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Abstract. Reliable and accurate registration of patient-specific brain magnetic 
resonance imaging (MRI) scans containing pathologies is challenging due to tis-
sue appearance changes. This paper describes our contribution to the Registration 
of the longitudinal brain MRI task of the Brain Tumor Sequence Registration 
Challenge 2022 (BraTS-Reg 2022). We developed an enhanced unsupervised 
learning-based method that extends the iRegNet. In particular, incorporating an 
unsupervised learning-based paradigm as well as several minor modifications to 
the network pipeline, allows the enhanced iRegNet method to achieve respectable 
results. Experimental findings show that the enhanced self-supervised model is 
able to improve the initial mean median registration absolute error (MAE) from 
8.20 ± 7.62 mm to the lowest value of 3.51 ± 3.50 for the training set while 
achieving an MAE of 2.93 ± 1.63 mm for the validation set. Additional qualita-
tive validation of this study was conducted through overlaying pre-post MRI 
pairs before and after the deformable registration. The proposed method scored 
5th place during the testing phase of the MICCAI BraTS-Reg 2022 challenge. 
The docker image to reproduce our BraTS-Reg submission results will be pub-
licly available. 
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1 Introduction 

Glioblastoma (GBM), and diffuse glioma, are the most common and aggressive malig-
nant primary tumors with high and heterogeneous infiltration rates [1]. The registration 
of longitudinal brain Magnetic Resonance Imaging (MRI) scans is crucial in the treat-
ment and follow-up procedures of brain tumors to find map correspondences between 
pre-operative and post-recurrence. This would support research into the early detection 
of tumor infiltration and subsequent tumor [2]. Therefore, an automatic, fast, robust 
fusion of follow-up with the pre-operative MRI scans becomes highly important to as-
sist in the early detection of tumor recurrence. However, the registration of MRI brain 
glioma patients is still a complex and challenging problem due to the inconsistent 
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intensity and missing correspondences between both scans, especially with large defor-
mations caused by large tumors (Glioma grade III and IV). 

Over the past years, many approaches have been applied to medical image registra-
tion that can be classified into classical and learning-based approaches [3, 4]. Classical 
or non-learning methods are formulated as an iterative pair-wise optimization problem 
that requires proper feature extraction, choosing a similarity measurement, defining the 
used transformation model, and finally an optimization mechanism to investigate the 
search space. Over time, an extensive literature has developed using diverse combina-
tions of the aforementioned elements [5-9]. Still, the traditional iterative process is com-
putationally expensive, requiring long processing times ranging from tens of minutes 
to hours even with an efficient implementation on a regular central processing unit 
(CPU) or modern graphical processing unit (GPU). 

To overcome the limitations of classical methods, learning-based approaches have 
been proposed in recent years. Learning methods formulate the classical optimization 
problem into a problem of cost function estimation. Instead of finding the map corre-
spondence for every input MRI scanning separately, learning approaches make a gen-
eral optimization over all the training datasets [4]. Recently, deep learning has been 
widely adopted in various medical image analysis tasks outperforming other methods 
[10]. Supervised deep learning methods were initially proposed [11-13] to learn similar 
features from the training data using different imaging modalities. Then, unsupervised 
learning was developed as a demand for faster registration procedures and to eliminate 
the challenges related to ground truth data generation and optimization techniques [14-
17]. In general, once the deep learning networks are trained, they can provide a faster 
registration than classical optimization methods, without the need for fine-tuning pa-
rameters at the test time, in addition to being more robust to outliers. 

In this paper, we propose a fully automatic, patient-specific registration approach for 
pre- and post-operative brain MRI sequences of only a single modality using iRegNet 
[18]. In particular, we introduce an unsupervised approach of iRegNet (see Fig. 1) in 
which only moving and fixed MRI pairs are utilized. Then, our proposed method opti-
mizes deformation fields directly from input images using backpropagation. Extensive 
experiments of our model on the BraTS-Reg challenge data of 160 patients show that 
the proposed method can provide accurate results with the advantage of having a very 
fast runtime. 

The remainder of the paper is organized as follows: Section 2 describes the BraTS-
Reg 2022 dataset and our patient-specific registration framework. Qualitative and quan-
titative evaluations are presented in Section 3; Section 4 concludes the paper with an 
outlook on future work. 

