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Abstract

The success of existing video super-resolution (VSR) al-
gorithms stems mainly exploiting the temporal information
from the neighboring frames. However, none of these meth-
ods have discussed the influence of the temporal redundancy
in the patches with stationary objects and background and
usually use all the information in the adjacent frames without
any discrimination. In this paper, we observe that the tem-
poral redundancy will bring adverse effect to the informa-
tion propagation, which limits the performance of the most
existing VSR methods and causes the severe generalization
problem. Motivated by this observation, we aim to improve
existing VSR algorithms by handling the temporal redun-
dancy patches in an optimized manner. We develop two sim-
ple yet effective plug-and-play methods to improve the per-
formance and the generalization ability of existing local and
non-local propagation-based VSR algorithms on widely-used
public videos. For more comprehensive evaluating the robust-
ness and performance of existing VSR algorithms, we also
collect a new dataset which contains a variety of public videos
as testing set. Extensive evaluations show that the proposed
methods can significantly improve the performance and the
generalization ability of existing VSR methods on the col-
lected videos from wild scenarios while maintain their per-
formance on existing commonly used datasets. The code is
available at https://github.com/HYHsimon/Boosted-VSR.

1 Introduction
Video Super-Resolution (VSR) aims to reconstruct a high-
resolution visual-pleasing video from a low-resolution one.
Recent years have witnessed significant advances due to the
use of deep convolutional neural networks (CNNs). As more
frames are used, VSR methods achieve better performance
than the single image SR methods (Haris, Shakhnarovich,
and Ukita 2018; Zhang et al. 2018; Dai et al. 2019; Zhou
et al. 2020; Mei, Fan, and Zhou 2021; Chen et al. 2021)
on existing VSR datasets (e.g., REDS (Nah et al. 2019),
Vid4 (Liu and Sun 2013), Vimeo-90K (Xue et al. 2019)).
However, the VSR task introduces another challenging prob-
lem, i.e., how to effectively exploit the temporal information
for better results.

*These authors contributed equally.
†Corresponding author.

To solve this problem, most existing deep learning-
based methods usually employ optical flow, deformable con-
volution networks, and recurrent neural networks to ex-
plore useful information from adjacent frames for better
high-resolution video restoration. Existing deep learning-
based VSR methods can be roughly categorized into local
propagation-based (e.g., EDVR) and non-local propagation-
based (e.g., BasicVSR) methods according to the propaga-
tion scheme of the input frames. The success of existing
VSR stems mainly exploiting the temporal information from
the neighboring frames through propagation.

Meanwhile, we note that the neighboring frames also
contains similar contents (i.e., temporal redundancy) in the
patches with the stationary objects and background. If these
temporal redundancy contents dominate the propagation
process, they will not facilitate the VSR problem as no ad-
ditional useful information is introduced from the temporal
domain. However, most existing methods usually use all the
information from adjacent frames without any discrimina-
tion. Therefore, the temporal redundancy are likely to be in-
volved in the high-resolution frame reconstruction process.

In this paper, we find that the temporal redundancy in
stationary objects and background interfere with the high-
resolution frame reconstruction if they are not specially han-
dled. As shown in Figure 1, we select one patch sequence
with stationary objects and background s[t−2:t+2] and one
patch sequence with dynamic scene d[t−2:t+2] from input
frames I[t−2:t+2] and super-resolve them with two typical
VSR networks in the local (EDVR (Wang et al. 2019))
and non-local (BasicVSR (Chan et al. 2021a)) propagation-
based methods. To evaluate the benefit of neighboring
frames, we also super-resolve the reference patches (st and
dt) with two single frame counterparts of these two meth-
ods for comparisons. The super-resolved results of these two
patch sequences are shown in the right side of Figure 1. As
expected, by exploiting the temporal information from the
neighboring patches, both networks can achieve better re-
sults in the dynamic patch. In the meantime, due to the ex-
istence of temporal redundancy contents, the single frame
counterparts outperform the VSR networks in the patch with
stationary objects and background. The inconsistent perfor-
mance of the VSR networks on two patch sequences demon-
strates that the temporal redundancy may bring adverse ef-
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Figure 1: Effect of the temporal redundancy in stationary objects and background. Since the EDVR can only received five
frames as inputs, we modify the original EDVR to adapt the single frame input (more details can be find in Sec. 4.1). Both the
EDVR and BasicVSR are trained on the REDS dataset. fra.N means method takes N frames as input.

fect on the VSR problem and patches with stationary back-
ground and dynamic objects should be handled separately.
VSR networks exploit the useful subpixel temporal infor-
mation though alignment from the neighboring patches with
dynamic objects. However, pixels may still change due to
noisy and information loss during encoding and decoding in
the patches with stationary background, which will be re-
garded as the useful temporal information by the alignment
module and bring adverse effect on the VSR problem.

To overcome this problem, we try to handle the tempo-
ral redundancy patches in an optimized manner and develop
two simple yet effective plug-and-play methods to improve
the performance and the generalization ability of existing
VSR algorithms. Our work is motivated by two observa-
tions: the temporal redundancy content is universal on dif-
ferent types of videos and the single frame super-resolution
is more suitable for handling patches with temporal redun-
dancy contents. This inspired us to propose a new VSR
pipeline with temporal redundancy detection module for lo-
cal propagation-based methods and deploy it to the original
EDVR, namely Boosted EDVR. Specifically, the proposed
pipeline first decomposes the input frames into overlapping
patches and super-resolve the detected patches with a fine-
tuned EDVR model for single frame (EDVR-1F). Since the
EDVR-1F is more suitable for super-resolving patches with
temporal redundancy and has lower computational cost than
the original EDVR, the Boosted EDVR could improve the
performance and accelerate the inference time simultane-
ously.

