
Monitoring Algorithmic Fairness
under Partial Observations

Thomas A. Henzinger, Konstantin Kueffner, and Kaushik Mallik

Institute of Science and Technology Austria (ISTA)

Abstract. As AI and machine-learned software are used increasingly for
making decisions that affect humans, it is imperative that they remain
fair and unbiased in their decisions. To complement design-time bias mit-
igation measures, runtime verification techniques have been introduced
recently to monitor the algorithmic fairness of deployed systems. Previ-
ous monitoring techniques assume full observability of the states of the
(unknown) monitored system. Moreover, they can monitor only fairness
properties that are specified as arithmetic expressions over the proba-
bilities of different events. In this work, we extend fairness monitoring
to systems modeled as partially observed Markov chains (POMC), and
to specifications containing arithmetic expressions over the expected val-
ues of numerical functions on event sequences. The only assumptions we
make are that the underlying POMC is aperiodic and starts in the sta-
tionary distribution, with a bound on its mixing time being known. These
assumptions enable us to estimate a given property for the entire distri-
bution of possible executions of the monitored POMC, by observing only
a single execution. Our monitors observe a long run of the system and,
after each new observation, output updated PAC-estimates of how fair or
biased the system is. The monitors are computationally lightweight and,
using a prototype implementation, we demonstrate their effectiveness on
several real-world examples.

1 Introduction

Runtime verification complements traditional static verification techniques, by
offering lightweight approaches for verifying properties of systems from a sin-
gle long observed execution trace [9]. Recently, runtime verification was used to
monitor biases in machine-learned decision-making softwares [3,32,31]. Decision-
making softwares are being increasingly used for making critical decisions affect-
ing humans; example areas include judiciary [14,19], policing [21,46], and bank-
ing [45]. It is important that these softwares are unbiased towards the protected
attributes of humans, like gender and ethnicity. However, they were shown to
be biased on many occasions in the past [19,43,50,54,55]. While many offline ap-
proaches were proposed for mitigating such biases [12,61,13,63,35,40], runtime
verification introduces a new complementary tool to oversee algorithmic fairness
of deployed decision-making systems [3,32,31]. In this work, we extend runtime
verification to monitor algorithmic fairness for a broader class of system models
and a more expressive specification language.

ar
X

iv
:2

30
8.

00
34

1v
1

 [
cs

.A
I]

 1
 A

ug
 2

02
3

Prior works on monitoring algorithmic fairness assumed that the given system
is modeled as a Markov chain with unknown transition probabilities but with
fully observable states [3,32]. A sequence of states visited by the Markov chain
represents a (randomized) sequence of events generated from the interaction of
the decision-making agent and its environment. The goal is to design a monitor
that will observe one such long sequence of states, and, after observing every
new state in the sequence, will compute an updated PAC-estimate of how fair
or biased the system is.

In the prior works, the PAC guarantee on the output hinges on the full
observability and the Markovian structure of the system [3,32,31]. While this
setup is foundational, it is also very basic, and is not fulfilled by many real-
world examples. Consider a lending scenario where at every step a bank (the
decision-maker) receives the features (e.g., the age, gender, and ethnicity) of a
loan applicant, and decides whether to grant or reject the loan. To model this
system using the existing setup, we would need to assume that the monitor
can observe the full state of the system which includes all the features of every
applicant. In reality, the monitor will often be a third-party system, having only
partial view of the system’s states.

We address the problem of designing monitors when the systems are mod-
eled using partially observed Markov chains (POMC) with unknown transition
probabilities. The difficulty comes from the fact that a random observation se-
quence that is visible to the monitor may not follow a Markovian pattern, even
though the underlying state sequence is Markovian. We overcome this by making
the assumption that the POMC starts in the stationary distribution, which in
turn guarantees a certain uniformity in how the observations follow each other.
We argue that the stationarity assumption is fulfilled whenever the system has
been running for a long time, which is suitable for long term monitoring of fair-
ness properties. With the help of a few additional standard assumptions on the
POMC, like aperiodicity and the knowledge of a bound on the mixing time, we
can compute PAC estimates on the degree of algorithmic fairness over the dis-
tribution of all runs of the system from a single monitored observation sequence.

Besides the new system model, we also introduce a richer specification language—
called bounded specification expressions (BSE). BSE-s can express many com-
mon algorithmic fairness properties from the literature, such as demographic par-
ity [20], equal opportunity [30], and disparate impact [24]. Furthermore, BSE-s
can express new fairness properties which were not expressible using the previous
formalism [3,32]. In particular, BSE-s can express quantitative fairness proper-
ties, including fair distribution of expected credit scores and fair distribution of
expected wages across different demographic groups of the population; details
can be found, respectively, in Ex. 5 and 6 in Sec. 3.2.

The building block of a BSE is an atomic function, which is a function that
assigns bounded numerical values to observation sequences of a particular length.
Using an atomic function, we can express weighted star-free regular expressions
(every word satisfying the given regular expression has a numerical weight), aver-
age response time-like properties, etc. A BSE can contain many different atomic

functions combined together through a restricted set of arithmetic, relational,
and logical operations. We define two fragments of BSE-s: The first one is called
QuantBSE, which contains only arithmetic expressions over atomic functions,
and whose semantic value is the expected value of the given expression over the
distribution of runs of the POMC. The second one is called QualBSE, which
turns the QuantBSE expressions into boolean expressions through relational
(e.g., whether a QuantBSE expression is greater than zero) and logical opera-
tors (e.g., conjunction of two relational sentences), and whose semantic value is
the expected truth or falsehood of the given expression over the distribution of
runs of the POMC.

For any given BSE, we show how to construct a monitor that observes a
single long observation sequence generated by the given POMC with unknown
transition probabilities, and after each observation outputs an updated numerical
estimate of the actual semantic value of the BSE for the observed system. The
heart of our approach is a PAC estimation algorithm for the semantic values of
the atomic functions. The main difficulty stems from the statistical dependence
between any two consecutive observations, which is a side-effect of the partial
observability of the states of the Markov chain, and prevents us from using
the common PAC bounds that were used in the prior works that assumed full
observability of the POMC states [3,32]. We show how the problem can be
cast as the statistical estimation problem of estimating the expected value of a
function over the states of a POMC which satisfies a certain bounded difference
property. This estimation problem can be solved using a version of McDiarmid’s
concentration inequality [52], for which we need the additional assumptions that
the given POMC is aperiodic and that a bound on its mixing time is known. We
use McDiarmid’s inequality to find the PAC estimate of every individual atomic
function of the given BSE. The individual PAC estimates can then be combined
using known methods to obtain the overall PAC estimate of the given BSE [3].

Our monitors are computationally lightweight, and produce reasonably tight
PAC bounds of the monitored properties. Using a prototype implementation,
we present the effectiveness of our monitors on two different examples. On a
real-world example, we showed how our monitors can check if a bank has been
fair in giving loans to individuals from two different demographic groups in the
population, and on an academic example, we showed how our monitors’ outputs
improve as the known bound on the mixing time gets tighter.

The proofs of the technical claims can be found in the appendices.

1.1 Related Work

There are many works in AI and machine-learning which address how to elim-
inate or minimize decision biases in learned models through improved design
principles [48,20,30,42,39,56,12,61,13,63,35,40]. In formal methods, too, there are
some works which statically verify absence of biases of learned models [2,11,59,28,49,37,7,29].
All of these works are static interventions and rely on the availability of the sys-
tem model, which may not be always true.

Runtime verification of algorithmic fairness, through continuous monitoring
of decision events, is a relatively new area pioneered by the work of Albarghouthi
et al. [3]. We further advanced their idea in our other works which appeared re-
cently [32,31]. In those works, on one hand, we generalized the class of supported
system models to Markov chains and presented the new Bayesian statistical view
of the problem [32]. On the other hand, we relaxed the time-invariance assump-
tion on the system [31]. In this current paper, we limit ourselves to time-invariant
systems but extend the system models to partially observed Markov chains and
consider the broader class of BSE properties, which enables us to additionally
express properties whose values depend on observation sequences.

