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Abstract. Radars, due to their robustness to adverse weather condi-
tions and ability to measure object motions, have served in autonomous
driving and intelligent agents for years. However, Radar-based percep-
tion suffers from its unintuitive sensing data, which lack of semantic
and structural information of scenes. To tackle this problem, camera
and Radar sensor fusion has been investigated as a trending strategy
with low cost, high reliability and strong maintenance. While most re-
cent works explore how to explore Radar point clouds and images, rich
contextual information within Radar observation are discarded. In this
paper, we propose a hybrid point-wise Radar-Optical fusion approach
for object detection in autonomous driving scenarios. The framework
benefits from dense contextual information from both the range-doppler
spectrum and images which are integrated to learn a multi-modal feature
representation. Furthermore, we propose a novel local coordinate formu-
lation, tackling the object detection task in an object-centric coordinate.
Extensive results show that with the information gained from optical im-
ages, we could achieve leading performance in object detection (97.69%
recall) compared to recent state-of-the-art methods FFT-RadNet [17]
(82.86% recall). Ablation studies verify the key design choices and prac-
ticability of our approach given machine generated imperfect detections.
The code will be available at https://github.com/LiuLiu-55/ROFusion.

Keywords: Radar-Optical Fusion - Object Detection - Deep Learning.

1 Introduction

Autonomous driving and Advanced Driver Assistance Systems (ADAS) often
rely on different types of sensors to acquire a reliable perception. Mainstream
sensors equipped in automotive vehicles are camera, Lidar and Radar, which are
fused together thanks to their unique working mechanism and specialties. Exist-
ing mainstream multi-sensor fusion strategy uses camera and Lidar sensors for
3D object detection [2,21]. Mainly because Lidar owns a high angular resolution
and range detection accuracy in a way of dense point clouds, and is complemen-
tary to camera images which are rich in contextual and semantic information of

* Shuaifeng Zhi is the corresponding author.
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scenes. However, both camera and Lidar suffer from huge performance degrada-
tion in adverse weather conditions, which is a crucial requirement for long-term
stable autonomous driving.

Radars are active sensors that measure the environment from reflected elec-
tromagnetic waves. Compared to Lidar, Radar has a robust capacity in severe
weather conditions and can detect objects and obstacles within 250m with their
distances and velocities. Furthermore, its low deployment cost makes Radar a
requisite sensor in assistance systems. Radar data have developed different types
of representations, including Radar occupancy grid maps, micro-Doppler sig-
nature, dense Range-Doppler-Azimuth (RAD) tensors and point clouds, with
various processing costs and representational capacity.

Despite Radar’s advantages in stable and long-term scene perception, there
have been few investigations on fusing Radar with other sensors in this task.
This is partly caused by its entirely different imaging mechanism in contrast
to cameras and Lidars, leading to extremely sparse point clouds or intuitive
dense RAD spectrum, and relatively low elevation angular resolution as well.
Fortunately, this problem has been partly solved with the development of the
4D imaging Radar, with a high angular resolution of about 1° in both azimuth
and elevation. Some recent works also tried to conduct image-Radar fusion to
alleviate the high sparsity of Radar point clouds [14,10,9].

Motivated by the above-mentioned challenges, we propose ROFusion, a hy-
brid point-wise approach to fuse Radar and camera data. Different from previous
work in Radar-optical fusion, we seek to fuse dense contextual features from both
modalities. We first acquire Radar and camera features respectively from single-
modality extractors [17,8], and then use image-Radar association and hybrid
point-based fusion strategy to merge cross-modality features at multiple hier-
archies. Finally, a local coordinate formulation is proposed to decompose our
tasks into classification and regression in an object-centric manner. Our method
achieves a new state-of-the-art performance in both easy and hard cases of public
RADIal dataset [17].

To summarize, our contributions are as follows:

— We propose a hybrid point-wise fusion strategy to effectively associate dense
Radar and image features.

— We propose a local coordinate formulation that simplifies object detection
by classification and regression sub-tasks in an object-centric manner.

— We conduct extensive experiments on the RADIal [17] benchmark and achieve
a new state-of-the-art detection performance, with a significant boost over
Radar-based baseline.