Moreover, we also optimize the non-local propagation-
based VSR methods in a different way based on another
observation: As for the non-local propagation-based VSR
methods, one frame may strongly affect the next adjacent
frame, but its influence is quickly lost after few time steps.
Therefore, the temporal redundancy in the patch sequences
will hinder the propagation of the hidden states since the
temporal information in the distant frame may be gradu-
ally vanished by the temporal redundancy from neighboring
patches. To improve the effectiveness of the hidden states

propagation in the presence of temporal redundancy con-
tents, we propose a patch-based dynamic propagation (PDP)
scheme to better accumulate and exploit the long-term in-
formation. Unlike existing propagation schemes, where the
information is sequentially propagated frame-by-frame, the
proposed patch-based dynamic propagation can directly
propagate the long-term information to the current frame in
a patch-wise way without accumulating useless redundancy.
We deploy this propagation scheme to BasicVSR, namely
Boosted BasicVSR, and largely improve the performance
and the generalization ability without any training process.

In addition, we also collect a new testing dataset which
contains a variety of public videos to comprehensively
evaluate the robustness and performance of VSR algo-
rithms. More specifically, the collected testing dataset con-
tains videos from live streaming, TV program, sports live,
movie and television, surveillance camera, advertisement,
and some first person videos captured with irregular trajec-
tories. We believe that the new dataset is suitable for evalu-
ating the importance of temporal redundancy and can enrich
the video types of the existing datasets.

The contributions of this work are summarized as follows:

• In this paper, we find that the temporal redundancy is uni-
versal in public videos and will limit the potential of the
existing VSR methods. To the best of our knowledge, this
is the first work to investigate the influence of the tempo-
ral redundancy in the VSR task.

• We develop two plug-and-play methods for both the local
and non-local propagation-based VSR methods, which
can optimize the super-resolving process for the temporal
redundancy patches and save computational cost.

• We collect a dataset with a variety of public videos to en-
rich the existing datasets. Extensive evaluations demon-
strate that the proposed methods can largely improve the
performance and the generalization ability of existing
VSR algorithms.



2 Related Works

Most existing VSR algorithms (Chan et al. 2020; Isobe
et al. 2020b; Huang, Wang, and Wang 2017, 2015; Ca-
ballero et al. 2017; Tao et al. 2017; Jo et al. 2018a; Yi
et al. 2019; Tian et al. 2020; Wang et al. 2019; Isobe et al.
2020a,c; Lai et al. 2017; Kingma and Ba 2014; Kim et al.
2018; Jo et al. 2018b) focus on improving the motion com-
pensation and frame aggregation modules to better exploit
temporal information. In VESPCN (Caballero et al. 2017),
a real-time deep motion compensation module is proposed
for frames registration. SPMC (Tao et al. 2017) further im-
prove the process by proposing a sub-pixel motion compen-
sation (SPMC) strategy, which is validated by the physical
imaging model. Since optical flow estimation is a challeng-
ing task in dynamic scenes, some recent works adopt im-
plicit alignment without the optical flow estimation process.
EDVR and TDAN (Tian et al. 2020) both adopt deformable
convolutions (DCNs (Dai et al. 2017)) to align the features
of the neighboring frames in a multi-scale architecture. In
DUF (Jo et al. 2018a), a novel learned dynamic upsam-
pling filter is proposed to exploiting the spatio-temporal of
each pixel without explicit motion compensation. Although
these sliding-window frames can achieve favorable results,
none of them discuss the effect of the temporal redundancy,
which leads to sub-optimal results and causes unnecessary
consumption.

Since the RNN (non-local propagation-based) architec-
ture has been validated to be effective in processing the
time sequence signals, it is also applied in the some video
super-resolution tasks. FRVSR (Sajjadi, Vemulapalli, and
Brown 2018) first proposes a recurrent network to super-
resolve the low resolution video by leveraging the HR out-
put from last iteration. Since the propagation is one of the
most influential components in non-local propagation-based
VSR algorithms, subsequent methods propose new propa-
gation schemes to improve the information-flow of the hid-
den states. RRN (Isobe et al. 2020c) proposes a new re-
current residual block to solve the gradient vanish prob-
lem and preserve the texture information over long periods.
Recently, BasicVSR and BasicVSR++ (Chan et al. 2021b)
achieves SotA performance on all the existing datasets by
adopting a bidirectional propagation coupled with optical
flow-based and deformable-based feature alignments. De-
spite the distinguished performance, the information in Ba-
sicVSR and BasicVSR++ are still sequentially propagated
frame-by-frame which is not optimal when temporal redun-
dancy patches exist. The most similar work to our paper is
RSDN (Isobe et al. 2020a), where a spatially variant hidden
state adaptation module is proposed to only propagate the
similar information in previous frames to the current frame
at each position. However, this strategy bring serious adverse
effects when handling the video with temporal redundancy,
since the useful information in the long-term frames will be
totally replaced by the temporal redundancy contents.

Table 1: Performance of EDVR-1f and two input types of
EDVR-5f. Type A and Type B sequences refer to the sta-
tionary and dynamic sequences.

Models Type A sequences Type B sequences
EDVR-1F 39.20dB 38.01dB

EDVR-5f(original) 37.81dB 38.65dB

3 Observations on Temporal Redundancy
3.1 The DTVIT Dataset
Currently, most VSR datasets are first-person videos, which
contains only dynamic scenes due to consistent movement.
However, there are a variety of videos with irregular move-
ment in public videos. To better investigate temporal re-
dundancy and its influence, We collected a Diverse Types
Videos with Irregular Trajectories (DTVIT) Dataset. More
specifically, we collect 96 videos with high-quality and high-
resolution as ground-truth from the internet. To ensure the
diversity of the datasets, the collected videos include live
streaming, TV program, sports live, movie and television,
surveillance camera, and advertisement. Besides, to further
increase the quantity and diversity of the collected dataset,
we also additionally capture 12 first-person videos with ir-
regular trajectories (using iPhone 12 with DJI stabilizer).
More details can be find in the supplementary. Then, we
randomly select ten videos from DTVIT dataset as the val-
idation set and try to investigate the influence of temporal
redundancy based on it.