Traditional runtime verification techniques support mainly temporal proper-
ties and employ finite automata-based monitors [57,38,23,47,18,8,5]. In contrast,
runtime verification of algorithmic fairness requires checking statistical proper-
ties, which is beyond the limit of what automata-based monitors can accomplish.
Although there are some works on quantitative runtime verification using richer
types of monitors (with counters/registers like us) [27,33,51,34], the considered
specifications usually do not extend to statistical properties such as algorithmic
fairness.

Among the few works on monitoring statistical properties of systems, a ma-
jority of them only provides asymptotic correctness guarantees [25,60], whereas
we provide anytime guarantees. On the other hand, works on monitoring sta-
tistical properties with finite-sample (nonasymptotic) guarantees are rare and
are restricted to simple properties, such as probabilities of occurrences of certain
events [10] and properties specified using certain fragments of LTL [53]. Mon-
itoring POMCs (the same modeling formalism as us) were studied before by
Stoller et al. [58], though the setting was a bit different from ours. Firstly, they
only consider LTL properties, and, secondly, they assume the system model to
be known by the monitor. This way the task of the monitor effectively reduces
to a state estimation problem from a given observation sequence.

Technique-wise, there are some similarities between our work and the works
on statistical model-checking [4,62,15,17,1] in that both compute PAC-guarantees
on satisfaction or violation of a given specification. However, to the best of our
knowledge, the existing statistical model-checking approaches do not consider
algorithmic fairness properties.

2 Preliminaries

2.1 Notation

We write R, R+, N, and N+ to denote the sets of real numbers, positive real
numbers, natural numbers (including zero), and positive integers, respectively.

Let Σ be a countable alphabet. We write Σ∗ and Σω to denote, respectively,
the set of every finite and infinite word over Σ. Moreover, Σ∞ denotes the set
of finite and infinite words, i.e., Σ∞ := Σ∗ ∪ Σω. We use the convention that
symbols with arrow on top will denote words, whereas symbols without arrow

will denote alphabet elements. Let #„s = s1s2 . . . be a word. We write #„s i to
denote the i-th symbol si, and write #„s i..j to denote the subword si . . . sj , for
i < j. We use the convention that the indices of a word begin at 1, so that the
length of a word matches the index of the last symbol.

Let #„s ∈ Σ∗ and any
#„
t ∈ Σ∞ be two words. We denote the concatenation of

#„s and
#„
t as #„s

#„
t . We generalize this to sets of words: For S ⊆ Σ∗ and T ⊆ Σ∞,

we define the concatenation ST := { #„s
#„
t | #„s ∈ S,

#„
t ∈ T}. We say #„s is a prefix

of #„r , written #„s ≺ #„r , if there exists a word
#„
t ∈ Σ∞ such that #„s

#„
t = #„r .

Suppose T ⊆ R is a subset of real numbers, v ∈ Tn is a vector of length n over
T , andM ∈ Tn×m is a matrix of dimension n×m over T ; herem,n can be infinity.
We use vi to denote the i-th element of v, and Mij to denote the element at the
intersection of the i-th row and the j-th column ofM . A probability distribution
over a set S is a vector v ∈ [0, 1]|S|, such that

∑
i∈[1;|S|] vi = 1.

2.2 Randomized Event Generators: Partially Observed Markov
Chains

We use partially observed Markov chains (POMC) as sequential randomized
generators of events. A POMC is a tuple (Q,M, λ,Σ, ℓ), where Q = N+ is a
countable set of states,M is a stochastic matrix of dimension |Q|×|Q|, called the
transition probability matrix, λ is a probability distribution over Q representing
the initial state distribution, Σ is a countable set of observations, and ℓ : Q→ Σ
is a function mapping every state to an observation. All POMCs in this paper
are time-homogeneous, i.e., their transition probabilities do not vary over time.

Semantically, every POMC M induces a probability measure PM(·) over
the generated state and observation sequences. For every finite state sequence
#„q = q1q2 . . . qt ∈ Q∗, the probability that #„q is generated by M is given by
PM(#„q) = λq1 ·

∏t−1
i=1Mqiqi+1

. Every finite state sequence #„q ∈ Q∗ for which
PM(#„q) > 0 is called a finite internal path of M; we omit M if it is clear from
the context. The set of every internal path of length n is denoted as Qn(M),
and the set of every finite internal path is denoted as Q∗(M).

Every finite internal path #„q can be extended to a set of infinite internal
paths, which is called the cylinder set induced by #„q , and is defined as Cyl(#„q) :=
{ #„r ∈ Qω | #„q ≺ #„r }. The probability measure PM(·) on finite internal paths
induces a pre-measure on the respective cylinder sets, which can be extended to
a unique measure on the infinite internal paths by means of the Carathéodory’s
extension theorem [6, pp. 757]. The probability measure on the set of infinite
internal paths is also denoted using PM(·).

An external observer can only observe the observable part of an internal
path of a POMC. Given an internal path #„q = q1q2 . . . ∈ Q∞, we write ℓ(#„q) to
denote the observation sequence ℓ(q1)ℓ(q2) . . . ∈ Σ∞. For a set of internal paths
S ⊆ Q∞, we write ℓ(S) to denote the respective set of observation sequences
{ #„w ∈ Σ∞ | ∃ #„q . #„w = ℓ(#„q)}. An observation sequence #„w ∈ Σ∞ is called an
observed path (of M) if there exists an internal path #„q for which ℓ(#„q) = #„w.
As before, we write Σn(M) for the set of every observed path of length n, and
Σ∗(M) for the set of every finite observed path.

We also use the inverse operator of ℓ to map every observed path #„w to the
set of possible internal paths: ℓ−1(#„w) := { #„q ∈ Q∞ | ℓ(#„q) = #„w}. Furthermore,
we extend ℓ−1(·) to operate over sets of observation sequences in the following
way: For any given S ⊆ Σ∞, define ℓ−1(S) := { #„q | ∃ #„w ∈ S . ℓ(#„q) = #„w}.

We abuse the notation and use PM(·) to denote the induced probability
measure on the set of observed paths, defined in the following way. Given every
set of finite observed paths S ⊆ Σ∗, we define PM(S) :=

∑
#„q ∈ℓ−1(S) PM(#„q).

When the paths in a given set are infinite, the sum is replaced by integral. We
write

„

W ∼ M to denote the random variable that represents the distribution
over finite sample observed paths generated by the POMC M.

Example 1. As a running example, we introduce a POMC that models the se-
quential interaction between a bank and loan applicants. Suppose there is a pop-
ulation of loan applicants, where each applicant has a credit score between 1 and
4, and belongs to either an advantaged group A or a disadvantaged group B. At
every step, the bank receives loan application from one applicant, and, based on
some unknown (but non-time-varying) criteria, decides whether to grant loan or
reject the application. We want to monitor, for example, the difference between
loan acceptance probabilities for people belonging to the two groups.

The underlying POMC M that models the sequence of loan application
events is shown in Fig. 1. A possible internal path is S(A, 1)NS(A, 4)Y SB(A, 3)N . . .,
whose corresponding observed path is SANSAY SBN In our experiments,
we use a more realistic model of the POMC with way more richer set of features
for the individuals.

S

(A, 4)(A, 3)(A, 2)(A, 1) (B, 1) (B, 2) (B, 3) (B, 4)

Y N

A B

S

Y N

Fig. 1: The POMC modeling the sequential interaction between the bank and
the loan applicants. The states S, Y , and N respectively denote the start state,
the event that the loan was granted (“Y ” stands for “Yes”), and the event
that the loan was rejected (“N” stands for “No”). Every middle state (X, i),
for X ∈ {A,B} and i ∈ {1, 2, 3, 4}, represents the group (A or B) and the
credit score i of the current applicant. The states S, Y,N are fully observable,
i.e., their observation symbols coincide with their state symbols. The middle
states are partially observable, with every (A, i) being assigned the observation
A and every (B, i) being assigned the observation B. The states with the same
observation belong to the same shaded box.