2 Related work

2.1 Point-based Methods

PointNet [15] designs a novel type of neural network that directly consumes
the point cloud, which makes point-based detection methods process. For Radar
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Fig. 1. ROFusion network architecture. Latent RA feature maps and camera-encoded
semantics are first obtained by Radar and image backbone. The image 2D bounding
boxes are used to associate the image and Radar feature maps via point cloud candi-
dates. The point-wise module is next used for feature-level fusion, proposing a hybrid
point feature to produce final Radar detection formulated in object-centric local coor-
dinates.

point clouds, sparse structures take a challenge to object detection. One strategy
[3] is to accumulate radar points into a dense occupancy grid mapping (OGM).
For lightweight demand, [19] utilize novel point structure [16]. With the sparsity
issue, [13] observes that a global message could enhance perception performance.

2.2 Camera-Radar Fusion Methods

Complementary information gives the opportunity for sensor fusion between the
camera and Radar. Radar extracts the distance and velocity of objects, while
semantic information is captured by cameras. There are normally three fusion
levels between Radar and camera: early level, feature level, and late level. Radars
are often used to generate the region of interest (ROI) for early-level fusion.
Then, the predicted region is processed as an auxiliary refining optical task
[4,7], which is computationally expensive. The decision level contrary utilizes
two sources independently detect, proposing a strategy [1,24] defining whether
one of the sensors failed. With different probability spaces, late-level fusion could
not efficiently exert the capability of two sensors.

A naive approach is fusing Radar and camera in a latent feature space where
the key point is Radar-camera association. CramNet [9] applies a dynamic vox-
elization fusing Radar and camera features, projecting each camera pixel with
a 3D ray to rectify its location, which makes a robust performance for sen-
sor failure. In [14], authors propose a frustum association that fully exploits
Radar vertical information. CRAFT [10] also associates Radar and image, but
implements them in a polar coordinate to handle the discrepancy between the
coordinate system and spatial properties. The feature maps are then fused by a
consecutive cross-attention strategy.
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3 Method

In this section, we present architectural details of our method ROFusion as well
as key design choices enabling accurate object detection with a hybrid point-wise
optical-Radar fusion. An overall architecture is provided in Figure 1. We first
take Radar RD spectrums with corresponding images as our network inputs and
extract their dense features. Radar points filtered by prior information such as
image detection bounding boxes are then adopted as anchors to associate Radar
and image features. Furthermore, a hybrid point-wise fusion complements the
surrounding semantics of targets to produce new point features. A detection
header finally predicts object locations in per-object local coordinates.

To summarize, our pipeline consists of three main modules including: (1) a
dense feature extraction module from both RGB images and corresponding high-
definition RD tensors to acquire contextual information of scenes (Section 3.1);
(2) a hybrid point-based fusion module to associate dense Radar embedding of
scattering points with image features (Section 3.2); (3) a local coordinate module
formulating object detection task in an object-centric manner (Section 3.3). We
finally show the training configurations of our method in Section 3.4.

3.1 Dense Feature Extraction

In order to acquire rich contextual information about objects within 3D scenes,
we leverage dense convolutional neural networks (CNNs) to extract dense fea-
ture embedding of both Range-Doppler (RD) Radar maps and camera image
observations.

Radar Feature Extractor Radar-based scene understanding from its Range-Doppler
(RD) map has recently gained attention as it contains all information on range,
azimuth and elevation. In addition, the RD map owns less computational acqui-
sition costs and is a dense representation compared to Range-Doppler-Azimuth
(RAD) tensors and sparse point clouds, respectively. We propose to use a dense
CNN model as our Radar backbone module, inspired by FFT-RadNet [17].
Specifically, it aims to learn a multi-scale dense representation of Range-Azimuth
(RA) maps from their input RD counterparts, with a tailored MIMO pre-encoder
[17]. In this manner, we seek to learn a dense feature embedding of RA maps as
they are closely related to downstream vehicle detection tasks.

Image Feature Extractor To enrich radar features with optical image features, we
encode the corresponding RGB image into a dense feature embedding with a vi-
sion CNN model. To reduce computational overhead, we simply use an ImageNet
[18] pre-trained ResNet-18 model [8] and keep the weights intact during train-
ing. Please note that our image backbone module could be replaced by stronger
vision models such as ResNet-152 [§] and vision Transformers [20], depending
on the computation budgets.
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Fig. 2. Image-Radar Association. 2D Detector using image features provides the az-
imuth of interest (left), which leads to a frustum region to select candidate object-
related point clouds (middle). We filter noise and background points depending on
whether their relative radial or angular distance to the object center is beyond a cer-
tain threshold or not, as discussed in Section 3.3 (right).

3.2 Point Fusion

Image-Radar-Association In this section, we explain how to establish a cross-
modality association of target objects with provided sensor calibration informa-
tion and prior optical detection results.