2 Material and Methods 

2.1 Dataset 

The BraTS-Reg 2022 dataset [19] comprises 250 patient-specific pairs of pre-operative 
and follow-up brain multi-institutional MRI scans. For each patient, i) native T1-
weighted (T1), ii) contrast-enhanced T1 (T1ce), iii) T2-weighted (T2), and iv) T2 Fluid 
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Attenuated Inversion Recovery (FLAIR) sequences are provided for the pre-operative 
and follow-up with a time-window in the range of 27 days-37 months. Reference land-
mark annotations for the validation set are not made available to the participants. In-
stead, participants can use the online evaluation platform1 to evaluate their models and 
compare their results with other teams on the online leaderboard2. 
Standard pre-processing techniques were applied such as rigid registration to the same 
anatomical template, resampling to the same isotropic resolution (1mm3), skull re-
moval, and brain extraction. Following these pre-processing steps, we applied the im-
age cropping stage where all brain pixels were cropped. Afterward, z-score normaliza-
tion was applied by subtracting the mean value and dividing it by the standard deviation 
individually for each input MRI image. 

 
2.2 Medical Image Registration 

Medical image registration is the process of aligning two or more sets of imaging data 
acquired using mono- or multi-modalities into a common coordinate system. Let  𝑰𝑭 
and 𝑰𝑴 denote the fixed and the moving images, respectively, and let 𝝓 be the defor-
mation field that relates the two images. Then, our goal is to find the minimum energy 
function 𝜺 as: 

 𝜺 ൌ 𝑺ሺ𝑰𝑭, 𝑰𝑴 .  𝝓ሻ ൅ 𝑹ሺ𝝓ሻ (1) 

where ሺ𝑰𝑴 .  𝝓ሻ is the moving image 𝑰𝑴 warped by the deformation field 𝝓, the 
dissimilarity metric is denoted by 𝑺, and 𝑹ሺ𝝓ሻ represents the regularization parameter. 
In this work, follow-up and pre-operative MRI scans are utilized as the moving and 
fixed images, respectively, since our goal is to reflect the brain shift in the follow-up 
MRI data. 
2.3 iRegNet workflow 

Figure 1 presents an outline of the baseline iRegNet registration method. iRegNet con-
sists of two steps: First, 𝑰𝑭 and 𝑰𝑴 are fed into our convolutional neural network (CNN) 
that then predicts 𝝓. Second, 𝑰𝑴 is transformed into a warped image (𝑰𝑴 .  𝝓) using a 
spatial re-sampler. Further details are described as follows. 

CNN Architecture. The developed CNN architecture utilized in experiments is based 
on U-Net [20, 21]. Using backpropagation, which is a feedback loop that estimates the 
network weighting parameters, the network can automatically learn the optimal features 
and the deformation field. The network contains two main paths: a feature extractor (or 
encoder) as well as a deformation field estimator (or decoder). 3D convolutions are 
applied in both encoder and decoder parts instead of the 2D convolutions used in the 
original U-Net architecture. The encoder consists of two consecutive 3D convolutional 
layers, each followed by a rectified linear unit (ReLU) and 3D spatial max pooling. A 
stride of 2 is employed to reduce the spatial dimension in each layer by half, similar to 

 
1  https://ipp.cbica.upenn.edu/ 
2  https://www.cbica.upenn.edu/BraTSReg2022/lboardValidation.html/ 
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the traditional pyramid registration scheme. In the decoding path, each step consists of 
a 3D up-sampling, a concatenation with the corresponding features from the encoder, 
3D up-convolutions, and a batch normalization layer, followed by a rectified linear unit 
(ReLU). Finally, a 1 x 1 x 1 convolution layer is applied to map the resultant feature 
vector map into 𝝓. 

 

Fig. 1. An overview of the iRegNet workflow for 3D post- to pre-operative MRI image deform-
able registration. Dashed red arrows show the processes applied in the training stage only [18]. 

Self-supervised Learning. In contrast to the original iRegNet where supervised learn-
ing was applied, we incorporated self-supervised learning to compute the optimal de-
formation field 𝝓෡  corresponding to the smoothness regularization. This model uses only 
the input MRI volume pair, and the registration field is computed accordingly by the 
CNN network. Formally, this task is defined as: 

 

 𝝓෡ ൌ arg min𝝓𝓛𝒔𝒊𝒎ሺ𝐈𝐅,𝝓. 𝐈𝐌ሻ ൅ 𝑹ሺ𝝓ሻ (2) 

where 𝓛𝒔𝒊𝒎 computes the image similarity between the warped image (𝝓 .  𝑰𝑴) and 
the fixed image 𝑰𝑭, 

Loss Function. Owing to the applied two-step approach, the overall loss function 
𝓛𝒐𝒗𝒆𝒓𝒂𝒍𝒍 has two components, as shown in Equation (3). 𝓛𝒅𝒊𝒔𝒑 corresponds to the de-
formation field gradient error. 