2.3 Register Monitors

Our register monitors are adapted from the polynomial monitors of Ferrère et
al. [26], and were also used in our previous work (in a more general randomized
form) [32]. Let R be a finite set of integer variables called registers. A function
v : R→ N assigning concrete value to every register in R is called a valuation of
R. Let NR denote the set of all valuations of R. Registers can be read and written
according to relations in the signature S = ⟨0, 1,+,−,×,÷,≤⟩. We consider two
basic operations on registers:
– A test is a conjunction of atomic formulas over S and their negation;
– An update is a mapping from variables to terms over S.

We use Φ(R) and Γ (R) to respectively denote the set of tests and updates over
R. Counters are special registers with a restricted signature S = ⟨0, 1,+,−,≤⟩.

Definition 1 (Register monitor). A register monitor is a tuple (Σ,Λ,R, vin, f, T)
where Σ is a finite input alphabet, Λ is an output alphabet, R is a finite set of
registers, vin ∈ NR is the initial valuation of the registers, f : NR → Λ is an
output function, and T : Σ × Φ(R) → Γ (R) is the transition function such that
for every σ ∈ Σ and for every valuation v ∈ NR, there exists a unique ϕ ∈ Φ(R)
with v |= ϕ and T (σ, ϕ) ∈ Γ (R).

We refer to register monitors simply as monitors, and we fix the output
alphabet Γ as the set of every real interval.

A state of a monitor A is a valuation of its registers v ∈ NR; the initial
valuation vin is the initial state. The monitor A transitions from state v to
another state v′ on input σ ∈ Σ if there exists ϕ such that v |= ϕ, there exists
an update γ = T (σ, ϕ), and if v′ maps every register x to v′(x) = v(γ(x)). The

transition from v to v′ on input σ is written as v
σ−→ v′. A run of A on a word

w1 . . . wt ∈ Σ∗ is a sequence of transitions v1 = vin
w1−−→ v2

w2−−→ . . .
wt−→ vt+1. The

semantics of the monitor is the function JAK : Σ∗ → Λ that maps every finite
input word to the last output of the monitor on the respective run. For instance,
the semantics of A on the word #„w is JAK(#„w) = f(vt+1). An illustrative example
of register monitors can be found in our earlier work [32, Sec. 2.2].

3 Monitoring Quantitative Algorithmic Fairness
Properties

In our prior work on monitoring algorithmic fairness for fully observable Markov
chains [32], we formalized (quantitative) algorithmic fairness properties using the
so-called Probabilistic Specification Expressions (PSE). A PSE φ is an arithmetic
expression over the variables of the form vij , for i, j ∈ Q for a finite set Q. The
semantics of φ is interpreted statically over a given Markov chain M with state
space Q, by replacing every vij with the transition probability from the state i
to the state j in M . The algorithmic question we considered is that given a PSE
φ, how to construct a monitor that will observe one long path of an unknown

Markov chain, and after each observation will output a PAC estimate of the
value of φ with a pre-specified confidence level.

An exact representation of the above problem formulation is not obvious
for POMCs. In particular, while it is reasonable to generalize the semantics of
PSEs to be over the probabilities between observations instead of probabilities
between states, it is unclear how these probabilities will be defined. In the follow-
ing, we use simple examples to illustrate several cruxes of formalizing algorithmic
fairness on POMCs, and motivate the use of the assumptions of stationary dis-
tribution, irreducibility, and positive recurrence (formally stated in Assump. 1)
to mitigate the difficulties. These assumptions will later be used to formalize the
algorithmic fairness properties in Sec. 3.2.

In the following, we will write π to denote the stationary distribution of
Markov chains with transition matrix M , i.e., π =Mπ.

3.1 Role of the Stationary Distribution

First, we demonstrate in the following example that POMCs made up of unfair
sub-components may have overall fair behavior in the stationary distribution,
which does not happen for fully observable Markov chains.

Example 2. Suppose there are two coins A and B, where A comes up with heads
with probability 0.9 and B comes up with tails with probability 0.9. We observe
a sequence of coin tosses (i.e., the observations are heads and tails), without
knowing which of the two coins (the state) was tossed. If the choice of the coin
at each step is made uniformly at random, then, intuitively, the system will
produce fair outcomes in the long run, with equal proportions of heads and tails
being observed in expectation. Thus, although each coin was unfair, we can still
observe overall fair outcome, provided the fraction of times each coin was chosen
in the stationary distribution balances out the unfairness in the coins themselves.

To make the above situation more concrete, imagine that the underlying
POMC has two states a, b (e.g., a, b represent the states when A,B are selected
for tossing, respectively) with the same observation (which coin is selected is
unknown to the observer), where the measures of the given fairness condition
(e.g., the biases of the coins A,B) are given by fa, fb. We argue that, intuitively,
the overall fairness of the POMC is given by πafa+πbfb. This type of analysis is
unique to POMCs, whereas for fully observable Markov chains, computation of
fairness is simpler and can be done without involving the stationary distribution.

In the next example, we demonstrate some challenges of monitoring fairness
when we express fairness by weighing in the stationary distribution as above.

Example 3. Consider the setting of Ex. 2, and suppose now only the initial
selection of the coin happens uniformly at random but subsequently the same
coin is used forever. If we consider the underlying POMC, both πa, πb will be 0.5,
because the initial selection of the coin happens uniformly at random. However,
the monitor will observe the toss outcomes of only one of the two coins on a
given trace. It is unclear how the monitor can extrapolate its estimate to the
overall fairness property πafa + πbfb in this case.

To deal with the situations described in Ex. 2 and Ex. 3, we will make the
following assumption.

Assumption 1 We assume that the POMCs are irreducible, positively recur-
rent, and are initialized in their stationary distributions.

The irreducibility and positive recurrence guarantees existence of the station-
ary distribution. Assump. 1 ensures that, firstly, we will see every state infinitely
many times (ruling out the above corner-case), and, secondly, the proportion
of times the POMC will spend in all the states will be the same (given by the
stationary distribution) all the time. While Assump. 1 makes it easier to for-
mulate and analyze the algorithmic fairness properties over POMCs, monitoring
these properties over POMCs still remains a challenging problem due to the
non-Markovian nature of the observed path.

3.2 Bounded Specification Expressions

We introduce bounded specification expressions (BSE) to formalize the fairness
properties that we want to monitor. A BSE assigns values to finite word patterns
of a given alphabet. The main components of a BSE are atomic functions, where
an atomic function fn assigns bounded real values to observation sequences of
length n, for a given n ∈ N+. An atomic function fn can express quantitative
star-free regular expressions, assigning real values to words of length n.

Following are some examples. Let Σ = {r, g} be an observation alphabet,
where r stands for “request” and g stands for “grant.” A boolean atomic function
f2, with f2(rr) = 0 and f2(

#„w) = 1 for every #„w ∈ Σ2 \ {rr}, can express the
property that two requests should not appear consecutively. An integer-valued
atomic function f10, with f10(rr

ig #„w) = i when i ∈ [0; 8] and #„w ∈ Σ8−i, and
with f10(

#„z) = 8 when #„z ∈ Σ10 \ rrigΣ8−i, assigns to any sub-sequence the
total waiting time between a request and the subsequent grant, while saturating
the waiting time to 8 when it is above 8. The specified word-length n for any
atomic function fn is called the arity of fn. Let P be the set of all atomic
functions over a given observation alphabet.