As dense features of RA maps and images are difficult to conduct dense align-
ment due to their different imaging mechanism, we rely on Radar point clouds to
bridge them at point-level. Specifically, we represent each Radar point as a 3D
point p = (r,a,d,u,v,x,y, z), where (r,a,d) and (z,y, z) are its locations within
RAD tensors and real word coordinates, respectively. With the intrinsic and ex-
trinsic of the camera model, we transform Radar points into image coordinates

as follows: )

' Yy
u:fz;*pm, v:fy?*pya (1)

where (fz, fy, Pz, py) are camera intrinsic parameters, (2’,y’,2’) is 3D position
within camera coordinate transformed by camera extrinsic [R|t] and (z,y, 2).

2D object bounding boxes within images are treated as Region of Interest
(ROI) filters separating the region of interests out of background and noises,
as explained in Figure 2. The 2D bounding boxes provide strong prior angular
information of objects, eliminating the uncertainty caused by Radar sidelobe
jamming. At this stage, we treat all points within these 2D ROIs as candidate
points for the next fusion stage. However, these boxes within images cannot
cope with range estimation, as points within 3D space in the cone area (middle
of Figure 2) all project within the 2D ROIs. To address the range inaccuracy,
we consider a local coordinate strategy as detailed in Section 3.3.

Hybrid Point Fusion We propose a point-based method that generates per Radar
point fused feature from pixel-level RA and image features. Inspired by DenseFu-
sion [22], we implement a variant architecture that fuses semantics and velocity.

Assume there are k 3D Radar points from the previous association stage, we
collect pixel-wise features from encoded RA features Fr and semantic image fea-
tures F7r, respectively. Concretely, with a set of k point clouds P = {p1,p1, ..., Pk },
we extract corresponding per-pixel features Fr = {FP', FP2 .. FP*} and RA
features F;y = {FP', FF? .. FP*}, where FP* and F* are pixel-level features
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Fig. 3. Hybrid point fusion architecture. Extracted dense Radar and image features
are processed by a series of MLPs and fused at multiple scales. With a per-object global
feature from max-pooling across points, we reach a hybrid multi-modal feature with
spatial and semantic information by concatenating all fused features of various scales.

from RA and image of point pg. As shown in Figure 3, considering the dif-
ference within local distribution and semantics of these two feature spaces, the
obtained point-wise features are combined in a hierarchical manner. As low-level
and high-level fusions are both efficiently discriminative point-level features, we
fuse them at different scales via concatenation after being sequentially processed
by a set of shared MLPs. Another key point here is to obtain a per-object global
contextual feature which, in principle, reveals the attributes of the same target
which shares across domains. The global point-level feature is obtained via a
max-pooling operation of fused features across all candidate points of the same
object. We obtain a set of hybrid point-wise features by concatenating all above
mentioned fused features at various scales. These features are fed into a detector
that predicts per-point object center locations (see Section 3.4).

3.3 Object-centric Local Coordinates

We have experimentally found that directly regressing object locations is not
only challenging to achieve purely from extremely sparse point clouds, but also
involved with the absolute scale of sensing environments, imaging resolutions
and object locations. To tackle this problem, we propose to decompose object
detection task into a combination of classification and regression sub-tasks at an
object-centric local coordinate.

As shown in Figure 4, we establish a new coordinate whose origin is at object
center, and x, y axes are parallel to range and azimuth axes of RA. For Radar
points within 2D bounding boxes, we encode their relative distance to the center
position of targets at both axes based on a set of discrete bins at a certain reso-
lution. We further predict a residual offset via regression on top of classification
results to reach the final localization prediction. The motivation comes from the
fact that we only focus on the features around the target and this formulation
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Fig. 4. Illustration of the local coordinates originated at object center position. Non-
trivial points lying within or around the object are kept during training, while noise
points are discarded.

decouples the network prediction from the above-mentioned imaging conditions.
In this paper, the relative distance between center labels and Radar points is
modeled by discretizing object dimension into 5 bins and 11 bins for azimuth
and range, respectively.

It is also worth noting that although Radar points around objects are consid-
ered candidates, points which also lie within bounding boxes but are reflected by
context near objects also have valuable information. We term such points 'non-
trivial’ points if their relative distance at any axes satisfies our above-mentioned
discretization. For example, points reflected by non-object regions within boxes
may have a large variation w.r.t. range dimension, but share a large correlation
to object at angle dimension. In such cases, we may still include these points
as training data and only penalize our network prediction by the deviation at
the angle-axis prediction. This investigation also filters radar foreground and
background points, eliminating range uncertainty as explained in Section 3.2.