3.2 Temporal Redundancy in Videos
Observation 1: The temporal redundancy contents is uni-
versal in widely-used public videos.

As temporal redundancy occurs in the stationary ob-
jects and background, we conduct a statistical analysis on
the sliced patches of the validation set to determine the
ratio of the patch sequence with stationary objects and
background. Here, based on the input length of most lo-
cal propagation-based VSR algorithms, we define the five
neighboring patches, where the PSNR of each neighboring
patch is higher than 35, as a patch sequence with stationary
objects and background. Based on the definition above, there
are 69.92% patch sequences in the validation set can be dis-
criminated as stationary. Even we extend the length of the
patch sequence to 11 patches, there are still 64.79% patch
sequences can be treated as stationary. These statistic results
demonstrate that the patch sequence with stationary objects
and background, as well as the temporal redundancy, is uni-
versal in widely-used public videos. For convenience, the
patch sequences with stationary objects and background are
denoted as the Type A sequences, while the dynamic patch
sequences are denoted as the Type B sequences.

Observation 2: Single frame super-resolution is more suit-
able for handling patches with temporal redundancy in sta-
tionary objects and background.

Since the temporal redundancy contents is universal
in widely-used public videos, we should also investigate
whether it will interfere with existing local propagation-
based VSR networks. Following the settings of the exper-



Table 2: The performance of BasicVSR in the simulated
Type A sequences. For a fair comparison, the PSNR are
calculated on the original dynamic frames.

Training dataset DS +10df +20df +30df +40df +50df
REDS 27.38 dB 27.31 dB 27.24 dB 27.12 dB 26.99 dB 26.84 dB
Vimeo 25.85 dB 25.78 dB 25.73 dB 25.69 dB 25.64 dB 25.58 dB

iment in Sec. 1, we super-resolve all the Type A and Type
B sequences in the validation set with both the EDVR-1f
and original EDVR (EDVR-5f). The EDVR-1F is modified
upon the original EDVR for single frame input, which will
be described in Sec. 4.1. As shown in Table 1, although the
EDVR-5f achieves better results on the type B sequences,
the single frame super-resolution method (EDVR-1f) can
outperform EDVR-5f with lower computational cost on the
type A sequences. Since the type A sequences refer to the
sequences with temporal redundancy, we analyze that align-
ment and fusion module of original EDVR may regard these
changed pixels due to noisy and information loss during
encoding and decoding as the useful temporal information
and bring adverse effect on the VSR problem in the se-
quences with temporal redundancy. Therefore, the single
frame super-resolution is more suitable for handling patches
with temporal redundancy.

Observation 3: Patches with temporal redundancy in the
video sequence will hinder the propagation of non-local
propagation-based VSR networks.

According to the Observation 2, the existence of
temporal redundancy will bring negative effect to local
propagation-based VSR algorithms, where only local in-
formation can be exploited. On the other hand, non-local
propagation-based VSR algorithms can exploit the long-
term temporal information by taking all the inference frames
as inputs. To investigate the influence of the temporal redun-
dancy on such longer input sequences, we conduct an ex-
periment based on the BasicVSR model. Specifically, we se-
lected 4 downsampling videos with dynamic scenes from the
REDS and super-resolve them with the BasicVSR trained on
the REDS and the Vimeo respectively. Then, to simulate the
Type A sequence and introduce the temporal redundancy,
we randomly choose 10 frames from each video and repli-
cated them several times (range from 1 to 5), progressively.
For each time, we super-resolve all the extended videos with
BasicVSR and record its performance. As shown in Table 2,
the two BasicVSR models both suffer from the performance
decline as the length of frames with temporal redundancy
increases, which demonstrates limitation of RNN due to the
recurrent nature, where one frame may strongly affect the
next adjacent frame but its influence is quickly lost after
few time steps. Therefore, despite of long input sequences,
the temporal redundancy will still bring negative effect to
the RNN-based VSR network by hindering the information
propagation. Similarly results in the realistic video can be
found in the supplementary.

4 Methodology
From the observations in Sec. 3.1, the temporal redundancy
is universal: almost 70% patch sequences in the validation

set are Type A sequences, which cannot provide any useful
information for the VSR algorithms. Therefore, it’s neces-
sary to optimize the existing VSR algorithms to handle the
patches with temporal redundancy. However, there are two
categories in the existing VSR methods, which makes it dif-
ficult to propose a unified strategy to improve two frame-
works simultaneously. In this section, based on the Obser-
vation 2 and Observation 3, we introduce two effective
plug-and-play methods for local and non-local propagation-
based networks to optimize the super-resolving process for
patches with temporal redundancy.

4.1 Boosting Local Propagation-Based Networks
The local propagation-based VSR methods (Wang et al.
2019; Tao et al. 2017; Jo et al. 2018a; Caballero et al. 2017)
take LR images within a local window as inputs and em-
ploy the local information for restoration. However, based
on the Observation 2, the patches with temporal redun-
dancy should be specially handled. To achieve this, we try
to introduce a temporal redundancy detection module to the
existing methods and super-resolve each patch adaptively.
In the following parts, we will use the EDVR as example to
show how the proposed plug-and-play method optimize the
local propagation-based VSR methods.