A BSE may also contain arithmetic and/or logical connectives and relational
operators to express complex value-based properties of an underlying probabilis-
tic generator, like the POMCs. We consider two fragments of BSE-s, expressing
qualitative and quantitative properties, and called, respectively, QualBSE and
QuantBSE in short. The syntaxes of the two types of BSE-s are given as:

(QuantBSE) φ ::= κ ∈ R | f ∈ P | φ+ φ | φ · φ | 1÷ φ | (φ), (1a)

(QualBSE) ψ ::= true | φ ≥ 0 | ¬ψ | ψ ∧ ψ. (1b)

The semantics of a QuantBSE φ over the alphabet Σ is interpreted over
POMCs satisfying Assump. 1 and with observations Σ. When φ is an atomic
function f : Σn → [a, b] for some n ∈ N+, a, b ∈ R, then, for a given POMC M,

the semantics of φ is defined as follows. For every time t ∈ N+,

φ(M) = f(M) :=

∫
Σω

f(#„wt:t+n−1)dPM(#„w). (2)

The definition of f(M) is well-defined, because f(M) will be the same for every t,
since the POMC will remain in the stationary distribution forever (by Assump. 1
and by the property of stationary distributions). Intuitively, the semantics f(M)
represents the expected value of the function f on any sub-word of length n on
any observed path of the POMC, when it is known that the POMC is in the
stationary distribution (Assump. 1).

The arithmetic operators in QuantBSE-s have the usual semantics (“+” for
addition, “−” for difference, “·” for multiplication, and “÷” for division).

On the other hand, the semantics of a QualBSE ψ is boolean, which in-
ductively uses the semantics of the constituent φ expressions. For a QualBSE
ψ = φ ≥ 0, the semantics of ψ is given by:

ψ(M) :=

{
true if φ(M) ≥ 0,

false otherwise.

The semantics of the boolean operators in ψ is the usual semantics of boolean
operators in propositional logic. The following can be added as syntactic sugar:
“φ ≥ c” for a constant c denotes “φ′ ≥ 0” with φ′ := φ − c, “φ ≤ c” denotes
“−φ ≥ −c,” “φ = c” denotes “(φ ≥ c) ∧ (φ ≤ c),” “φ > c” denotes “¬(φ ≤ c),”
“φ < c” denotes “¬(φ ≥ c),” and “ψ ∨ ψ” denotes “¬(¬ψ ∧ ¬ψ).”

Fragment of BSE: Probabilistic Specification Expressions (PSEs): In
our prior work [32], we introduced PSEs to model algorithmic fairness prop-
erties of Markov chains with fully observable state space. PSEs are arithmetic
expressions over atomic variables of the form vij , where i, j are the states of the
given Markov chain, and whose semantic value equals the transition probability
from i to j. The semantics of a PSE is then the valuation of the expression
obtained by plugging in the respective transition probabilities. We can express
PSEs using QuantBSE-s as below. For every variable vij appearing in a given
PSE, we use the atomic function f that assigns to every finite word #„w ∈ Σ∗

the ratio of the number of (i, j) transitions to the number of occurrences of i in
#„w. We will denote the function f as P (j | i) in this case, and, in general, i, j
can be observation labels for the case of QuantBSE-s. It is straightforward to
show that semantically the two expressions will be the same. On the other hand,
QuantBSE-s are strictly more expressive than PSEs. For instance, unlike PSEs,
QuantBSE-s can specify probability of transitioning from one observation label
to another, the average number of times a given state is visited on any finite
path of a Markov chain, etc.

Fragment of BSE: Probabilities of Sequences: We consider a useful frag-
ment that expresses the probability that a sequence from a given set S ⊆ Σ∗ of
finite observation sequences will be observed at any point in time on any observed

path. We assume that the length of every sequence in S is uniformly bounded
by some integer n. Let S ⊆ Σn denote the set of extensions of sequences in S up
to length n, i.e., S := { #„w ∈ Σn | ∃ #„u ∈ S . #„u ≺ #„w}. Then the desired property
will be expressed simply using an atomic function with f : Σn → {0, 1} being
the indicator function of the set S, i.e., f(#„w) = 1 iff #„w ∈ S. It is straightforward
to show that, for a given POMC M, the semantics f(M) expresses the desired
property. For a set of finite words S ⊆ Σ∗, we introduce the shorthand notation
P (S) to denote the probability of seeing an observation from the set S at any
given point in time. Furthermore, for a pair of sets of finite words S, T ⊆ Σ∗, we
use the shorthand notation P (S | T) to denote P (TS)/P (T), which represents the
conditional probability of seeing a word in S after we have seen a word in T .

Example 4 (Group fairness.). Consider the setting in Ex. 1. We show how we
can represent various group fairness properties using QuantBSE-s. Demographic
parity [20] quantifies bias as the difference between the probabilities of individu-
als from the two demographic groups getting the loan, which can be expressed as
P (Y | A)−P (Y | B). Disparate impact [24] quantifies bias as the ratio between
the probabilities of getting the loan across the two demographic groups, which
can be expressed as P (Y | A)÷ P (Y | B).

In prior works [3,32], group fairness properties could be expressed on strictly
less richer class of fully observed Markov chain models, where the features of each
individual were required to contain only their group information. An extension
to the model of Ex. 1 is not straightforward as the confidence interval used in
these works would not be applicable.

Example 5 (Social fairness.). Consider the setting in Ex. 1, except that now
the credit score of each individual will be observable along with their group
memberships, i.e., each observation is a pair of the form (X, i) with X ∈ {A,B}
and i ∈ {1, 2, 3, 4}. There may be other non-sensitive features, such as age,
which may be hidden. We use the social fairness property [31] quantified as the
difference between the expected credit scores of the groups A and B. To express
this property, we use the unary atomic functions fX1 : Σ → N, for X ∈ {A,B},
such that fX1 : (Y, i) 7→ i if Y = X and is 0 otherwise. The semantics of fX1 is the
expected credit score of group X scaled by the probability of seeing an individual

from group X. Then social fairness is given by the QuantBSE φ =
fA
1

P (A) −
fB
1

P (B) .

Example 6 (Quantitative group fairness.). Consider a sequential hiring scenario
where at each step the salary and a sensitive feature (like gender) of a new recruit
are observed. We denote the pair of observations as (X, i), where X ∈ {A,B}
represents the group information based on the sensitive feature and i represents
the salary. We can express the disparity in expected salary of the two groups
in a similar manner as in Ex. 5. Define the unary functions fX1 : Σ → N, for
X ∈ {A,B}, such that fX1 : (Y, i) 7→ i if Y = X and is 0 otherwise. The semantics
of fX1 is the expected salary of group X scaled by the probability of seeing
an individual from group X. Then the group fairness property is given by the

QuantBSE φ =
fA
1

P (A) −
fB
1

P (B) .

3.3 Problem Statement

Informally, our goal is to build monitors that will observe randomly generated
observed paths of increasing length from a given unknown POMC, and, after
each observation, will generate an updated estimate of how fair or biased the
system was until the current time. Since the monitor’s estimate is based on
statistics collected from a finite path, the output may be incorrect with some
probability. That is, the source of randomness is from the fact that the prefix is
a finite sample of the fixed but unknown POMC.

For a given δ ∈ (0, 1), and a given BSE φ, we define a problem instance as
the tuple (φ, δ).

Problem 1 (Monitoring QuantBSE-s) Suppose (φ, δ) is a problem instance
where φ is a QuantBSE. Design a monitor A, with output alphabet {[l, u] | l, u ∈
R . l < u}, such that for every POMC M satisfying Assump. 1, we have:

P # „
W∼M

(
φ(M) ∈ JAK(

„

W)
)
≥ 1− δ. (3)

The estimate [l, u] = JAK(#„w) is called the (1 − δ) · 100% confidence interval
for φ(M). The radius, given by ε = 0.5 · (u − l), is called the estimation error,
the quantity δ is called the failure probability, and the quantity 1 − δ is called
the confidence. Intuitively, the monitor outputs the estimated confidence interval
that contains the range of values within which the true semantic value of φ falls
with (1− δ) · 100% probability. The estimate gets more precise as the error gets
smaller, and the confidence gets higher. We will prefer the monitor with the
maximum possible precision, i.e., having the least estimation error for a given δ.

