAs. Furthermore, the
range of interpretable clustering algorithms is limited. An alternative approach
is to post-process the original data (e.g., via principal components analysis) and
visualize the found clusters in a lower-dimensional space [17]. This obfuscates
interpretations by transforming the original features used to cluster the data.
A third option is to train a supervised learning (SL) classifier on the found
cluster labels, which is interpreted instead. This adds additional and intractable
complexity on top of the clustering by introducing an additional model.

Contributions: We present FACT1 (feature attributions for clustering), a
framework that is compatible with any clustering algorithm able to reassign
instances to clusters (algorithm-agnostic), preserves the integrity of the data, and
does not introduce additional models. As the defining characteristic of FACT, we
propose four work stages: sampling, intervention, reassignment, and aggregation.
Furthermore, we introduce two novel FACT methods: SMART (scoring metric
after permutation) measures changes in cluster assignments by custom scoring
functions after permuting selected features; IDEA (isolated effect on assignment)
indicates local and global changes in cluster assignments after making uniform
changes to selected features. FACT is inspired by principles of model-agnostic
interpretation methods in SL, which detach the interpretation method from the
model, thereby detaching the interpretation method from the clustering algo-
rithm. In Fig. 1, we summarize how SMART and IDEA utilize select ideas from
SL and how they innovate with new principles.

Fig. 1. Comparison of related concepts from SL (overlap in the center) with the clus-
tering setting and novelties for FACT methods SMART and IDEA (right side).

1 All presented methods are implemented in the R package FACT [13].
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2 Notation and Preliminaries

2.1 Notation

We cluster a data set D =
{
x(i)

}n

i=1
(where x(i) denotes the i-th observation)

into k clusters D(c), c ∈ {1, . . . , k}. A single observation x consists of p feature
values x = (x1, . . . , xp). A subset of features is denoted by S ⊆ {1, . . . , p} with
the complement set being denoted by −S = {1, . . . , p} \ S. With slight abuse
of notation, an observation x can be partitioned into x = (xS ,x−S), regardless
of the order of elements within xS and x−S . A data set D where all features in
S have been shuffled jointly is denoted by D̃S . The initial clustering is encoded
within a function f that - conditional on whether the clustering algorithm out-
puts hard or soft labels2 - maps each observation x to a cluster c (hard label) or
to k soft labels:

Hard labeling: f : x �→ c, c ∈ {1, . . . , k}
Soft labeling: f : x �→ R

k

For soft clustering algorithms, f (c)(x) denotes the soft label for the c-th cluster.
This notation is also used to indicate the cluster-specific value within an IDEA
vector (see Sect. 3.2).

2.2 Interpretations of Supervised Learning Models

In recent years, the interpretation of model output has become a popular research
topic [28]. Existing techniques provide explanations in terms of FAs (e.g., a value
indicating a feature’s importance to the model or a curve indicating its effects on
the prediction), model internals (e.g., beta coefficients for linear regression mod-
els), data points (e.g., counterfactual explanations [39]), or surrogate models (i.e.,
interpretable approximations to the original model) [27]. Many model-agnostic
methods are based on identical work stages: First, a subset of observations is
sampled which we intend to use for the model interpretation (sampling stage).
This is followed by an intervention in feature values where the instances from
the sampling stage are manipulated in certain ways (intervention stage). Next,
we predict with the trained model and this new, artificial data set (prediction
stage). This produces local (observation-wise) interpretations which can be fur-
ther aggregated to produce global or semi-global interpretations (aggregation
stage) [35]. These work stages can be considered a sensitivity analysis (SA) of
the model.

2 A vector of soft labels represents the propensity of an observation being assigned to
each cluster. A convenient representation corresponds to a vector of pseudo proba-
bilities [0, 1]k. We refrain from labeling any algorithm as a hard or soft clustering
algorithm because often an algorithm can output both hard and soft labels, e.g.,
k-means - traditionally considered a hard clustering algorithm - could output soft
labels in the form of Euclidean distances to each cluster centroid.
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Established methods to determine FAs for SL models comprise the individual
conditional expectation (ICE) [16], partial dependence (PD) [11], accumulated
local effects (ALE) [2], local interpretable model-agnostic explanations (LIME)
[33], Shapley values [26,37], or the permutation feature importance (PFI) [6,
9]. The functional analysis of variance (FANOVA) [18,34] and Sobol indices
[36] of a high-dimensional model representation are powerful tools to quantify
input influence on the model output in terms of variance but are limited by
the requirement for independent inputs. Among the mentioned techniques, the
following three are useful for the development of SMART and IDEA:

– PFI: Shuffling a feature in the data set destroys the information it contains.
The PFI evaluates the model performance before and after shuffling and uses
the change in performance to describe a feature’s importance.

– ICE: The ICE function indicates the prediction of an SL model for a single
observation x where a subset of values xS is replaced with values x̃S while
we condition on the remaining features x−S , i.e., keep them fixed. For single
features of interest, an ICE corresponds to a single curve.

– PD: The PD function indicates the expected prediction given the marginal
effect of a set of features. The PD can be estimated through a point-wise
aggregation of ICEs across all considered instances.