Inspired by the recent work, Class-SR(Kong et al. 2021),
we extend the original EDVR to a new pipeline, namely
Boosted EDVR, to perform temporal redundancy detection
and super-resolution simultaneously. As shown in Figure 2,
the proposed Boosted EDVR consists of two modules: Tem-
poral Redundancy Detection Module (TRDM) and Adap-
tive Super-Resolution Module (ASRM). The input five LR
neighboring frames X[t−2:t+2] are first decomposed into N
overlapping patch sequences {xi[t−2:t+2]}Ni=1. Then, each
decomposed patch sequence xi[t−2:t+2] is fed to the TRDM
and assigned a movement label (Lij , j ∈ {1, 3, 5}) according
to its motion state among neighboring patches. After that,
all the patch sets with the same label will be concatenated in
the batch-size dimension and super-resolved by the optimal
EDVR model in ASRM. Finally, we combine all the super-
resolved patches {yit}Ni=1 to get the final SR results Yt.
Temporal redundancy detection module. The goal of
TRDM is to detect the temporal redundancy and assign a
movement label to each patch sequence. Based on the Ob-
servation 2, the temporal redundancy exists in the stationary
objects and background, which means we should find a way
to represent the motion state between two patches. Since the
optical flow is a widely-used metric to describe the motion
information, we use the mean values of the optical flow to
represent the motion state, which can be formulated as:

mi
−1→0 = mean(|f(xit−1, xit)|), (1)

where f denotes the optical flow estimator, | · | denotes abso-
lute value, mean is the mean value, and mi

−1→0 denotes the
motion state between the reference patch (xit) and its neigh-
boring patch (xit−1) in the patch sequence i. We choose the
traditional DIS (Kroeger et al. 2016) algorithm as the optical
flow estimator since it only slightly increase the computa-
tional cost.
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Figure 2: Overview of the proposed Boosted EDVR.

For i-th patch sequence, we successively calculate the
motion states of all the neighboring patches, which denote as
mi
−2→−1, mi

−1→0, mi
1→0, and mi

2→1). Then, we assigned a
movement label (Lj(xi[t−2:t+2]), j ∈ {1, 3, 5}) according to
these motion states:

Lij =





Li1 if mi
−1→0 < γ and mi

1→0 < γ,

Li3 elif mi
−2→−1 < γ and mi

2→1 < γ,

Li5 otherwise,

(2)

where γ is the threshold to discriminate the patch with sta-
tionary objects and background and Lij denotes j dynamic
patches involved in i-th patch sequence. With TRDM, we
can determine which model in the following ASRM should
be used to obtain better super-resolved results.
Adaptive Super-Resolution Module. The ASRM, which
consists of the original EDVR (EDVR-5f) and two of its
variants (EDVR-3f and EDVR-1f), is designed to super-
resolve each patch sequence with the optimal model. Specif-
ically, we adopt the EDVR-1f model, which is modified for
single frame input based on EDVR, to super-resolve all the
patch sets with the movement label L1, since there is no use-
ful temporal information in the neighboring patches. Simi-
larly, the EDVR-3f model and EDVR-5f model will process
the patch sequences with the movement labelsL3 andL5, re-
spectively. Different from experiment in Observation 2, we
introduce the EDVR-3f model by taking the situation that
the temporal redundancy only occurs at the border frames of
the patch sequence into consideration.

To acquire EDVR-1f and EDVR-3f with minimal modi-
fication, we only slightly changes the forward flow of the
original EDVR (EDVR-5f) without any changes on the net-
work architecture. For EDVR-1f and EDVR-3f, the PCD
alignment module and the temporal attention layers in TSA
module are only performed once and threes times, respec-
tively, and the features will be replicated to the same shape
as EDVR-5f before sending to the fusion convolutional layer
in the TSA module. Since we remove the unnecessary calcu-
lation in the PCD alignment and TSA modules of the EDVR-
1f and EDVR-3f, the proposed pipeline will be more effi-
cient than the original EDVR. More detailed of the EDVR-
1f and EDVR-3f can be found in the supplementary. To
ensure the EDVR-1f and EDVR-3f can achieve compara-
ble super-resolving ability as EDVR, we also fine-tune them
on the same training dataset (REDS) and with same hyper-
parameter as EDVR. Experiments show that such a simple

pipeline can improve the performance of EDVR close to the
upper bound with less FLops.

4.2 Boosting Non-Local Propagation-Based
Networks

Unlike local propagation-based methods, the non-local
propagation-based methods can exploit long-term informa-
tion by taking all the inference frames as inputs and se-
quentially propagation. However, based on the Observation
3, the patches with temporal redundancy in the video se-
quence will hinder the propagation, which inevitably lim-
its the potential of the existing non-local propagation-based
VSR methods. To better exploit the long-term information,
we propose a new plug-and-play method by introducing a
Patch-based Dynamic Propagation (PDP) branch to dynam-
ically propagate the long-term information in a patch-wise
way. As shown in Figure 3(a), we deploy the proposed plug-
and-play method to BasicVSR, namely Boosted BasicVSR,
by replacing the original propagation branches with the pro-
posed PDP branches. In the following parts, we will show
how the PDP branch works in forward propagation (PDPf ),
and the PDP branch in the backward propagation (PDPb)
can be derived accordingly.

Unlike the propagation branch in the BasicVSR, the pro-
posed forward PDP branch adopts dynamical propagation,
where each patch of the current frame can receive informa-
tion from different frames. To achieve this, the proposed for-
ward PDP branch maintains a patch pool P frgb and its corre-
sponding hidden state pool P fφ to restore the useful infor-
mation of patches from different frames. Then, the forward
PDP branch takes the current LR frame Xt, P

f
rgb, and P fφ

as inputs and generates the forward features hft while updat-
ing P frgb and P fφ based on the temporal redundancy detec-
tion. The advantage of maintaining an independent patch-
wise hidden states pool and propagating it to current frame
instead of the neighboring hidden states is that the useful
information in the long-term frame can directly connect to
current frame without accumulating useless redundancy in-
formation. The detail of the PDP branch is shown in Fig-
ure 3(b), which consists of two stages: features aggregation
and patch pools update.
Features aggregation. This stage is design to aggregate the
information in the maintained pools (P frgb and P fφ ) with the
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to the flow estimator, spatial warping module, and residual blocks for forward branch, respectively.

current frame. The Pφ and Prgb contains N overlapping
patches {pf,irgb}Ni=1 and corresponding hidden state patches
{pf,iφ }Ni=1 which are sorted by their positions in the frame.
Since the BasicVSR adopts the first-order propagation, we
only maintain the information of one patch for each posi-
tion.