Problem 2 (Monitoring QualBSE-s) Suppose (φ, δ) is a problem instance
where φ is a QualBSE. Design a monitor A, with output alphabet {true, false},
such that for every POMC M satisfying Assump. 1, we have:

P # „
W∼M

(
ψ(M) | JAK(

„

W) = true
)
≥ 1− δ, (4)

P # „
W∼M

(
¬ψ(M) | JAK(

„

W) = false
)
≥ 1− δ. (5)

Unlike Prob. 1, the monitors addressing Prob. 2 do not output an interval
but output a boolean verdict. Intuitively, the output of the monitor for Prob. 2
is either true or false, and it is required that the semantic value of the property
ψ is, respectively, true or false with (1− δ) · 100% probability.

4 Construction of the Monitor

Our overall approach in this work is similar to the prior works [3,32,31]: We
first compute a point estimate of the given BSE from the finite observation
sequence of the POMC, and then compute an interval estimate through known
concentration inequalities. However, the same concentration inequalities as the

prior works cannot be applied, because they required two successive observed
events be independent, which is not true for POMCs. For instance, in Ex. 3,
if we start the sequence of tosses by first tossing coin A, then we know that
the subsequent tosses are going to be done using A only, thereby implying that
the outcomes of the future tosses will be statistically dependent on the initial
random process that chooses between the two coins at the first step.

We present a novel theory of monitors for BSE-s on POMCs satisfying As-
sump. 1, using McDiarmid-style concentration inequalities for hidden Markov
chains. In Sec. 4.1 and 4.2, we first present, respectively, the point estimator and
the monitor for an individual atom. In Sec. 4.3, we build the overall monitor
by combining the interval estimates of the individual atoms through interval
arithmetic and union bound.

4.1 A Point Estimator for the Atoms

Consider a BSE atom f . We present a point estimator for f , which computes
an estimated value of f(M) from a finite observed path #„w ∈ Σt, of an arbitrary

length t, of the unknown POMC M. The point estimator f̂(·) is given as:

f̂(#„w) :=
1

t− n+ 1

t−n+1∑
i=1

f(#„wi..i+n−1). (6)

In the following proposition, we establish the unbiasedness of the estimator
f̂(·), a desirable property that says that the expected value of the estimator’s
output will coincide with the true value of the property that is being estimated.

Proposition 1. Let M be a POMC satisfying Assump. 1, f : Σn → [a, b] be a

function for fixed n, a, and b, and
„

W ∼ M be a random observed path of an
arbitrary length | # „

W | = t > n. Then E(f̂(
„

W)) = f(M).

The following corollary establishes the counterpart of Prop. 1 for the fragment
of BSE with probabilities of sequences.

Corollary 1. Let M be a POMC satisfying Assump. 1, Λ ⊂ Σ∗ be a set of
bounded length observation sequences with bound n, f : Σn → {0, 1} be the

indicator function of the set Λ, and
„

W ∼ M be a random observed path of an
arbitrary length | # „

W | > n. Then E(f̂(
„

W)) = P (Λ).

4.2 The Atomic Monitor

A monitor for each individual atom is called an atomic monitor, which serves as
the building block for the overall monitor. Each atomic monitor is constructed
by computing an interval estimate of the semantic value f(M) for the respective
atom f on the unknown POMC M. For computing the interval estimate, we use
the McDiarmid-style inequality (see Thm. 4 in appendix) to find a bound on the

width of the interval around the point estimate f̂(·).

Algorithm 1 Monitor (f,δ): Monitor for (f, δ) where f : Σn → [a, b] is an atomic
function of a BSE

1: function Init()
2: t← 0 ▷current time
3: y ← 0 ▷current point

estimate
4: #„w ← ⊥ . . .⊥︸ ︷︷ ︸

n times

▷a

dummy word of length n,
where ⊥ is the dummy
symbol

5: end function

1: function Next(σ)
2: t← t+ 1 ▷progress time
3: if t < n then ▷too short observation sequence
4: #„wt ← σ
5: return ⊥ ▷inconclusive
6: else
7: #„w1..n−1 ← #„w2..n ▷shift window
8: #„wn ← σ ▷add the new observation
9: x← f(#„w) ▷latest evaluation of f
10: y ← (y ∗ (t− n) + x) /(t− n+ 1) ▷running

av. impl. of Eq. 6

11: ε←
√
− ln(δ/2) · t·min(t−n+1,n)·9·τmix

2(t−n+1)2
▷ PAC

bound, see Thm. 4 in the appendix
12: return [y − ε, y + ε] ▷confidence interval
13: end if
14: end function

McDiarmid’s inequality is a concentration inequality bounding the distance
between the sample value and the expected value of a function satisfying the
bounded difference property when evaluated on independent random variables.
There are several works extending this result to functions evaluated over a se-
quence of dependent random variables, including Markov chains [52,22,41]. In
order to use McDiarmid’s inequality, we will need the following standard [44]
additional assumption on the underlying POMC.

Assumption 2 We assume that the POMCs are aperiodic, and that the mixing
time of the POMC is bounded by a known constant τmix.

We summarize the algorithmic computation of the atomic monitor in Alg. 1,
and establish its correctness in the following theorem.

Theorem 1 (Solution of Prob. 1 for atomic formulas). Let (f, δ) be a
problem instance where f : Σn → [a, b] is an atomic formula for some fixed n,
a, and b. Moreover, suppose the given unknown POMC satisfies Assump. 2.
Then Algorithm 1 implements a monitor solving Problem 1 for the given prob-
lem instance. The monitor requires O(n)-space, and, after arrival of each new
observation, computes the updated output in O(n)-time.

The confidence intervals generated by McDiarmid-style inequalities for Markov
chains tighten in relation to the mixing time of the Markov chain. This means
the slower a POMC mixes, the longer the monitor needs to watch to be able to
obtain an output interval of the same quality.

4.3 The Complete Monitor

The final monitors for QuantBSE-s and QualBSE-s are presented in Alg. 3 and
Alg. 2, respectively, where we recursively combine the interval estimates of the

constituent sub-expressions using interval arithmetic and the union bound. Sim-
ilar idea was used by Albarghouthi et al. [3]. The correctness and computational
complexities of the monitors are formally stated below.

Theorem 2 (Solution of Prob. 1). Let (φ1 ⊙ φ2, δ1 + δ2) be a problem in-
stance where φ1, φ2 are a pair of QuantBSE-s and ⊙ ∈ {+, ·,÷}. Moreover,
suppose the given unknown POMC satisfies Assump. 2. Then Alg. 3 implements
the monitor A solving Problem 1 for the given problem instance. If the total
number of atoms in φ1 ⊙ φ2 is k and if the arity of the largest atom in φ1 ⊙ φ2

is n, then A requires O(k+n)-space, and, after arrival of each new observation,
computes the updated output in O(k · n)-time.

Theorem 3 (Solution of Prob. 2). Let (ψ, δ) be a problem instance where ψ
is a QualBSE. Moreover, suppose the given unknown POMC satisfies Assump. 2.
Then Alg. 2 implements the monitor A solving Problem 2 for the given problem
instance. If the total number of atoms in ψ is k and if the arity of the largest
atom in ψ is n, then A requires O(k + n)-space, and, after arrival of each new
observation, computes the updated output in O(k · n)-time.