2.3 Interpretations for Clustering Algorithms

Unsupervised clustering has largely been ignored by this line of research. How-
ever, for high-dimensional data sets, the clustering routine can often be consid-
ered a black box, as we may not be able to assess and visualize the multidi-
mensional cluster patterns found by the algorithm. It is, therefore, desirable to
receive deeper explanations of how an algorithm’s decisions can be attributed to
the features. Interpretable clustering algorithms incorporate the interpretabil-
ity criterion directly into the cluster search. One option is to find an inter-
pretable tree-based clustering [5,10,12,14,15,24,25,30]. Interpretable clustering
of numerical and categorical objects (INCONCO) [31] is an information-theoretic
approach based on finding clusters that minimize minimum description length. It
finds simple rule descriptions of the clusters by assuming a multivariate normal
distribution and taking advantage of its mathematical properties. Interpretable
clustering via optimal trees (ICOT) [3] uses decision trees to optimize a clus-
ter quality measure. In [23] clusters are explained by forming polytopes around
them. Mixed integer optimization is used to jointly find clusters and define poly-
topes.

The focus of this paper lies on algorithm-agnostic interpretations. In many
cases, we wish to use a clustering algorithm that does not provide any explana-
tions. Furthermore, even interpretable clustering algorithms often do not directly
provide FAs, thus still requiring additional interpretation methods. Analogously
to SL, we may define post-hoc interpretations (which are typically algorithm-
agnostic) as ones that are obtained after the clustering procedure, e.g., by show-
ing a subset of representative elements of a cluster or via visualization techniques
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such as scatter plots [22]. In most cases, the data is high-dimensional and requires
the use of dimensionality reduction techniques such as principal component anal-
ysis (PCA) before being visualized in two or three dimensions. PCA creates linear
combinations of the original features called the principal components (PCs). The
goal is to select fewer PCs than original features while still explaining most of
their variance. PCA obscures the information contained in the original features
by rotating the system of coordinates. For instance, interpretable correlation
clustering (ICC) [1] uses post-processing of correlation clusters. A correlation
cluster groups the data such that there is a common within-cluster hyperplane
of arbitrary dimensionality. ICC applies PCA to each correlation cluster’s covari-
ance matrix, thereby revealing linear patterns inside the cluster. One can also
use an SL algorithm to post-process the clustering outcome which learns to
find interpretable patterns between the found cluster labels and the features.
Although we may use any SL algorithm, classification trees are a suitable choice
due to naturally providing decision rules on how they arrive at a prediction [4].
Although this is a simple approach that can produce FAs via model internals
or model-agnostic interpretation methods, it introduces intractable complexity
through an additional model.

An algorithm-agnostic option that bypasses these issues is a form of SA
where data are deliberately manipulated and reassigned to existing clusters. The
global permutation percent change (G2PC) [8] indicates the percentage of change
between the cluster assignments of the original data and those from a permuted
data set. A high G2PC indicates an important feature for the clustering outcome.
The local permutation percent change (L2PC) [8] uses the same principle for
single instances.

3 FACT Framework and Methods

We first define a distinction of various FAs for the clustering setting: A local FA
indicates how a feature contributes to the cluster assignment of a single observa-
tion; a global FA indicates how a feature contributes to the cluster assignments
of an entire data set; a cluster-specific FA indicates how a feature contributes to
the assignments of observations to one specific cluster. We introduce four work
stages for FACT methods:

– Sampling: We sample a subset of observations that were previously clustered
and shall be used to determine FAs. The larger this subset, the better our FA
estimates. The smaller, the faster their computation.

– Intervention: Next, we manipulate feature values for the subset of obser-
vations from the sampling stage. This can be a targeted intervention (e.g.,
replacing current values with a pre-defined value) or shuffling values.

– Reassignment: This new, manipulated data set is reassigned to existing
clusters through soft or hard labels. For each observation from the sampling
stage, we receive a vector of soft labels or a single hard label.
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– Aggregation: The soft or hard labels from the reassignment stage are aggre-
gated in various ways, e.g., they can be averaged (soft labels) or counted (hard
labels) cluster-wise.

The only prerequisite is an existing clustering based on an algorithm that can
reassign instances to existing clusters through soft or hard labels. Methods only
differ with respect to the intervention and aggregation stages. Next, we present
our two novel FACT methods SMART and IDEA.

3.1 Scoring Metric After Permutation (SMART)

The intervention stage consists of shuffling values for a subset of features S in
the data set D (i.e., jointly shuffling rows for a subset of columns); the aggrega-
tion stage consists of measuring the change in cluster assignments through an
appropriate scoring function h applied to a confusion matrix consisting of origi-
nal cluster assignments and cluster assignments after shuffling. When comparing
original cluster assignments and the ones after shuffling the data, we can create
a confusion matrix (see Appendix A) in the same way as in multi-class classifi-
cation. One option to evaluate the confusion matrix is to directly use a scoring
metric suitable for multiple clusters, e.g., the percentage of observations chang-
ing clusters after the intervention as in G2PC (found in all non-diagonal elements
of the confusion matrix, see Eq. (1) for a definition). If one is interested in a scor-
ing metric specifically developed for binary confusion matrices, the alternative
is to consider binary comparisons of cluster c versus the remaining clusters. The
results of all binary comparisons can then be aggregated either through a micro
or a macro-averaged score (see Appendix B). Established scoring metrics based
on binary confusion matrices include the F1 score (see Appendix B), Rand [32],
or Jaccard [21] index. The micro-averaged score (hereafter referred to as micro
score) is a suitable metric if all instances shall be considered equally important.
The macro-averaged score (hereafter referred to as macro score) suits a setting
where all classes (i.e., clusters in our case) shall be considered equally impor-
tant. In general terms, the scoring function maps a confusion matrix to a scalar
scoring metric. A multi-cluster scoring function is defined as:

hmulti : Nk×k
0 �→ R

A binary scoring function is defined as:

hbinary : N2×2
0 �→ R

Let M ∈ N
k×k
0 denote the multi-cluster confusion matrix and Mc ∈ N

2×2
0 the

binary confusion matrix for cluster c versus the remaining clusters (see Appendix
A for details). SMART for feature set S corresponds to:

Multi-cluster scoring: SMART(D, D̃S) = hmulti(M)

Binary scoring: SMART(D, D̃S) = AVE(hbinary(M1), . . . , hbinary(Mk))
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where AVE averages a vector of binary scores, e.g., via micro or macro averaging.
In order to reduce variance in the estimate from shuffling the data, one can shuffle
t times and evaluate the distribution of scores. Let D̃(t)

S denote the t-th shuffling
iteration for feature set S. The SMART point estimate is given by:

SMART(D, D̃S) = ψ
(
SMART(D, D̃(1)

S ), . . . ,SMART(D, D̃(t)
S )

)

where ψ extracts a sample statistic such as the mean or median.
We can demonstrate the equivalency between directly applying the G2PC

scoring metric to the confusion matrix and micro averaging F1 scores3. Given a
multi-cluster confusion matrix M (see Appendix A), G2PC is defined as:

G2PC(M) =
1
n

⎛

⎝
k∑

i=1

k∑

j=1

#ij −
k∑

l=1

#ll

⎞

⎠

=
1
n

(

n −
k∑

l=1

#ll

)

= 1 − 1
n

k∑

l=1

#ll (1)

The micro F1 score is equivalent to accuracy (for settings where each instance
is assigned a single label), so the following relation holds (refer to Appendix D
for a detailed proof):

Theorem 1 (Equivalency between SMART with micro F1 and G2PC).

1 − G2PC(M) = AVEMICRO(F1(M1), . . . ,F1(Mk)) = F1micro(M)

Proof sketch. In our utilization of confusion matrices, a “false classification”
corresponds to a change in clusters after the intervention, and a “true classifi-
cation” corresponds to an observation staying in the same cluster. It follows that
accuracy (ACC) represents the global percentage of observations staying in the
initial cluster after the intervention stage: 1 − ACC(M) = G2PC(M).

AVEMICRO(F1(M1), . . . ,F1(Mk)) can be directly derived from the multi-
cluster matrix M and is denoted by F1micro(M). Let TP denote the number
of true positive labels, FP the number of false positives, and FN the number of
false negatives. For multi-class classification problems, FP = FN and thus:

F1micro(M) =
TP

TP + 1
2 (FP + FN)

=
TP

TP + FP
= ACC(M)

It follows that 1 − G2PC(M) = F1micro(M). ��
3 Micro averaging refers to a strategy of aggregating binary comparisons where each

instance is considered equally important. For the F1 score, the equivalency can be
directly derived from the multi-cluster confusion matrix and involves summing up
all diagonal elements (true positives) and remaining elements (false positives or false
negatives). See Appendices B and D for details.
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Micro F1 scores are unsuited for unbalanced classes in classification settings,
as they treat each instance as equally important. From the direct dependency
between G2PC and micro F1, it follows that for clusters that considerably dif-
fer in size (i.e., imbalanced clusters), G2PC does not accurately represent the
importance of features, as it is dominated by larger clusters. SMART in turn
allows more flexible interpretations than G2PC, e.g., by using macro F1 scores.

We can also directly evaluate binary comparisons of the found clusters to
obtain cluster-specific FAs. Recall that a cluster-specific FA provides informa-
tion regarding how a feature influences reassignments of instances to one specific
cluster. Algorithms 1 and 2 describe the cluster-specific and global SMART algo-
rithms, respectively. The algorithms are applied in Sects. 5 and 6. See Fig. 10 for
visualized outcomes. Note that the resampling procedure to reduce the vari-
ance of estimates is optional and that global SMART can also involve binary
comparisons (which requires running cluster-specific SMART), e.g., via macro
averaging; we circumscribe all such different variants as the computation of the
multi-cluster score h.