To estimate the optical flow for spatial alignment of the
hidden state pool P fφ , we first decompose current frame Xt

into N overlapping patches ({xirgb,t}Ni=1). Then, the opti-
cal flows of all the patches ({xiflow,t}Ni=1) are calculated
by sending the correspond patches in the {xirgb,t}Ni=1 and
{pf,irgb}Ni=1 to the optical estimator (S). After that, we per-
form warping (W ) on the patches in the hidden state pool
using the estimated flow for the further refinement in the
residual blocks Rf . By feeding the warped hidden state
pool and the overlapping patches of current frame into the
residual blocks, the intermediate features patches of current
frame ({xiφ,t}Ni=1) can be obtained. Finally, the forward fea-
tures hft can be obtained by combining the {xiφ,t}Ni=1.
Patch pools update. In this stage, we try to update the patch
pool P frgb and hidden state pool P fφ with the information of
current frame. As shown in Figure 3(b), we use a similar
temporal redundancy detection method in Boosted EDVR
to decide which patches in P frgb and P fφ should be updated
with current frame. Since we already obtain the optical flows
({xiflow,t}Ni=1) in the features aggregation stage, we direct
use Equ. (1) to obtain the motion states {mi

t}Ni=1 (the box
with red dashed line) of all the corresponding patches be-
tween {pf,irgb}Ni=1 and {xirgb,t}Ni=1. Then, to ensure the use-

ful information can be accumulated, each patch set (pf,irgb
and pf,iφ ) in the two pools will be replaced by the infor-
mation of corresponding patch of current frame (xirgb,t and
xiφ,t) when the motion state of this patch (mi

t) is larger than
the threshold γ. Otherwise, which means temporal redun-
dancy exists in these two patch, the information of current
frame will be discarded to avoid vanishing the useful in-
formation. Finally, the updated pools will be propagated to
the next frame. Experiments demonstrate that the proposed
PDP scheme can significantly improve the performance of
BasicVSR and solve the generalization ability without any
training process.

5 Experiments

5.1 Datasets and Settings

Since we aim to boost existing VSR algorithms with min-
imal modifications, we only fine-tune the EDVR-1f and
EDVR-3f on the training set of the REDS. Then, we use
the REDS4, Vid4, and the DTVIT as the test set to compare
the proposed models with existing VSR algorithms. For fair
comparison, all the evaluated models are trained and tested
on the dataset with 4× bicubic downsampling.

For the proposed two methods, each LR frame is de-
composed into 64×64 patches with stride 56 (with 8 pixel
overlaps), and the combination operation combines all the
patches to an integrated frame by averaging overlapping ar-
eas. The threshold γ in Boosted EDVR and Boosted Ba-
sicVSR are set to 1 and 0.2, respectively. The DTVIT dataset
and source code will be made available to the public.



Table 3: Analysis on each component of the proposed
Boosted EDVR.

Methods EDVR TR-EDVR Boosted EDVR-(15) Boosted EDVR-(135) Boosted EDVR-(UB)
EDVR-5f X X X X X
EDVR-3f X X
EDVR-1f X X X X

TR detection X X X
DIS flow X X

Flops 758M (100%) 661M (87%) 522M (69%) 519M (68%) 622M (82%)
PSNR 33.42 34.30 34.50 34.51 34.72

5.2 Experiments on Network Configurations
To investigate the effect of different network configurations
and find the optimal one for the proposed Boosted EDVR
and Boosted BasicVSR, we evaluate several models with al-
ternative configurations. When evaluating Boosted EDVR,
we also calculate the average FLOPs to evaluate the effi-
ciency. For quick verification during the design stage, we
still select the validation set of the DTVIT dataset for the
ablation study.
Study of the Boosted EDVR. Starting from the original
EDVR, we first use the mean square errors (MSE) of pixel
values to detect temporal redundancy and use the fine-tuned
EDVR-1f models to super-resolve the patch sequences with
movement label L1. We denote these configuration as TR-
EDVR. As shown in Table 3, the TR-EDVR can achieve
0.88 dB performance gain over the original EDVR with
less FLOPS. These results also demonstrate the effective-
ness of the proposed pipeline with temporal redundancy de-
tection module, which can adaptively super-resolve different
patch sets with the optimal model. Since the optical flow is
widely used to describe the motion information, we use the
mean values of the DIS optical flow to represent the mo-
tion state and form the Boosted EDVR-(15). The Boosted
EDVR-(15) outperforms TR-EDVR by a margin of 0.2 dB
while the overall FLOPs drop from 661M to 522M, which
demonstrates that the DIS optical flow is more suitable for
redundancy detection than MSE. Futhermore, we also intro-
duce a fine-tuned EDVR-3f model, namely Boosted EDVR-
(135), to super-resolve the patch sets where the temporal re-
dundancy only occurs at the border patches (mi

−2→−1 <

γ and mi
2→1 < γ). Since both the performance and ef-

ficiency are slight improved by introducing EDVR-3f, we
choose the Boosted EDVR-(135) as the final configurations
of Boosted EDVR. Compared with the EDVR, the proposed
Boosted EDVR can achieve 1.09 dB performance gain with
only 68% computational cost. Finally, we also obtain the up-
per bound of the Boosted EDVR by simultaneously feeding
each patch sequence to three models respectively and choos-
ing the best one (in terms of PSNR) as result. Since the
performance gap between the Boosted EDVR and the up-
per bound model is relatively small (0.21 dB) and the pro-
posed method can save more computational cost, we think
our pipeline is acceptable by maintaining a good balance be-
tween the performance and efficiency.
Study of the Boosted BasicVSR. In this part, we will
evaluate the importance of three key factors in the pro-
posed Patch-based Dynamic Propagation (PDP): temporal
redundancy detection, dynamic propagation, and patch-wise
strategy. As shown in Table 4, the performance of Ba-
sicVSR trained on the REDS is much worse than the original

Table 4: Analysis on each key factor of the proposed PDP
branch.