 𝓛𝒐𝒗𝒆𝒓𝒂𝒍𝒍 ൌ 𝓛𝒔𝒊𝒎 ൅  𝓛𝒅𝒊𝒔𝒑 (3) 

where 𝓛𝒔𝒊𝒎 employs the similarity metric of the local normalized correlation coeffi-
cient (NCC), which is calculated as follows: 
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 𝓛𝒔𝒊𝒎 ൌ 𝐍𝐂𝐂ሺ𝐈𝐅,𝛟. 𝐈𝐌ሻ ൌ
𝟏

୒
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𝐢

𝐩𝛜𝐗  (4) 

where ሺ𝝓 .  𝑰𝑴ሺ𝒑ሻሻ and 𝑰𝑭ሺ𝒑ሻ are the voxel intensities of a corresponding patch p in 
the warped image and the fixed truth, respectively, whereas ሺ 𝝓 .  𝑰𝑴ሺ𝒑ሻതതതതതതതതതതതതതሻ and 𝑰𝑭ሺ𝒑ሻതതതതതതത 
are the mean pixel intensities for both images. 𝓛𝒅𝒊𝒔𝒑 measures spatial gradients differ-
ences in the predicted displacement d as follows: 

 𝓛𝒅𝒊𝒔𝒑 ൌ ∑ ‖∇𝒅ሺ𝒑ሻ‖𝒑𝝐𝑿  (5) 

3 Experimental Results 

3.1 Experimental Setup 

To ensure computational efficiency for the GPU, MRI scans for each patient were cen-
ter cropped to 160 × 192 × 160 pixels. For training and validation, sets, respectively, 
the BraTS-Reg dataset was randomly split into 112 (80%) and 28 (20%) volumes. An-
other 20 MRI volumes were provided by the BraTS-Reg organizers as online validation 
set with landmarks provided only for the fixed MRI scans. Finally, we performed an 
affine alignment on moving and fixed MRI volumes using the BRAINSFit toolkit [9] 
to focus on the non-linear misalignment between volumes. For the experiments, our 
model was implemented in Python 3.7 using the TensorFlow 2.4 library. The experi-
ments were run on an AMD Ryzen 2920X (32M Cache, 3.50 GHz) CPU with 64 GB 
RAM and a single NVIDIA GPU (RTX 3060 12 GB or RTX 2080 Ti 11 GB). The 
ADAM optimizer[22] with an initial learning rate of 1e-4 and a batch size of 2 was used.  

To compare with other studies, the mean target registration error (mTRE), which 
represents the average distance between the corresponding landmarks in each pre-post 
MRI pair before and after registration, was used. In addition, the proposed method was 
evaluated by the online submission platform using the following metrics, namely Me-
dian Absolute Error (MAE), Robustness, and smoothness of the displacement field.  

3.2 Ablation Study 

To explore the MRI modality which achieves the best performance for the task of lon-
gitudinal registration, an ablation study has been carried out. The BRAINSFit toolkit 
was utilized to perform affine alignments on moving and fixed MRI volumes. As listed 
in Table 1, T1ce has obtained the overall best results on the validation dataset in terms 
of the mean and median MAE scores while FLAIR achieved the best robustness. There-
fore, in our experiments, we only use the T1ce volumes from each patient. Theoreti-
cally, using multiple modalities could increase the accuracy of the image registration, 
and this would be further investigated in future work. 



6 

 

Table 1.      The ablation study of MRI modalities on the BraTS-Reg 2022 validation cases. Bold 
highlights the best scores. 

Modality MAEmedian MAEmean Robustness 
Initial 8.20  8.65 - 
T1 4.74 5.65 0.66 
T1ce 4.35 5.23 0.62 
T2 4.85 5.60 0.63 
FLAIR 4.64  5.40 0.67 

3.3 Registration Results 

Figure 2 shows example results from three patients, where the registration of post- to 
pre-operative MRI scans is achieved using the self-supervised iRegNet method and the 
comparing baseline method. From the visual results, it can be seen that warped MRI 
scans are significantly improved after applying iRegNet. Note that, Fig. 2 (c) shows the 
FLAIR scans for the follow-up MRI images, only for visualization purposes, to better 
depict the surgically imposed cavities of these illustrated examples. All the applied reg-
istration methods use only the T1ce modality as discussed in Section 3.2. 

Moreover, Table 2 reports the registration performance of the proposed method as 
well as the baseline on the BraTS-Reg challenge validation database. The baseline de-
notes the BRAINSFIT affine transformation between the full-resolution images of pre-
operative and follow-up MRI. Compared with the affine method, our proposed self-
supervised method effectively improves registration performance. It is notable that the 
average runtime of the proposed method is 1 second and does not require any manual 
interaction or supervision. Besides, only one sequence (T1ce) is required in our case. 