Algorithm 1. Cluster-Specific SMART
run clustering algorithm
for all iter ∈ {1, . . . , t} do

shuffle columns S
compute hard labels
for all c ∈ {1, . . . , k} do

create a binary confusion matrix
compute score h

(iter)
c from confusion matrix

end for
end for
for all c ∈ {1, . . . , k} do

evaluate distribution of {h(iter)
c }iter∈{1,...,t}

end for

Algorithm 2. Global SMART
run clustering algorithm
for all iter ∈ {1, . . . , t} do

shuffle columns S
compute hard labels
create a multi-cluster confusion matrix
compute multi-cluster score h(iter)

end for
evaluate distribution of {h(iter)}iter∈{1,...,t}
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3.2 Isolated Effect on Assignment (IDEA)

IDEA for soft labeling algorithms (sIDEA) indicates the soft label that an obser-
vation x with replaced values x̃S is assigned to each c-th cluster. IDEA for hard
labeling algorithms (hIDEA) indicates the cluster assignment of an observation
x with replaced values x̃S . Both are described by the clustering (assignment)
function f :

IDEAx(x̃S) = sIDEAx(x̃S) = hIDEAx(x̃S) = f(x̃S ,x−S)

sIDEA corresponds to a k-way vector:

sIDEAx(x̃S) =
(
f (1)(x̃S ,x−S), . . . , f (k)(x̃S ,x−S)

)

=
(
sIDEA(1)

x (x̃S), . . . , sIDEA(k)
x (x̃S)

)

Note that although IDEA is a local method, we typically compute it for a subset
of observations selected in the sampling stage. The intervention stage consists of
replacing xS (for an observation x) by x̃S . Algorithm 3 describes the computa-
tion of the local IDEA.

Algorithm 3. Local IDEA
run clustering algorithm
sample m vectors of feature values {x̃(j)

S }j∈{1,...,m}
for all i ∈ {1, . . . , n} do

for all j ∈ {1, . . . ,m} do

generate hypothetical observation x = (x̃
(j)
S ,x

(i)
−S)

IDEAx(i)(x̃
(j)
S ) = f(x)

end for
end for

During the aggregation stage, we aggregate local IDEAs to a global function.
For soft labeling algorithms, we can compute a point-wise average of soft labels
for each cluster; for hard labeling algorithms, we can compute the fraction of
hard labels for each cluster. The global IDEA is denoted by the corresponding
data set D. The global sIDEA corresponds to:

sIDEAD(x̃S) =

(
1
n

n∑

i=1

sIDEA(1)

x(i)(x̃S), . . . ,
1
n

n∑

i=1

sIDEA(k)

x(i)(x̃S)

)

(2)

where the c-th vector element is the average c-th element of local sIDEA vectors.
The global hIDEA corresponds to:

hIDEAD(x̃S) =

(
1
n

n∑

i=1

11(hIDEAx(i)(x̃S)), . . . ,
1
n

n∑

i=1

1k(hIDEAx(i)(x̃S))

)

(3)



226 C. A. Scholbeck et al.

where the c-th vector element is the fraction of hard label reassignments to the
c-th cluster. Algorithm 4 describes the computation of the global IDEA. See
Sects. 5 and 6 for applications of the local and global IDEA and Figs. 6, 7, and
11 for visualizations.

A useful interpretation for hard labeling algorithms can be obtained by visu-
alizing the percentage of all labels per isolated intervention. The fraction of the
most frequent hard label indicates the – as we call it – “certainty” of the global
IDEA function for hard labeling algorithms (see Fig. 6 on the left).

Whether the global IDEA can serve as a good description of the feature effect
on the reassignment depends on the heterogeneity of underlying local effects. If
substituting a feature set by the same values for all instances results in simi-
lar reassignments for most instances, the global IDEA is a good interpretation
instrument. Otherwise, further investigations into the underlying local effects
are required.

Algorithm 4. Global IDEA
run clustering algorithm
sample m vectors of feature values {x̃(j)

S }j∈{1,...,m}
for all i ∈ {1, . . . , n} do

compute IDEAx(i) (see Algorithm 3)
end for
for j ∈ {1, . . . ,m} do

for c ∈ {1, . . . , k} do
if soft labeling algorithm then

compute sIDEA
(c)
D (x̃

(j)
S ) (see Eq. 2)

else
compute hIDEA

(c)
D (x̃

(j)
S ) (see Eq. 3)

end if
end for

end for

Initial Cluster Effect on IDEA: If there is a certain within-cluster homo-
geneity, we ought to see similar shapes of local IDEA functions depending on
the observations’ initial cluster (before the intervention stage). Let cinit denote
the initial cluster index. We receive one aggregate IDEA per initial cluster (we
refrain from using the word “global” here, as there is a separate, global IDEA
independent from the initial cluster), which reflects the aggregate, isolated effect
of an intervention in the feature(s) of interest on the assignment to cluster c per
initial cluster cinit:

IDEAD(cinit)(x̃S) =
(
IDEA(1)

D(cinit)
(x̃S), . . . , IDEA(k)

D(cinit)
(x̃S)

)
(4)



Algorithm-Agnostic Feature Attributions for Clustering 227

whose components correspond to (depending on the clustering algorithm
output):

sIDEA(c)

D(cinit)
(x̃S) =

1
n(cinit)

∑

i : x(i)∈D(cinit)

sIDEA(c)

x(i)(x̃S)

hIDEA(c)

D(cinit)
(x̃S) =

1
n(cinit)

∑

i : x(i)∈D(cinit)

1c(hIDEAx(i)(x̃S))

where n(cinit) corresponds to the number of observations within initial cluster
cinit. This definition lends itself to a convenient visualization per initial cluster,
which we showcase in Fig. 7.