Methods BasicVSR TR-BasicVSR DP-BasicVSR Boosted BasicVSR
Frame type classification X X X

Dynamic propagation X X
Patch-wise X

PSNR 27.96 32.57 33.22 34.08

EDVR (27.96 dB vs. 33.42 dB) on the validation set, which
is contradictory to the results on the existing datasets. We
owe this severe generalization problem of BasicVSR to the
error accumulation of the optical flow: since the optical flow
estimator in BasicVSR may regard these changed pixels due
to noisy and information loss during encoding and decoding
as the useful temporal information, it will produce inaccu-
rate optical flow between the frames with stationary objects
and background and the error will be accumulated through
the propagation (more analysis can be found in the sup-
plementary). To overcome this problem, we propose a new
pipeline, namely TR-BasicVSR, to super-resolve stationary
and dynamic frames separately. More specifically, we follow
the sequence definitions in Observation 1 and divide the
types of each test video using the redundancy detection mod-
ule in Sec. 4.1. Then, we combine all the Type B sequences
into one sequence and super-resolve it with BasicVSR. For
Type A sequences, where all the frames are similar in one se-
quence, we super-resolve each frame independently to avoid
the error accumulation of the optical flow. As shown in Ta-
ble 4, the TR-BasicVSR obtain significant performance gain
over the original BasicVSR, which demonstrates that the
temporal redundancy detection can solve the generalization
problem effectively.

However, the TR-BasicVSR cannot exploit any tempo-
ral information from the Type B sequences when handling
Type A sequences, which inevitably limits its performance.
Therefore, we further introduce the dynamic propagation
scheme to TR-BasicVSR (referred to as the DP-BasicVSR)
and make sure each frame can exploit the useful temporal in-
formation. Specifically, the DP-BasicVSR maintains an an-
chor frame and its corresponding hidden states to restore the
long-term information from the closest dynamic frame and
propagate it to current frame. Since the dynamic propaga-
tion scheme can directly propagate the information from the
long-term frame to current frame without accumulating use-
less redundancy information of the stationary objects and
background, the DP-BasicVSR outperforms TR-BasicVSR
by a margin of 0.65 dB.

Finally, due to the contents in different patches of a
video may changes independently, the final Boosted Ba-
sicVSR maintain a patch pool P frgb and its corresponding
hidden state pool P fφ to restore long-term information in
a patch-wise way. By adopting the patch-wise strategy, the
Boosted BasicVSR achieves 0.86 dB performance gain over
DP-BasicVSR. Overall, the proposed Boosted BasicVSR
can solve the generalization problem of the pre-trained Ba-
sicVSR and boost its performance without any training pro-
cess, which demonstrates the effectiveness of the proposed
PDP scheme.



Table 5: Quantitative comparison (PSNR/SSIM). All re-
sults are calculated on RGB-channel.

Training dataset Methods REDS Val Vid4 DTVIT
PSNR/SSIM PSNR/SSIM PSNR/SSIM

REDS

Bicubic 26.14/0.7292 23.78/0.6347 29.46/0.8870
DUF 28.63/0.8251 18.45/0.5117 23.17/0.6517

RBPN 30.09/0.8590 25.66/0.8029 32.74/0.9208
MuCAN 30.88/0.8750 25.33/0.7994 30.58/0.9072
EDVR 30.53/0.8699 25.34/0.7951 32.00/0.9205

EDVR-L 31.09/0.8800 25.40/0.8008 32.39/0.9277
BasicVSR 31.42/0.8909 25.75/0.8155 27.13/0.8165

Boosted EDVR 30.53/0.8699 25.32/0.7950 32.91/0.9262
Boosted BasicVSR 31.42/0.8917 25.93/0.8202 33.21/0.9340

Vimeo BasicVSR 30.32/0.8672 25.82/0.8085 33.31/0.9368
Boosted BasicVSR 30.32/0.8673 25.84/0.8093 33.79/0.9503

5.3 Comparisons with Existing VSR algorithms
To further evaluate the proposed methods, we conduct com-
prehensive experiments by comparing Boosted EDVR and
Boosted BasicVSR with several state-of-the-art VSR algo-
rithms: DUF, RBPN, MuCAN, EDVR, EDVR-L, and Ba-
sicVSR.

The first and second columns in Table 5 show the quan-
titative results on the REDS and Vid4, where all the testing
videos are first-person videos with consistent movement. As
expected, the proposed Boosted EDVR and Boosted Ba-
sicVSR only achieve comparable performance with EDVR
and BasicVSR on these two datasets, since they are opti-
mized for videos with temporal redundancy. However, the
stable performance on the first person videos demonstrates
that the proposed methods are robustness and will not bring
any adverse influence to existing datasets.

Meanwhile, for lager evaluation dataset, we select six
clips in the REDS training clips and extend the REDS test
set (i.e. REDS4) to ten clips, denoted by REDS10. The re-
maining training clips are used as new training dataset (a
total of 260 clips). Based on the setting above, the proposed
Boosted BasicVSR trained on the REDS outperforms Ba-
sicVSR by a margin of 0.15 dB on the REDS10 (30.86dB
v.s. 31.01dB), which demonstrate that the proposed Boosted
BasicVSR can still improve the performance on the REDS
and temporal redundancy also exists in some of the REDS.

To comprehensively evaluate the performance of VSR al-
gorithms on different types of public videos, we also eval-
uate these algorithms on the collected DTVIT dataset. As
shown in the third column of Table 5, the BasicVSR trained
on the REDS performs not well on the collected video
dataset due to the generalization problem. Although the
EDVR-M and EDVR-L achieve favorable performance than
other methods, the proposed Boosted EDVR can further im-
prove the performance by up to 0.91 dB over EDVR-M and
outperform EDVR-L with much lower computational cost.
Moreover, the proposed Boosted BasicVSR can solve the
generalization problem and significantly improve the per-
formance by a large margin of 6.28 dB over BasicVSR.
In addition, the Boosted BasicVSR outperforms Boosted
EDVR by a margin of 0.24 dB with comparable compu-
tational cost, which coincides with the results on the ex-
isting dataset. Overall, both Boosted EDVR and Boosted
BasicVSR are able to achieve remarkable performance on
the collected dataset, which demonstrates that the proposed
plug-and-play methods can improve the performance and ro-
bustness of existing VSR algorithms.