Algorithm 2 Monitor (ψ,δ)

1: function Init()
2: if ψ ≡ φ ≥ 0 then
3: A ← Monitor (φ,δ)
4: A.Init()
5: else if ψ ≡ ¬ψ1 then
6: A ← Monitor (ψ1,δ)

7: A.Init()
8: else if ψ ≡ ψ1 ∧ ψ2 then
9: Choose δ1, δ2 s.t. δ = δ1 + δ2
10: A1 ← Monitor (ψ1,δ1)

11: A2 ← Monitor (ψ2,δ2)

12: A1.Init()
13: A2.Init()
14: end if
15: end function

1: function Next(σ)
2: if ψ ≡ φ ≥ 0 then
3: [l, u]← A.Next(σ)
4: if l ≥ 0 then return true
5: else if u ≤ 0 then return false
6: else return ⊥ ▷don’t know, we

assume ¬⊥ = ⊥ ∧ true = ⊥ ∧ false = ⊥.
7: end if
8: else if ψ ≡ ¬ψ1 then
9: return ¬ (A.Next(σ))
10: else if ψ ≡ ψ1 ∧ ψ2 then
11: return A1.Next(σ) ∧ A2.Next(σ)
12: end if
13: end function

5 Experiments

We implemented our monitoring algorithm in Python, and applied it to the real-
world lending example [16] described in Ex. 1 and to an academic example called
hypercube. We ran the experiments on a MacBook Pro (2023) with Apple M2
Pro processor and 16GB of RAM.

The Lending Example. The underlying POMC model (unknown to the mon-
itor) of the system is approximately as shown in Fig. 1 with a few differences.

Firstly, we added a low-probability self-loop on the state S to ensure aperiodicity.
Secondly, we considered only two credit score levels.

Algorithm 3 Monitor (φ1⊙φ2,δ1+δ2)

1: function Init()
2: A1 ← Monitor (φ1,δ1)

3: A2 ← Monitor (φ2,δ2)

4: A1.Init()
5: A2.Init()
6: end function

1: function Next(σ)
2: [l1, u1]← A1.Next(σ)
3: [l2, u2]← A2.Next(σ)
4: return [l1, u1]⊙ [l2, u2] ▷interval

arithmetic
5: end function

Thirdly, there are more hidden states
(in total 171 states) in the system, like
the action of the individual (repaying
the loan or defaulting), etc. We monitor
demographic parity, defined as φDP :=
P (Y | A) − P (Y | B), and an abso-
lute version of it, defined as φTDP :=
P (AY) − P (BY). While φDP represents
the difference in probabilities of giving
loans to individuals from the two groups
(A and B), φTDP represents the difference
in joint probabilities of selecting and then
giving loans to individuals from the two
groups. None of the two properties can be
expressed using the previous formalism [3,32], because φDP requires conditioning
on observations, and φTDP requires expressing absolute probabilities, which were
not considered before.

After receiving new observations, the monitors for φDP and φTDP took, re-
spectively, 47 µs and 18µs on an average (overall 43 µs–0.2 s and 12 µs–3.2 s) to
update their outputs, showing that our monitors are fast in practice.

Fig. 2 shows the outputs of the monitors for δ = 0.05 (i.e., 95% confidence
interval). For the POMC of the lending example, we used a pessimistic bound
τmix = 170589.78 steps on the mixing time (computation as in [36]), with which
the estimation error ε shrinks rather slowly in both cases. For example, for φTDP,
in order to get from the trivial value ε = 1 (the confidence interval spans the
entire range of possible values) down to ε = 0.1, the monitor requires about 4·109
observations. For φDP, the monitor requires even more number of observations
(∼ 1012) to reach the same error level. This is because φDP involves conditional
probabilities requiring divisions, which amplify the error when composed using
interval arithmetics. We conclude that a direct division-free estimation of the
conditional probabilities, together with tighter bounds on the mixing time will
significantly improve the long-run accuracy of the monitor.

The Hypercube Example. We considered a second example [44, pp. 63],
whose purpose is to demonstrate that the tightness of our monitors’ outputs is
sensitive to the choice of the bound on the mixing time. The POMC models
a random walk along the edges of a hypercube {0, 1}n, where each vertex of
the hypercube represents a state in the POMC and states starting with 0 and
1 are mapped to the observations a and b, respectively. We fix n to 3 in our
experiments. At every step, the current vertex is chosen with probability 1/2,
and every neighbor is chosen with probability 1/2n. A tight bound on the mixing
time of this POMC is given by τtruemix = n(log n+ log 4) steps [44, pp. 63]. We
consider the properties ψDP := P (a | a)− P (b | b) and ψTDP := P (aa)− P (bb).

0.0 0.2 0.4 0.6 0.8 1.0
Observations 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
op

er
ty

Va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0
Observations 1e12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Pr
op

er
ty

Va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0
Observations 1e7

0.4

0.2

0.0

0.2

0.4

Pr
op

er
ty

Va
lu

e

0.0 0.2 0.4 0.6 0.8 1.0
Observations 1e7

0.4

0.2

0.0

0.2

0.4

Pr
op

er
ty

Va
lu

e

Fig. 2: Monitoring φDP (first, third) and φTDP (second, fourth) on the lending
(first, second) and the hypercube (third, fourth) examples. The first and second
plots show the computed 95%-confidence interval (solid) and the true value of
the property (dashed) for the lending POMC. In reality, the monitor was run
for about 7 × 108 steps until the point estimate nearly converged, though the
confidence interval was trivial at this point (the whole interval [−1, 1]), owing to
the pessimistic bound τmix. In the figure, we have plotted a projection of how the
confidence interval would taper over time, had we kept the monitor running. The
third and fourth plots summarize the monitors’ outputs over 100 executions of
the hypercube POMC. The solid lines are the max and min values of the point
estimates, the dashed lines are the boundaries of all the 95%-confidence intervals
(among the 100 executions) with the conservative bound τmix (green) and the
sharper bound τtruemix (orange) on the mixing time.

We empirically evaluated the quality of the confidence intervals computed by
our monitor (for ψDP and ψTDP) over a set of 100 sample runs, and summarize
the findings in the third and fourth plots of Fig. 2. We used τmix = 204.94 steps
and τtruemix = 7.45 steps, and we can observe that in both cases, the output
with τtruemix is significantly tighter than with τmix. Compared to the lending
example, we obtain reasonably tight estimate with significantly smaller number
of observations, which is due to the smaller bounds on the mixing time.

6 Conclusion

We generalized runtime verification of algorithmic fairness properties to systems
modeled using POMCs and a specification language (BSE) with arithmetic ex-
pressions over numerical functions assigning values to observation sequences.
Under the assumptions of stationary initial distribution, aperiodicity, and the
knowledge of a bound on the mixing time, we presented a runtime monitor,
which monitors a long sequence of observations generated by the POMC, and
after each observation outputs an updated PAC estimate of the value of the
given BSE.

While the new stationarity assumption is important for defining the seman-
tics of the BSE expressions, the aperiodicity and the knowledge of the bound on
the mixing time allow us to use the known McDiarmid’s inequality for computing

the PAC estimate. In future, we intend to eliminate the latter two assumptions,
enabling us to use our approach for a broader class of systems. Additionally,
eliminating the time-homogeneity assumption would also be an important step
for monitoring algorithmic fairness of the real-world systems with time-varying
probability distributions [31].