4 Additional Notes on FACT

How to Generate Feature Values for Interventions: A simple option is
to use a feature’s sample distribution, i.e., all observed values. In classical SA
of model output [34], one typically intends to explore the feature space as thor-
oughly as possible (space-filling designs). In SL, there are valid arguments against
space-filling designs due to potential model extrapolations, i.e., predictions in
areas where the model was not trained with enough data [19,29]. In clustering,
the absence of model performance issues allows us to fill the feature space as
extensively as possible, e.g., with unit distributions, random, or quasi-random
(also referred to as low-discrepancy) sequences (e.g., Sobol sequences) [34]. In
fact, assigning unseen data to the clusters serves our purpose of visualizing the
decision boundaries between the clusters determined by the clustering algorithm.

Generating Feature Values for SMART and IDEA: For SMART, we
evaluate a fixed data set and jointly shuffle values of the feature set S. For
IDEA, we can either use observed values or strive for a more space-filling design.
More values result in better FAs but higher computational costs.

Reassigning versus Reclustering: FACT aims to explain a given clustering
of the data. The found clustering outcome is treated as “a snapshot in time”,
similarly to how explanations in SL are conditional on a trained model. FACT
methods are therefore akin to model-agnostic interpretation methods in SL. It
follows that we need a reassignment of instances to pre-found clusters instead of a
reclustering (running the clustering algorithm from the ground up). Reclustering
artificial data would result in a “concept drift” and different clusters, thus being
counterproductive to our goals.

In Fig. 2 (left), we create an artificial data set using the Cartesian product
of the original bivariate data that forms 3 clusters and reassign the artificially
created observations to the found clusters of a cluster model fitted on the original
bivariate data (grid lines). The right plot visualizes a reclustering of the same
artificial data set, resulting in clearly visible changes in the shape and position
of the clusters.
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Fig. 2. Observations (solid points) and Cartesian product (transparent grid) reassigned
(left plot) and reclustered (right plot).

How the FACT Framework is Algorithm-Agnostic: How to reassign
instances differs across clustering algorithms. For instance, in k-means we assign
an instance to the cluster with the lowest Euclidean distance; in probabilistic
clustering such as Gaussian mixture models we select the cluster associated with
the largest probability; in hierarchical clustering, we select the cluster with the
lowest linkage value, etc. [8]. In other words, although the implementation of the
reassignment stage differs across algorithms (the computation of soft or hard
labels), FACT methods stay exactly the same. For FACT to be truly algorithm-
agnostic, we develop variants to accommodate both soft and hard labeling algo-
rithms.

Limitations: FACT is not suited for evaluating the quality of the clustering,
i.e., whether clusters have a high within-cluster homogeneity and high between-
cluster heterogeneity. Furthermore, we need an appropriate assignment function
that assigns instances to existing clusters and which may frequently not be avail-
able. Particularly IDEA is limited by computational constraints for large data
sets. Hence, we introduce a sampling stage for FACT, where only a subset of
clustered observations can be selected to estimate FAs.

5 Simulations

5.1 Flexibility of SMART - Micro F1 versus Macro F1

In this simulation, we illustrate that the micro F1 score and therefore also the
G2PC proposed in [8] is not useful for imbalanced cluster sizes. We also demon-
strate the advantages of our more flexible SMART approach, which allows us to
use the macro F1 score instead, a scoring metric better suited for imbalanced
cluster sizes. We simulate a data set with two features consisting of 4 differently
sized classes (see Fig. 3), where each class follows a different bivariate normal dis-
tribution. 60 instances are sampled from class 3 while 20 instances are sampled
from each of the remaining classes. To capture the latent class variable, c-means
is initialized at the 4 centers. The right plot in Fig. 3 displays the perfect cluster
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Fig. 3. Visualization of the data and the perfect clustering of c-means.

assignments found by c-means. We can see that x1 is the defining feature of the
clustering for 3 out of 4 clusters, i.e., for the clusters enumerated by 1, 2, and
4. Our goal is to analyze the c-means clustering model to discover which of the
two features were more important for the clustering outcome.

We now compare the macro F1 score and micro F1 score (see Appendix B)
for x1 and x2. Both features have micro F1 median scores of 0.58, suggesting
equal importance for x1 and x2. Recall that the micro F1 score corresponds
to 1 - G2PC (see Theorem 1). This implies that G2PC is unable to identify a
meaningful feature importance ranking for x1 and x2 in this case. Macro F1 on
the other hand is different for both features (x1 = 0.43, x2 = 0.64), indicating
that x1 is more important. Note that the F1 score is a similarity index. A low
F1 score indicates a high feature importance, i.e., a high dissimilarity between
the clustering outcome based on the original data and the clustering outcome
after the feature of interest has been shuffled. These results stem from the fact
that micro F1 accounts for each instance with equal importance (by globally
counting true and false positives, see Appendix B). Cluster 3 is over-represented
with three times as many instances as the remaining clusters. The macro F1
score accurately captures this by treating each cluster as equally important,
regardless of its size.

5.2 Global versus Cluster-Specific SMART

Next, we demonstrate that even when using the macro F1 score for imbalanced
clusters, the results may obfuscate the importance of features to specific clusters,
which is where cluster-specific SMART becomes the method of choice. We simu-
late three visibly distinctive classes (left plot in Fig. 4) where each class follows
a bivariate normal distribution with different mean and covariance matrices. 50
instances are sampled from class 2, and 20 instances are sampled from class 1
and class 3 each. We initialize c-means at the 3 mean values. As shown in Fig.
4, the cluster assignments capture all three classes almost perfectly, except for
one instance of class 2 being assigned to cluster 1 and one to cluster 3.