In the training loop, we use non-trivial points as a data augmentation, which
could partly relieve the spatial sparsity of object Radar points. All other points
are regarded as background points or noises and are not involved during network
training and inference.

3.4 Object Detection and Training Configurations

As described in Section 3.3, the detection task is divided into two parts, a RA
map coarse classification and a refined regression. The two-part predictions are
trained with a combined loss composed of a Cross-Entropy loss and a Smooth-
L1 loss [6]. Denote the network prediction of classification and regression as

~BXN x16 ~BXN X2 g Tqe
L and Yoy , the training loss is:
L= ECrossEnt’r‘Opy (ycls7 gcls) + a*CSmoothle(yrega @reg)7 (2>

where a = 10 is a weight balancing parameter.
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In the training phase, we use the object’s 2D ground truth bounding box to
get a precise association. In the test phase, a pertained 2D detector is used to
provide object bounding boxes for evaluation. Specifically, we choose to use a
pre-trained off-the-shelf YoloX [5] to obtain 2D bounding boxes on testing images
without any fine-tuning on the target datasets. We also show the performance of
our method given oracle bounding boxes as a limited case to show the potential
upper bound performance of our method.

4 Experiments

4.1 Dataset and Metrics

Dataset We evaluate our model on the RADIal dataset [L7] consisting of RD
spectrums and Radar points of a high-definition Radar with corresponding cam-
era observations. Its 91 sequences are divided into hard and easy cases depend-
ing on the intensity of Radar perturbation. We strictly follow the official splits
into training, validation, and test division at a portion of 70%, 15%, 15%. Since
our proposed point-based architecture requires there are Radar reflection peaks
from objects, we remove training candidates where no Radar points are included
within object bounding boxes.

Metric The evaluation metrics for object detection are Average Precision (AP)
and Average Recall (AR), given a validated positive prediction whose Intersection-
over-Union (IoU) to the ground truth is greater than 50% [17]. We also present
the absolute Range and Angle error to analyze the prediction accuracy.

4.2 Baseline

Implement Details We implement our image backbone with a pre-trained
ResNet-18 [8] model. The color image is of size 960 x 540 and we use the semantic
features of the last layer as dense image features. The Radar backbone adopts
the design of FFT-RadNet [17] while we further simplify the FPN [12] model
to reduce computational complexity. Due to the high definition nature of used
Radar sensor, % of native resolution is taken and has been proven to be enough for
near-by object discrimination [17]. We train our ROFusion model for 40 epochs
with a batch size of 8 and 1 x 10~* learning rate with Adam optimizer [11] on
a single NVIDIA Tesla V100 GPU. During inference, the bottom Radar points
inside objects’ 2D bounding boxes are considered as sensor-facing endpoints and
are used to generate the heuristic object-centric local coordinates (hLC).

Results In Tabel 1 we report object detection results of our method compared
to leading state-of-the-art methods FFT-RadNet [17] and baseline method Pixor
[23]. Ground truth bounding boxes and object positions are used to demonstrate
the effectiveness of ROFusion. We also evaluate the performance of our method
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Fig. 5. Qualitative results for object detection from Camera (row 1 & 3) and RA (row
2 & 4) view. In the RA plots, the detection boxes are presented correspondlng to RA
dense maps in Euclidean space.

Table 1. Object detection performance on RADIal dataset [17]. AR (%) is computed
with an IoU threshold of 50%. R(m) and A(°) indicate the mean Range and Angle
error. PC, RA, RD and IM mean point clouds, range-azimuth maps, range-doppler
maps and images, respectively.

Overall Easy Hard

Method Input S S .

AR(%) T R(m) | A(°) {AR(%) T R(m) L A(°) {|AR(%) T R(m) T A(°) |
Pixor [23] PC 32.32 0.17 0.25 | 28.83 0.15 0.19 | 38.69 0.19 0.33
Pixor [23] RA 81.68 0.10 0.20 | 83.02 0.09 0.16 | 70.10 0.12  0.27
FFT-RadNet [17] RD 82.18 0.11  0.17 | 91.69 0.10 0.13 | 64.82 0.13  0.26
FFT-RadNet* [17] RD 82.86 0.12 0.11 | 93.12 0.11  0.10 | 64.13 0.15 0.13
Ours IM+RD+PC 97.69 0.12 0.21 | 97.79 0.11 0.19 | 97.52 0.12 0.22
Ours-hLL.C IM+RD+PC  93.64 0.12  0.23 95.21 0.12  0.22 91.22 0.13 0.25

e We denote that FFT-RadNetx [17] as detector with 0.5 discrimination threshold
for a fair comparison, using authors’ provided weights.