The statistics of the paired landmark errors before and after the registration are dis-
played in Fig. 3. For the training database, our model reduced the initial mean MAE 
(computed by the evaluation platform) from 8.20 ± 7.62 mm to 3.51 ± 3.50 mm. Simi-
larly, an MAE of 2.93 ± 1.63 mm was achieved on the validation database which has 
an initial 7.80 ± 5.62 mm. This result highlights that our method delivers significantly 
better results than both initial alignment and affine registration. 
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Fig. 2. Example registration results from three validation cases (patients 141, 148, and 152). 
From left to right: (a) and (b) the post- and pre-operative MRI T1ce, (c) the follow-up to pre-
operative affine registration of BRAINSFit, (d) the follow-up to pre-operative deformable regis-
tration of our iRegNet, (e) the pre-operative FLAIR scans, only for visualization purposes, and 
(f) determinant of the Jacobian of the displacement field are shown, respectively. The red box 
highlights regions of major differences. 

 

Fig. 3. Boxplots of the mean landmark errors. For each method, the landmark errors are computed 
against the fixed landmarks of the BraTS-Reg dataset. From left to right, mean absolute registra-
tion errors are shown for the initial dataset, affine, and the enhanced iRegNet, respectively. On 
each box, the red line is the median and the green triangle is the mean. 
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Table 2.     Quantitative results of the proposed method and the baseline affine method on the 
BraTS-Reg challenge validation set. MAE denotes the average of median absolute error between 
the predicted coordinates and the ground truth coordinates, whereas Robustness represents the 
successful rate of measuring how many landmarks have improved MAE after the registration. 

Case Initial Affine Enhanced iRegNet 
 MAE  MAE Robustness MAE Robustness 

BraTSReg_141 13.50 3.64 1.00 2.18 1.00 

BraTSReg_142 14.00 5.98 0.88 7.18 0.75 

BraTSReg_143 16.00 8.85 0.88 4.89 1.00 

BraTSReg_144 15.00 9.44 0.88 5.64 1.00 

BraTSReg_145 17.00 5.36 1.00 4.71 1.00 

BraTSReg_146 17.00 7.13 1.00 2.62 1.00 

BraTSReg_147 1.50 2.50 0.00 2.53 0.50 

BraTSReg_148 3.50 3.06 0.30 2.61 0.75 

BraTSReg_149 9.00 2.18 1.00 1.38 1.00 

BraTSReg_150 4.00 4.00 0.11 2.20 0.74 

BraTSReg_151 3.00 2.00 0.45 1.47 0.75 

BraTSReg_152 5.00 2.00 0.95 1.61 0.95 

BraTSReg_153 2.00 2.00 0.33 1.68 0.75 

BraTSReg_154 2.00 2.10 0.15 1.83 0.55 

BraTSReg_155 2.00 2.63 0.21 2.10 0.53 

BraTSReg_156 7.00 3.30 1.00 1.62 1.00 

BraTSReg_157 10.00 6.52 0.90 4.58 1.00 

BraTSReg_158 4.50 3.75 0.40 1.65 1.00 

BraTSReg_159 6.00 8.00 0.36 3.58 1.00 

BraTSReg_160 4.00 2.50 0.70 2.47 0.60 

Mean 7.80 4.35 0.62 2.93 0.84 

StdDev 5.62 2.46 0.36 1.63 0.19 

Median 5.50 3.47 0.79 2.33 0.97 

25quantile 3.38 2.42 0.33 1.67 0.75 

75quantile 13.63 6.12 0.96 3.83 1.00 

4 Conclusion 

In this paper, we proposed a patient-specific registration framework based on iRegNet, 
which aligns pre-operative and post-recurrence MRI T1ce sequences. The enhanced 
iRegNet framework uses deep unsupervised learning for deformable image registration 
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driven by the regularization hyperparameter. The proposed method is evaluated on the 
BraTS-Reg challenge dataset brain MR images comprising 140, 20, and 40 divided into 
training, validation, and testing cohorts. The validation results show that our framework 
can provide respectable results and is more effective than the classical affine registra-
tion with the advantage of being a self-supervised learning approach. In addition, 
iRegNet provided a faster approach (1 sec for 3D brain MRI pair registration) compared 
with conventional approaches than can last for minutes and hours in some tasks. The 
results clearly validate the effectiveness of using unsupervised deep-learning tech-
niques in image registration. 

Further research work should be conducted to investigate the optimal cropping ra-
dius for MRI sequences to minimize the missing data as possible. Automating this pro-
cedure will contribute toward rendering iRegNet an end-to-end pipeline. Further anal-
ysis of augmenting a supervised loss using weakly-supervised annotations and compar-
ison against other deep learning methods is left for future work. 
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