We compare the global macro F1 (which weights the importance of clusters
equally) to the cluster-specific F1 score. With a global macro F1 median of 0.62
for x1 and 0.66 for x2, there is no difference between the importance of both
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Fig. 4. Three classes with different distributions clustered by c-means. True classes
(left) and clusters (right) almost perfectly match.

features for the overall clustering. In contrast, cluster-specific SMART offers a
more detailed view of the contributions of each feature to the clustering outcome.
Both features, x1 and x2, have an equal regional feature importance of 0.73 in
forming cluster 2. For cluster 3, feature x2 is considerably more important with
a macro F1 score of 0.26, compared to 0.86 for feature x1. Vice versa, feature
x1 is the defining feature of cluster 1 with a score of 0.24. In comparison, the
importance of x2 for cluster 1 is 1.0, implying that the permutation of feature
x2 had no effect on the assignment criteria for cluster 1.

5.3 How to Interpret IDEA

Here, we demonstrate how IDEA can visualize isolated, univariate effects of
features on the cluster assignments of multi-dimensional data; how the hetero-
geneity of local effects influences the explanatory power of the global IDEA; and
how grouping IDEA curves by initial cluster assignments reveals similar effects.
We draw 50 instances from three multivariate normally distributed classes. To
make them differentiable for the clustering algorithm, the classes are generated
with an antagonistic mean structure. The covariance matrix of the three classes
is sampled using a Wishart distribution (see Appendix C for details). The left
plot in Fig. 5 depicts the three-dimensional distribution of the classes. We intend
class 3 to be dense and classes 1 and 2 to be less dense but large in hypervolume.
We initialize c-means at the 3 centers and optimize via the Euclidean distance.
Figure 5 visualizes the perfect clustering. Figure 6 (left) displays an hIDEA plot
for x1 (see Sect. 3.2), indicating the majority vote of cluster assignments when
exchanging values of x1 by the horizontal axis value for all observations.

The curves in Fig. 6 (right) represent the cluster-specific components of the
sIDEA function (local and global). Note that this refers to the effect of observa-
tions being reassigned to the c-th cluster and not the initial cluster effect, which
we demonstrate below. The bandwidths represent the local IDEA curve ranges
that were averaged to receive the respective global IDEA. We can see that - on
average - x1 has a substantial effect on the clustering outcome. The lower the
value of x1 that is plugged into an observation, the more likely it is assigned to
cluster 1, while for larger values of x1 it is more likely to be assigned to cluster
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Fig. 5. Sampled classes (left plot) versus clusters (right plot).

Fig. 6. Left: A plot indicating “certainty” of the global hIDEA function. On average,
replacing x1 by the axis value results in an observation being assigned to the color-
indicated cluster. The vertical distance indicates how many observations are assigned to
the majority cluster. Right: Cluster-specific global sIDEA curves. Each curve indicates
the average soft label of an observation being assigned to the c-th cluster if its x1 value
is replaced by the axis value. The bandwidths visualize the distribution of local sIDEA
curves that were vertically averaged to the respective global, cluster-specific sIDEA.

2. For x1 ≈ 0, observations are more likely to be assigned to cluster 3. The large
bandwidths indicate that the clusters are spread out, and plugging in different
values of x1 into an observation has widely different effects across the data set.
Particularly around x1 ≈ 0, where cluster 3 dominates, the average effect loses
its meaning due to the underlying local IDEA curves being highly heterogeneous.
In this case, one should be wary of the interpretative value of the global IDEA.
We proceed to investigate the heterogeneity of the local sIDEA curves for clus-
ter 3 (see Fig. 7 on the left). The flat shape of the cluster-specific global sIDEA
indicates that x1 has a rather low effect on observations being assigned to cluster
3. However, the cluster-specific local sIDEA curves reveal that individual effects
cancel each other out when being averaged.

Initial Cluster Effect: It seems likely that observations belonging to a single
cluster in the initial clustering run would behave similarly once their feature
values are changed. We color each sIDEA curve by the original cluster assign-
ment (see Fig. 7 on the right) and add the corresponding aggregate curves. Our
assumption - that observations within a cluster behave similarly once we make
isolated changes to their feature values - is confirmed. The formal definition of
this initial cluster effect is given by Eq. (4).
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Fig. 7. Left: Cluster-specific IDEA (local and global), indicating effects on the soft
labels for observations to be assigned to cluster 3. The black lines represent local
effects; the yellow line the global effect. Right: sIDEA curves colored by initial cluster
assignment. The thin curves represent local effects; the thick curves represent aggregate
effects. We can see similar effects of replacing the values of x1 on the soft labels,
depending on what initial cluster an observation is part of.

5.4 IDEA Recovers Distribution Found by Clustering Algorithms

This simulation demonstrates how the global sIDEA can “recover” the distri-
butions found by the clustering algorithm. We simulate 4 features and cluster
the data into 3 clusters with FuzzyDBSCAN [20]. We illustrate soft labels for
assignments to a single cluster in Fig. 8. The upper triangular plots display true
bivariate marginal densities of features. The lower triangular plots display the
corresponding bivariate global sIDEA estimates. Matching pairs of densities and
sIDEA estimates “mirror” each other on the diagonal line. The diagonal plots
visualize univariate marginal distributions (grey area) versus the corresponding
estimated univariate global sIDEA curve (black line). The location and shape
of sIDEA plots approximate the true marginal distributions. Note that for the
correlated pairs (x1, x2) and (x3, x4), we recover the direction of the correlation.