with proposed heuristic local coordinates estimation for practical purposes. Al-
though the radar sparsity causes the worse Angle error, we have observed a clear
performance boost despite using sparse point-level features thanks to the optical
information and our local coordinate formulation. Our method outperforms [17]
at overall recall rate with a gap of +14.83%. It is worth to highlight that our
hybrid point-wise fusion scheme achieves a promising +27.65% recall boost and
a 0.12m Range error in the hard cases, overcoming interference problems caused
by Radar noise to the dense formulation in [17]. Qualitative results can be found
in Figure 5.



10 L. Liu et al.

Table 2. 2D Object detection metrics of YOLOX Network [5] on the test set.
Overall Easy Hard

AP (%) AR(%) | AP(%) AR(%) | AP(%) AR(%)

YOLOX [5] M 90.48 91.03 | 89.79 91.86 | 9177 89.54

Method Input

Table 3. Detection performance on RADIal [17] given predicted 2D boxes.

Method Overall Easy Hard

let

o AP(%) L AR(%) T R(m) L A(°) {|AP(%) | AR(%) 1 R(m) L A(°) JJAP(%) L AR(%) T R(m) T A(°) |
FFT-RadNet* [17] 97.39 82.86 0.12 0.11 ‘ 98.96 93.12 0.11 0.10 ‘ 93.46 64.13 0.15 0.13

Ours(YOLOX)-hLC  91.58 95.15 0.13 0.21‘ 91.03 96.07 0.13 0.20‘ 92.63 93.47 0.13 0.23

To further demonstrate the practicability of our method, we use network
predicted detection results to conduct the evaluation. We first reveal the quality
of the adopted YOLOX [5] 2D detector in Table 2, with a moderate performance
drop in terms of optical detection accuracy, it is expected that the imperfect
2D detection results would affect the filtering process of our pipeline. Table 3
compares the AP and AR metrics with machine-generated bounding boxes in
both easy and hard cases as well. While the AP metric lack behind baseline
model due to the quality of network inferred 2D bounding boxes, our method
with YOLOX [5] 2D detector still achieves a higher AR metric for both overall
and especially difficult cases. The AR performance gain comes from the 2D
bounding boxes association and heuristic local coordinates. The Range error of
our method also outperforms FFT-RadNet* [17] in difficult cases. These results
show that our local coordinates successfully extract the range information for
sparse Radar points even though the prior 2D detection is less accurate.

4.3 Ablation

In this section, we conduct ablative experiments to validate the key components
of our method: local coordinate (LC) formulation and image fusion module (IM).
As shown in Table 4, we have shown two variants of ROFusion: Ours (w/o LC)
is the variant where we remove the local coordinate formulation in the training
stage, but conduct the two classification and regression sub-tasks in the original
RA maps; we also remove the image level feature fusion module out of training
process. From the statistics, we conclude that the local coordinate formulation
is significant in enabling accurate learning from spare Radar point clouds. The
integration of image features gives further performance boost upon competing
performance. It is also worth noting that in addition to the image feature, the
prominent prior information introduced by optical detection is another key factor
supporting the overall learning process from sparse Radar point clouds.

5 Conclusion

In this paper, we present ROFusion, a novel point-wise Radar-Optical fusion
network for object detection. We have demonstrated that our method could
effectively exploit camera semantics to enhance Radar detection. With hybrid
point fusion and local coordinate formulation, ROFusion achieves state-of-the-art
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Table 4. Ablation study on the key components of ROFusion.
Overall Easy Hard
AR(%) 1 R(m) | A(°) IJAR(%) T R(m) | A(°) L|AR(%) T R(m) | A(°) 4

Ours (w/o LC) RD+PC 274 022 046 | 3294 024 040 | 1578 020 057
Ours RD+PC 9658 0.09 022 | 9631 0.08 022 | 9685 0.09 024
Ours IM+RD+PC 97.69 0.12 0.21 | 97.79 0.11 0.19 | 97.52 0.12 0.22

Method Input

performance on the public RADIal dataset [17], showing the potential capability
for multi-sensor fusion. However, our method still relied on the quality of 2D
object detection as prior information to filter potential object Radar points. In
addition, considering the difference in imaging mechanism, more in-depth anal-
ysis of camera-Radar fusion stratify at the feature level is worth investigating,
possibly aided by a powerful Transformer backbone using attention mechanism.
This can be an exciting venue for our future work.
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