Acknowledgments: This work is supported by the European Research Council
under Grant No.: ERC-2020-AdG 101020093.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Transactions
on Modeling and Computer Simulation (TOMACS) 28(1), 1–39 (2018)

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: Fairsquare: probabilistic
verification of program fairness. Proceedings of the ACM on Programming Lan-
guages 1(OOPSLA), 1–30 (2017)

3. Albarghouthi, A., Vinitsky, S.: Fairness-aware programming. In: Proceedings of
the Conference on Fairness, Accountability, and Transparency. pp. 211–219 (2019)

4. Ashok, P., Křet́ınskỳ, J., Weininger, M.: Pac statistical model checking for markov
decision processes and stochastic games. In: International Conference on Computer
Aided Verification. pp. 497–519. Springer (2019)

5. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time markov chains. IEEE Transactions on Software Engineering
29(6), 524–541 (2003). https://doi.org/10.1109/TSE.2003.1205180

6. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)

7. Balunovic, M., Ruoss, A., Vechev, M.: Fair normalizing flows. In: International
Conference on Learning Representations (2021)

8. Bartocci, E., Deshmukh, J., Donzé, A., Fainekos, G., Maler, O., Ničković, D.,
Sankaranarayanan, S.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Lectures on Runtime Verification, pp.
135–175. Springer (2018)

9. Bartocci, E., Falcone, Y.: Lectures on Runtime Verification. Springer (2018)

10. Bartolo Burlò, C., Francalanza, A., Scalas, A., Trubiani, C., Tuosto, E.: Towards
probabilistic session-type monitoring. In: International Conference on Coordination
Languages and Models. pp. 106–120. Springer (2021)

11. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness
properties via concentration. Proceedings of the ACM on Programming Languages
3(OOPSLA), 1–27 (2019)

12. Bellamy, R.K., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia,
P., Martino, J., Mehta, S., Mojsilović, A., et al.: Ai fairness 360: An extensible
toolkit for detecting and mitigating algorithmic bias. IBM Journal of Research
and Development 63(4/5), 4–1 (2019)

13. Bird, S., Dudik, M., Edgar, R., Horn, B., Lutz, R., Milan, V., Sameki, M., Wallach,
H., Walker, K.: Fairlearn: A toolkit for assessing and improving fairness in ai.
Microsoft, Tech. Rep. MSR-TR-2020-32 (2020)

14. Chouldechova, A.: Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big data 5(2), 153–163 (2017)

https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/TSE.2003.1205180

15. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
International symposium on automated technology for verification and analysis.
pp. 1–12. Springer (2011)

16. D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., Halpern, Y.:
Fairness is not static: Deeper understanding of long term fairness via simulation
studies. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency. p. 525–534. FAT* ’20 (2020)

17. David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimiz-
ing control strategy using statistical model checking. In: NASA Formal Methods
Symposium. pp. 352–367. Springer (2013)

18. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: International Conference on Formal Modeling and Analysis of Timed Systems.
pp. 92–106. Springer (2010)

19. Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism.
Science advances 4(1), eaao5580 (2018)

20. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd innovations in theoretical computer science con-
ference. pp. 214–226 (2012)

21. Ensign, D., Friedler, S.A., Neville, S., Scheidegger, C., Venkatasubramanian, S.:
Runaway feedback loops in predictive policing. In: Conference on Fairness, Ac-
countability and Transparency. pp. 160–171. PMLR (2018)

22. Esposito, A.R., Mondelli, M.: Concentration without independence via information
measures. arXiv preprint arXiv:2303.07245 (2023)

23. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based
monitoring. arXiv preprint arXiv:1711.03829 (2017)

24. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,
S.: Certifying and removing disparate impact. In: proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. pp.
259–268 (2015)

25. Ferrere, T., Henzinger, T.A., Kragl, B.: Monitoring event frequencies. In: 28th
EACSL Annual Conference on Computer Science Logic. vol. 152 (2020)

26. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence. pp. 394–403 (2018)

27. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Electronic Notes in Theoretical Computer Science 70(4), 36–54 (2002)

28. Ghosh, B., Basu, D., Meel, K.S.: Justicia: A stochastic sat approach to formally
verify fairness. arXiv preprint arXiv:2009.06516 (2020)

29. Ghosh, B., Basu, D., Meel, K.S.: Algorithmic fairness verification with graphical
models. arXiv preprint arXiv:2109.09447 (2021)

30. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
Advances in neural information processing systems 29 (2016)

31. Henzinger, T., Karimi, M., Kueffner, K., Mallik, K.: Runtime monitoring of dy-
namic fairness properties. In: Proceedings of the 2023 ACM Conference on Fairness,
Accountability, and Transparency. pp. 604–614 (2023)

32. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Monitoring algorithmic
fairness. In: Enea, C., Lal, A. (eds.) Computer Aided Verification. pp. 358–382.
Springer (2023)

33. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: International
Conference on Runtime Verification. pp. 3–18. Springer (2020)

34. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). pp.
1–14. IEEE (2021)

35. Jagielski, M., Kearns, M., Mao, J., Oprea, A., Roth, A., Sharifi-Malvajerdi, S.,
Ullman, J.: Differentially private fair learning. In: International Conference on
Machine Learning. pp. 3000–3008. PMLR (2019)

36. Jerison, D.: General mixing time bounds for finite markov chains via the absolute
spectral gap. arXiv preprint arXiv:1310.8021 (2013)

37. John, P.G., Vijaykeerthy, D., Saha, D.: Verifying individual fairness in machine
learning models. In: Conference on Uncertainty in Artificial Intelligence. pp. 749–
758. PMLR (2020)

38. Junges, S., Torfah, H., Seshia, S.A.: Runtime monitors for markov decision pro-
cesses. In: International Conference on Computer Aided Verification. pp. 553–576.
Springer (2021)

39. Kearns, M., Neel, S., Roth, A., Wu, Z.S.: Preventing fairness gerrymandering: Au-
diting and learning for subgroup fairness. In: International Conference on Machine
Learning. pp. 2564–2572. PMLR (2018)

40. Konstantinov, N.H., Lampert, C.: Fairness-aware pac learning from corrupted data.
Journal of Machine Learning Research 23 (2022)

41. Kontorovich, A., Raginsky, M.: Concentration of measure without independence:
a unified approach via the martingale method. In: Convexity and Concentration.
pp. 183–210. Springer (2017)

42. Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. Advances
in neural information processing systems 30 (2017)

43. Lahoti, P., Gummadi, K.P., Weikum, G.: ifair: Learning individually fair data
representations for algorithmic decision making. In: 2019 ieee 35th international
conference on data engineering (icde). pp. 1334–1345. IEEE (2019)

44. Levin, D.A., Peres, Y.: Markov chains and mixing times, vol. 107. American Math-
ematical Soc. (2017)

45. Liu, L.T., Dean, S., Rolf, E., Simchowitz, M., Hardt, M.: Delayed impact of fair
machine learning. In: International Conference on Machine Learning. pp. 3150–
3158. PMLR (2018)

46. Lum, K., Isaac, W.: To predict and serve? Significance 13(5), 14–19 (2016)

47. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pp. 152–166. Springer (2004)

48. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on
bias and fairness in machine learning. ACM Computing Surveys (CSUR) 54(6),
1–35 (2021)

49. Meyer, A., Albarghouthi, A., D’Antoni, L.: Certifying robustness to programmable
data bias in decision trees. Advances in Neural Information Processing Systems 34,
26276–26288 (2021)

50. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an
algorithm used to manage the health of populations. Science 366(6464), 447–453
(2019)

51. Otop, J., Henzinger, T.A., Chatterjee, K.: Quantitative automata under proba-
bilistic semantics. Logical Methods in Computer Science 15 (2019)

52. Paulin, D.: Concentration inequalities for markov chains by marton couplings and
spectral methods (2015)

53. Ruchkin, I., Sokolsky, O., Weimer, J., Hedaoo, T., Lee, I.: Compositional proba-
bilistic analysis of temporal properties over stochastic detectors. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 39(11), 3288–3299
(2020)

54. Scheuerman, M.K., Paul, J.M., Brubaker, J.R.: How computers see gender: An
evaluation of gender classification in commercial facial analysis services. Proceed-
ings of the ACM on Human-Computer Interaction 3(CSCW), 1–33 (2019)

55. Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I.Y., Ghassemi, M.: Chex-
clusion: Fairness gaps in deep chest x-ray classifiers. In: BIOCOMPUTING 2021:
proceedings of the Pacific symposium. pp. 232–243. World Scientific (2020)

56. Sharifi-Malvajerdi, S., Kearns, M., Roth, A.: Average individual fairness: Algo-
rithms, generalization and experiments. Advances in Neural Information Process-
ing Systems 32 (2019)

57. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: International conference
on runtime verification. pp. 193–207. Springer (2011)

58. Stoller, S.D., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S.A.,
Zadok, E.: Runtime verification with state estimation. In: Runtime Verification:
Second International Conference, RV 2011, San Francisco, CA, USA, September
27-30, 2011, Revised Selected Papers 2. pp. 193–207. Springer (2012)

59. Sun, B., Sun, J., Dai, T., Zhang, L.: Probabilistic verification of neural networks
against group fairness. In: International Symposium on Formal Methods. pp. 83–
102. Springer (2021)

60. Waudby-Smith, I., Arbour, D., Sinha, R., Kennedy, E.H., Ramdas, A.: Time-
uniform central limit theory, asymptotic confidence sequences, and anytime-valid
causal inference. arXiv preprint arXiv:2103.06476 (2021)

61. Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., Wilson, J.:
The what-if tool: Interactive probing of machine learning models. IEEE transac-
tions on visualization and computer graphics 26(1), 56–65 (2019)

62. Younes, H.L., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: International Conference on Computer Aided Ver-
ification. pp. 223–235. Springer (2002)

63. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representa-
tions. In: International conference on machine learning. pp. 325–333. PMLR (2013)

A Proof of Claims in Sec. 4.1

Proof (Proof of Prop. 1). Let N = t− n+ 1. By definition,

E(f̂(
„

W)) =
∑

#„w∈Σt

(
1

N

N∑
i=1

f(#„wi..i+n−1)

)
· P(#„w)

where P(#„u) is defined with respect to the Markov chain. We now express this
with respect to the joint probability measure over paths of length t as defined

by M.

E(f̂(
„

W)) =
∑

#„q ∈Qt

(
1

N

N∑
i=1

f(ℓ(#„q i..i+n−1))

)
· P(#„q)

=
∑

#„q ∈Qt

1

N

N∑
i=1

f(ℓ(#„q i..i+n−1)) · P(#„q)

=
1

N

N∑
i=1

∑
#„q ∈Qt

f(ℓ(#„q i..i+n−1)) · P(#„q).

Fix a particular i, i.e. let Ai :=
∑

#„q ∈Qt f(ℓ(
#„q i..i+n−1)) · P(#„q). Split up the

internal sum to obtain

Ai =
∑

#„q A∈Qi

∑
#„q B∈Qn

∑
#„q C∈Qt−n−i

f(ℓ(#„q B)) · P(#„q A) · P(#„q B | qAi) · P(#„q C | qBn).

Now notice that
∑

#„q C∈Qt−n−i P(
#„q C | #„q Bn) = 1. Hence, by rearranging the sums

we obtain

Ai =
∑

#„q B∈Qn

f(ℓ(#„q B)) ·
∑

#„q A∈Qi

P(#„q A) · P(#„q B | #„q Ai)

=
∑

#„q B∈Qn

f(ℓ(#„q B)) ·
n−1∏
j=1

MqBj q
B
j+1

·
∑

#„q A∈Qi

πqA1 ·
i−1∏
j=1

MqAj q
A
j+1

·MqAi q
B
1
.

We can use the fact thatM is in its stationary distribution to express the internal
sum as πqB1 . That is,∑

#„q A∈Qi

πqA1 ·
i−1∏
j=1

MqAj q
A
j+1

·MqAi q
B
1
=
∑
qAi

· · ·
∑
qA2

∑
qA1

πqA1 ·
i−1∏
j=1

MqAj q
A
j+1

·MqAi q
B
1

=
∑
qAi

MqAi q
B
1
· · ·
∑
qA2

MqA2 q
A
3
·
∑
qA1

πqA1 ·MqA1 q
A
2
=
∑
qAi

MqAi q
B
1
· · ·
∑
qA2

MqA2 q
A
3
πqA2

=
∑
qAi

MqAi q
B
1
· πqAi = πqB1 .

Hence, we obtain

Ai =
∑

#„q B∈Qn

f(ℓ(#„q B)) ·
n−1∏
j=1

MqBj q
B
j+1

· πqB1 = E(f(
#„

U))

where
#„

U is a random word of length n generated by M. Therefore, we obtain

E(f̂(
„

W)) =
1

N

N∑
i=1

E(f(
#„

U)) = E(f(
#„

U)).

Moreover, this demonstrates that due to stationarity the expected value of f
evaluated on any infix of length n is the same and thus E(f̂(

„

W)) = f(M).

Proof (Proof of Cor. 1). This follows directly from Prop. 1 and the observation
that f(ℓ(#„q B)) removes the probability mass of all the paths of length n whose

corresponding words do not belong to Λ. Therefore, E(f(
#„

U)) = P (Λ) where
#„

U
is as defined in Prop. 1.

B Proof of Thm. 1

We use a McDiarmid-style inequality to compute the finite-sample confidence
bounds. The version below is a restricted version of the Corollary 2.19 found in
[36].

Theorem 4 ([36]). Let
#„

X := X1, . . . , Xn be an ergodic Markov chain with
countable state space Q, unique stationary distribution π, and finite mixing time
bounded by τmix. Suppose that some function f : Qn → R with artiy n satisfies

f(x)− f(y) ≤
g∑
i=1

nci1(xi ̸= yi)

for some c ∈ Rn with positive entries. Then for any ε > 0

P
(∣∣∣f(#„

X)− E(f(
#„

X))
∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2ε2√∑n

i=1 c
2
i

2
· 9 · τmix

)
To apply Theorem 4 it is required that the observation labels should not

interfere with the so-called bounded difference property of the function. Below
we establish that this requirement is fulfilled by the atoms of BSE.

Lemma 1. Let f : Σn → [a, b] be a function with fixed n, a, and b, t ≥ n be a
constant, #„w, #„w ′ ∈ Σt be a pair of observation sequences such that the Hamming
distance | #„w − #„w ′|H is 1. Then

f̂(#„w)− f̂(#„w ′) ≤ min(t− n+ 1, n)

t− n+ 1
· (b− a).

Proof. Since the Hamming distance is 1, #„w and #„w ′ differ only in one symbol.
We know that f is evaluated on a substring of length n. Hence, if the string is
sufficiently long only n evaluations of f in f̂ (i.e., only n terms in the sum in
Eq. 6) will be affected, while if the string is short, then only t−n+1 evaluations
of f will be affected. Therefore, the evaluation of f can differ in the worst case

by at most min(t−n+1,n)
t−n+1 · (b− a).

Lemma 2. Let M be a POMC satisfying Assump. 1 and 2, f : Σn → [a, b] be

a function for a fixed n, a, and b, t ≥ n be a constant, and
„

W ∼ M be a random
observed M-path of length | # „

W | = t. Then

P
(
|f(# „M)− f̂(

„

W)| ≥ ε
)
≤ 2 exp

(
− 2 · ε2(t− n+ 1)2

t ·min(t− n+ 1, n) · 9 · τmix

)
.

Proof. Notice that #„w, #„w ′ ∈ Σt

|f(w)− f(#„w ′)| ≤
t∑
i=1

min(t− n+ 1, n)

t− n+ 1
· (b− a) · 1(wi ̸= w′

i)

Therefore, we conclude that
√√√√ t∑

i=1

(
min(t− n+ 1, n)

t− n+ 1
· (b− a)

)2
2

=
t ·min(t− n+ 1, n)2

(t− n+ 1)2
· (b− a)2

as required by Theorem 4.

Proof (Proof of Thm. 1). The soundness claim follows as a consequence of Lem. 1
and Prop. 1. By combining Theorem 4 and Corollary 2.17 from [36] we obtain
the result for POMC. The computational complexity is dominated by the use of
the set of n registers #„w to store the last n sub-sequence of the observed path:
allocation of memory for #„w takes n space, and, after every new observation, the
update of #„w takes n write operations (Line 7).

	Monitoring Algorithmic Fairness under Partial Observations