6 Real Data Application

The Wisconsin diagnostic breast cancer (WDBC) data set [7] consists of 569
instances of cell nuclei obtained from breast mass. Each instance consists of 10
characteristics derived from a digitized image of a fine-needle aspirate. For each
characteristic, the mean, standard error and “worst” or largest value (mean of
the three largest values) is recorded, resulting in 30 features of the data set. Each
nucleus is classified as malignant (cancer, class 1) or benign (class 2). We cluster
the data using Euclidean optimized c-means. Figure 9 visualizes the projection
of the data onto the first two PCs. The clusters cannot be separated with two
PCs, and the visualization is of little help in understanding the influence of the
original features on the clustering outcome.
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Fig. 8. Comparison of true bivariate marginal densities of features (upper triangular
plots) with corresponding global bivariate sIDEA (lower triangular plots) and true
univariate marginal densities of features (diagonal plots, grey area) with corresponding
global univariate sIDEA (diagonal plots, black line). (Color figure online)

6.1 Aggregate FA for Each Cluster (SMART)

We first showcase how SMART can serve as an approximation of the actual
reclustering. Measured on the latent target variable, the initial clustering run has
an F1 score of 0.88. We then recluster the data, once with the 4 most important
and once with the 4 least important features. Dropping the 26 least important
features only reduces the F1 score by 0.03 to 0.85 (measured using the latent
target). In contrast, using the 4 least important features reduces the F1 score
by 0.55 to 0.33 and thus alters the clustering in a major way. This demonstrates
that assigning new instances to existing clusters can serve as an efficient method
for feature selection. To showcase the grouped feature importance, we jointly
shuffle features and compare their importance in Fig. 10. Note that we use the
natural logarithm of SMART here for better visual separability and to receive a
natural ordering of the feature importance (due to F1 being a similarity index),
where a larger bar indicates a higher importance and vice versa.
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Fig. 9. First and second PCs of WDBC data with clusters of real target values.

Fig. 10. Grouped SMART (using the natural logarithm) per cluster for groups of
categories (left plot) and groups of characteristics (right plot) in the WDBC data set.

6.2 Visualizing Marginal Feature Effects (IDEA)

We now visualize isolated univariate and bivariate effects of features on assign-
ments. Figure 11 plots the global IDEA curve for three features concavity worst,
compactness worst, and concave points worst. The transparent areas indicate
the regions where the local curve mass is located.A rug on the horizontal axis shows
the distribution of the corresponding feature. For all three features, larger values
result in observations being assigned to cluster 1, while lower values result in obser-
vations being assigned to cluster 2. The distribution of cluster-specific local IDEA
curves is wide, reflecting voluminous clusters. All features have a strong univari-
ate effect on the cluster assignments, which indicates a large importance of each
feature to the constitution of each cluster.

Figure 11 (right) plots the two-dimensional sIDEA for compactness worst
and compactness mean. The color indicates what cluster the observations are
assigned to on average when compactness worst and compactness mean are
replaced by the axis values. The transparency indicates the magnitude of the
soft label, i.e., the “certainty” in our estimate. On average, the observations are
assigned to cluster 2 when adjusting both features to lower values and to cluster
1 when adjusting both features to higher values.
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Fig. 11. Left: Univariate global sIDEA plots for the features concavity worst,
compactness worst, and concave points worst. Right: Two-dimensional sIDEA for
the features compactness worst and compactness mean. On average, an observation is
assigned to cluster 1 for large values of both features, while it is assigned to cluster 2
for low values of both features.

7 Conclusion

This research paper proposes FACT, a framework to produce FAs which is com-
patible with any clustering algorithm able to reassign instances through soft or
hard labels, preserves the integrity of the data, and does not introduce additional
models. FACT techniques provide information regarding the importance of fea-
tures for assigning instances to clusters (overall and to specific clusters); or how
isolated changes in feature values affect the assignment of single instances or the
entire data set to each cluster. We introduce two novel FACT methods: SMART
and IDEA. SMART is a general framework that outputs a single global value
for each feature indicating its importance to cluster assignments or one value for
each cluster (and feature). IDEA adds to these capabilities by visualizing the
structure of the feature influence on cluster assignments across the feature space
for single observations and the entire data set.

Although explaining algorithmic decisions is an active research topic in SL, it
is largely ignored for clustering algorithms. The FACT framework provides a new
impetus for algorithm-agnostic interpretations in clustering. With SMART and
IDEA, we hope to establish a foundation for the future development of FACT
methods and spark more research in this direction.

A Confusion Matrix for SMART

Transferring the concept of confusion matrices from classification tasks, a “true”
classification would correspond to an observation staying within the same cluster
after the intervention, and a “false” classification would result in a reassignment
to a different cluster.