Figure 4: Qualitative comparison on the DTVIT dataset.

To verify the proposed method can not only solve the
generalization problem but also can enhance the effective-
ness of the propagation branches, we also apply the pro-
posed Patch-based Dynamic Propagation branch to the Ba-
sicVSR trained on the Vimeo to see whether the improve-
ment can be obtained. As shown in Table 5, since the
Vimeo contains more types of videos, the BasicVSR trained
on it will not suffer of severe generalization problem and
achieves favorable on the DTVIT dataset. In addition, the
proposed Boosted BasicVSR can still outperform the Ba-
sicVSR without any training process, which demonstrates
that the proposed method can effectively improve the perfor-
mance of existing non-local propagation-based VSR algo-
rithms. Moreover, our method largely boosts the BasicVSR
trained on the REDS and achieves similar performance with
the BasicVSR trained on the Vimeo (33.15 dB v.s. 33.31 dB)
without extra training datasets and time-consuming training
process, which makes our method practical in real-world ap-
plications and can be easily extended to other video restora-
tion tasks.

Qualitative comparisons are shown in Figure 4. The
Boosted EDVR and Boosted BasicVSR recover finer de-
tails and sharper texts in the videos from the DTVIT dataset.
More examples are provided in the supplementary.

6 Conclusion
In this paper, we investigate the temporal redundancy in the
video and note it as an important factor for VSR methods for
three reasons: (1) it will bring unnecessary computational
cost for local propagation-based networks (e.g., EDVR), (2)
it will cause severe generalization problem for the mod-
els trained on the dynamic datasets (as BasicVSR trained
on the REDS performs not well in the DTVIT), and (3) it
will gradually vanish the useful temporal information in the
distant frame and hinder the performance of the non-local
propagation-based networks.

Therefore, we focus on optimizing the existing VSR al-
gorithms by taking the adverse effect of the temporal redun-
dancy into consideration. Through introducing a temporal
redundancy detection and adaptive super-resolution module
to the original EDVR, we propose Boosted EDVR, a sim-
ple yet effective method can improve the performance and
accelerate the inference time simultaneously. We also pro-



pose Boosted BasicVSR by adopting a Patch-based Dy-
namic Propagation (PDP) scheme to solve the generaliza-
tion problem of the original BasicVSR and boost its perfor-
mance without any training process. Extensive evaluations
show that the proposed modifications can largely improve
the performance on the collected dataset without any ad-
verse influence to existing datasets. We believe that these
two plug-and-play methods can also be applied to others
video restoration tasks since the temporal redundancy is uni-
versal in most public videos.
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Overview
In this supplemental material, we provide more details

about the proposed DTVIT dataset in Sec. 1. To further
validate the Observation 3, we conduct an experiment on
a realistic public video and find similarly observation in
Sec. 2. The details of EDVR-1f and EDVR-3f and their
differences with EDVR-5f are provided in Sec. 3. We also
analysis the generalization problem of the pre-trained Ba-
sicVSR on the DTVIT dataset in Sec. 4, the inaccurate es-
timated optical flow cause accumulated errors which leads
to performance decline. To better illustrate the efficiency
of the proposed method, the evaluations of computational
cost and inference time are provided in Sec. 5. Moreover,
to verify the universality of our methods, we also deploy
the proposed plug-and-play methods to the models trained
on the DTVIT-Train (a newly collected training dataset ac-
cording to the categories of the DTVIT dataset) in Sec. 6.
Finally, more qualitative results on the DTVIT dataset and
real-world videos are provided in Sec. 7.

1 More Details about DTVIT
As mentioned in the manuscript, we collect 96 videos with
high-quality and high-resolution as ground-truth and obtain
the corresponding low-resolution inputs with 4× bicubic
downsampling.

The types of the videos in the DTVIT dataset are diverse
and can be grouped into 7 categories: live streaming, TV
program, sports live, movie and television play, surveillance
video, advertisement, and first-person video with irregular
trajectories. The examples of the collected DTVIT dataset
are shown in Fig. 1 and the specific number of each type is
shown in Table 1.

Moreover, we also collect a new training dataset accord-
ing to the categories of the DTVIT dataset, referred as to
DTVIT-Train, to verify the proposed method can not only
solve the generalization problem but also can enhance the
effectiveness of the propagation branches. The DTVIT-Train
contains 100 video clips and each video clip is consist of 100
frames.

*These authors contributed equally.
†Corresponding author.

Figure 1: Example of the collected DTVIT dataset. Best
viewed on a high-resolution display.

Table 1: The number of videos in the DTVIT dataset.
Each video contains 100 frames.

Video Style Number of videos
Live streaming 19

TV program 20
Sports live 18

Movie and television play 9
Surveillance video 10

Advertisement 8
First person video 12

Total 96

2 More verification on Observation 3
In the manuscript, the Observation 3 is validated in a simu-
lated Type A sequence, where the temporal redundancy in a
long sequence will still hinder the propagation of non-local
propagation-based VSR networks. To further validate this,
we apply the BaiscVSR (Chan et al. 2021) on ten patch
sequences from the realistic public video in the DTVIT
dataset. As shown in Fig. 2-(a), all the selected patch se-
quences have a B-A-B type, which means a Type A sequence
is inserted into a Type B sequence and separate the Type B
sequence into two parts. In the meantime, to obtain the per-
formance of VSR algorithms if the temporal information can
be correctly propagated between the two Type B sequences,
we remove the Type A sequence and combine the two Type
B sequences as one (B-B type in Fig. 2-(b)). Then, we ap-
ply the BasicVSR on the B-A-B and B-B patch sequence
and calculate the PSNR values only on the patches in the
Type B sequences. According to the experiment, the Ba-
sicVSR perform much better on the B-B patch sequences
(33.74 dB) than on the B-A-B patch sequences (32.40 dB),
which demonstrates that the patches with temporal redun-
dancy in the video sequence will hinder the propagation and
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Figure 2: Examples of the B-A-B and B-B sequences.

cause generalization problem.