For the multi-cluster matrix on the left, let TP denote the sum of all true
positives from all binary comparisons of cluster c versus the remaining clusters,
FP the sum of all false positives, and FN the sum of all false negatives. It follows
that

∑k
l=1 #ll = TP and n − ∑k

l=1 #ll = FP = FN.
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Table 1. Multi-cluster and binary confusion matrices for SMART.

For the binary matrix on the right, let TPc denote all true positives of cluster
c versus the remaining clusters, FPc all false positives, FNc all false negatives,
and TNc all true negatives. It follows that #cc = TPc, #cc = FPc, #cc = FNc,
and #cc = TNc.

B Scores

Fβ score: Balances false positives and false negatives. The Fβ score of cluster c
versus the remaining ones corresponds to:

Fβ,c =

(
β2 + 1

) · Pc · Rc

β2 · Pc + Rc
, where Pc =

#cc

#cc + #cc
and Rc =

#cc

#cc + #cc

The F1 (which we refer to as F1) score simplifies to:

F1,c = 2
Pc · Rc

Pc + Rc

Given a multi-cluster confusion matrix M , let φc be an arbitrary binary
scoring function dependent on TP, FP, FN, and TN. Smacro denotes the multi-
cluster macro score that treats each cluster with equal importance. Smicro denotes
the multi-cluster micro score that treats each instance with equal importance:

Smacro(M) =
1
k

k∑

c=1

φ (TPc,FPc,FNc,TNc)

Smicro(M) = φ

(
k∑

c=1

TPc,

k∑

c=1

FPc,

k∑

c=1

FNc,

k∑

c=1

TNc

)

C Wishart Distribution

We sample the covariance matrix M from the Wishart distribution with M ∼
Wishart3(3, Σ). Σ is constructed using ΣClass 1 = 0.6I3, ΣClass 2 = 0.3I3, and
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ΣClass 3 = 0.15I3, where I3 refers to the 3 × 3 identity matrix. As a result, the
variance of class 1 is the largest, the variance of class 3 is the lowest, and the
variance of class 2 lies between the variances of classes 1 and 3.

D Proofs

Proof (Theorem 1).
Recall the definition of G2PC with respect to a multi-cluster confusion matrix

M (see Table 1 in Appendix A):

G2PC(M) =
1
n

⎛

⎝
k∑

i=1

k∑

j=1

#ij −
k∑

l=1

#ll

⎞

⎠ =
1
n

(

n −
k∑

l=1

#ll

)

= 1 − 1
n

k∑

l=1

#ll

Let TP denote the number of true positive labels, FP the number of false pos-
itives, and FN the number of false negatives. The sum of diagonal elements
corresponds to TP:

k∑

l=1

#ll = TP

It follows that:
G2PC(M) = 1 − TP

n

TP divided by the absolute number of instances equals the percentage of “cor-
rectly classified instances” (the number of instances staying within the same
cluster after the intervention in our case) which corresponds to accuracy (ACC):

1
n

k∑

l=1

#ll =
TP
n

= ACC(M)

It follows that:

G2PC(M) = 1 − ACC(M) ⇔ 1 − G2PC(M) = ACC(M) (5)

The following relation holds by definition for the micro F1 score [38]:

F1micro(M) =
TP

TP + 1
2 (FP + FN)

For multi-class classification it holds that FP = FN, as every false positive for
one class is a false negative for another class. With n = TP+FP, it follows that:

F1micro(M) =
TP

TP + FP
=

TP
n

= ACC(M) (6)

From Eqs. (5) and (6), we have:

1 − G2PC(M) = F1micro(M)

��
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clopedia of Database Systems, pp. 3417–3425. Springer, Boston (2009). https://
doi.org/10.1007/978-0-387-39940-9 617

18. Hooker, G.: Generalized functional anova diagnostics for high-dimensional func-
tions of dependent variables. J. Comput. Graph. Stat. 16(3), 709–732 (2007)

http://arxiv.org/abs/1812.00539
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2105.08053
http://arxiv.org/abs/2006.02399
https://CRAN.R-project.org/package=FACT
https://doi.org/10.1007/978-0-387-39940-9_617
https://doi.org/10.1007/978-0-387-39940-9_617


Algorithm-Agnostic Feature Attributions for Clustering 239

19. Hooker, G., Mentch, L., Zhou, S.: Unrestricted permutation forces extrapolation:
variable importance requires at least one more model, or there is no free variable
importance. Stat. Comput. 31(6), 82 (2021)

20. Ienco, D., Bordogna, G.: Fuzzy extensions of the DBScan clustering algorithm.
Soft. Comput. 22(5), 1719–1730 (2018)

21. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2),
37–50 (1912)

22. Kinkeldey, C., Korjakow, T., Benjamin, J.J.: Towards supporting interpretabil-
ity of clustering results with uncertainty visualization. In: EuroVis Workshop on
Trustworthy Visualization (TrustVis) (2019)

23. Lawless, C., Kalagnanam, J., Nguyen, L.M., Phan, D., Reddy, C.: Interpretable
clustering via multi-polytope machines. ArXiv e-prints (2021). arXiv:2112.05653

24. Liu, B., Xia, Y., Yu, P.S.: Clustering through decision tree construction. In: Pro-
ceedings of the Ninth International Conference on Information and Knowledge
Management, CIKM, pp. 20–29. Association for Computing Machinery, New York,
NY, USA (2000)
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