3 More Details of EDVR-1f and EDVR-3f
To obtain more suitable models for patch sequences with
different motion states, We slightly modify the EDVR-
5f (Wang et al. 2019) to acquire the EDVR-1f and EDVR-
3f models for single-frame and three frames inputs, respec-
tively. As shown in Fig. 3, unlike the original EDVR-5f,
EDVR-1f and EDVR-3f only apply the PCD alignment mod-
ule and temporal attention in the TSA module for 1 and 3
times, respectively. Then we replicate the feature in chan-
nel dimension to meet the requirement of the subsequent fu-
sion convolution layer in TSA module. Specifically, the fea-
tures in EDVR-1f and EDVR-3f, (C0) and (C−1, C0, C1),
will be replicated to the same shape as the correspond-
ing features in EDVR-5f, i.e., (C0, C0, C0, C0, C0) and
(C−1, C−1, C0, C1, C1), before feeding to the subsequent
fusion convolution layer.

4 Analysis on the Generalization Problem of
BasicVSR

To verify the inferior performance of BasicVSR on DTVIT
dataset is caused by the error accumulation of the estimated
optical flow (Ranjan and Black 2017), we present the inter-
mediate optical flow during the inference time.

As shown in Fig. 4, where we visualize the estimated opti-
cal flow between neighboring frames, unexpected offsets oc-
curs in stationary background. It is also noted that, no mat-
ter trained on the REDS datasets or the datasets of similar
distribution (e.g., Vimoe and DTVIT-Train datasets), all the
BasicVSR models suffer from the inaccurate flows due to
regarding these changed pixels due to noisy and information
loss during encoding and decoding as the useful temporal
information. Then, the inaccurate flows will be used to per-
form back-warping on the hidden states and the errors will
be pass to next frame via the propagation scheme. There-
fore, the error of the optical flow will be accumulated pro-
gressively and cause unsatisfactory super-resolving results.

5 Efficiency Evaluations
To verify the efficiency of the proposed method, we eval-
uate the inference time of the proposed method on a TI-
TAN RTX GPU. As shown in Fig. 5, due to more efficient
and effective models, EDVR-1f and EDVR-3f, are chosen
to super-resolve the patch sequence with stationary objects

Table 2: The performance of BasicVSR and Boosted Ba-
sicVSR trained on the DTVIT-Train dataset.

Method Average PSNR on DTVIT
BasicVSR 33.36 dB
Boosted BasicVSR 33.73 dB

and background, the proposed Boosted EDVR can achieve
better results with less inference time than EDVR. Although
Boosted BasicVSR takes little more time than BasicVSR
due to decomposed overlapping patches, it still faster than
the the proposed Boosted EDVR and EDVR.

6 More Quantitative Results
All the models in the manuscripts are trained on the
REDS dataset (Nah et al. 2019), which is a first-person
video dataset with consistent movement. To verify the pro-
posed method can not only solve the generalization prob-
lem but also can enhance the effectiveness of the propa-
gation branches, we apply the proposed Patch-based Dy-
namic Propagation (PDP) branch to the BasicVSR trained
on the DTVIT-Train to see whether the improvement can
be obtained. As shown in Table 2, the BasicVSR trained on
the DTVIT-Train will not suffer of generalization problem
and achieves favorable on the DTVIT dataset. In the mean-
while, the proposed Boosted BasicVSR can still outperform
the BasicVSR without any training process, which demon-
strates that the PDP can effectively improve the performance
of existing non-local propagation-based VSR algorithms. It
is noted that 0.37 dB performance gain based on a SotA
method is remarkable for a plug-and-play method without
taking more inference time.

7 More Qualitative Results
In this section, we provide additional qualitative results to
clearly show the effectiveness of the proposed method. From
Fig. 6 to Fig. 12, we select one scene from each type of the
DTVIT dataset and show the super-resolving results of dif-
ferent methods. Besides, we also collect some real-world
videos with low-quality and low-resolution to evaluate the
performance of the state-of-the-art VSR algorithms on re-
alistic scenes (Fig. 13). For the figures from the DTVIT
dataset, we present the results from bicubic upsampling,
EDVR and BasicVSR trained on the REDS dataset, the pro-
posed Boosted BasicVSR and Boosted EDVR. For the fig-



Figure 3: Details of the proposed EDVR-1f and EDVR-3f.

ures from the real-world videos, we only present the results
from EDVR, BasicVSR, Boosted BasicVSR, and Boosted
EDVR.

All the qualitative comparisons demonstrate that the pro-
posed Boosted BasicVSR and Boosted EDVR are able to

reconstruct images with more details by effectively exploit-
ing the temporal information.



Figure 4: Visualization of the estimated optical flow in BasicVSR.

Figure 5: Speed and performance comparison. All the models are trained on the REDS (Nah et al. 2019) dataset and tested
on the DTVIT dataset.
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Figure 6: Qualitative results of the live streaming scene on the DTVIT dataset. Best viewed on a high-resolution display.

Figure 7: Qualitative results of the TV program scene on the DTVIT dataset. Best viewed on a high-resolution display.

Figure 8: Qualitative results of the sports live scene on the DTVIT dataset. Best viewed on a high-resolution display.
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Figure 9: Qualitative results of the movie and television play scene on the DTVIT dataset. Best viewed on a high-resolution
display.

Figure 10: Qualitative results of the surveillance video scene on the DTVIT dataset. Best viewed on a high-resolution
display.

Figure 11: Qualitative results of the advertisement scene on the DTVIT dataset. Best viewed on a high-resolution display.



Figure 12: Qualitative results of the first-person video scene on the DTVIT dataset. Best viewed on a high-resolution
display.



Figure 13: Qualitative comparison on the real-world videos. Best viewed on a high-resolution display.


