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Meeting Times of Non-atomic Random Walks

Ryota Eguchi ∗ Fukuhito Ooshita † Michiko Inoue ‡ Sébastien Tixeuil §

Abstract

In this paper, we revisit the problem of classical meeting times of random walks
in graphs. In the process that two tokens (called agents) perform random walks on
an undirected graph, the meeting times are defined as the expected times until they
meet when the two agents are initially located at different vertices. A key feature
of the problem is that, in each discrete time-clock (called round) of the process, the
scheduler selects only one of the two agents, and the agent performs one move of
the random walk. In the adversarial setting, the scheduler utilizes the strategy that
intends to maximizing the expected time to meet. In the seminal papers [5,11,18],
for the random walks of two agents, the notion of atomicity is implicitly considered.
That is, each move of agents should complete while the other agent waits. In this
paper, we consider and formalize the meeting time of non-atomic random walks. In
the non-atomic random walks, we assume that in each round, only one agent can
move but the move does not necessarily complete in the next round. In other words,
we assume that an agent can move at a round while the other agent is still moving
on an edge. For the non-atomic random walks with the adversarial schedulers, we
give a polynomial upper bound on the meeting times.
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1 Introduction

In the process that two tokens (called agents) perform random walks on an undirected
graph, the classical meeting times are defined as the expected times until they meet when
the two agents are initially located at different vertices [3, 5, 11, 17, 18]. A key feature
of the meeting times is that, in each discrete time-clock (called round) of the process,
the scheduler selects only one of the two agents, and the agent performs one move of
the random walk1. Several schedulers are considered, namely, random scheduler where
the scheduler selects an agent randomly; ’angel’ scheduler with the intent of minimizing

the expected time before the tokens meet; or adversarial scheduler with the intent of
maximizing the expected time [18]. The schedulers have strategies. According to a
strategy, a scheduler chooses an agent to move in the current configuration. Note that,
the schedulers do not know the future moves of the agent, that is, it does not have
any prior information about the random bits used by the agents. For the adversarial
scheduler, Coppersmith et al. [5] show an upper-bound of the meeting times of each initial
configuration, and after that, Tetali and Winkler [18] give the exact characterization of
the meeting time of each initial configuration. (The specifications are presented in
Subsection 1.2.) The process they consider, however, assumes the atomicity of two
independent random walks. That is, while an agent moves, the other agent has to wait
until the move completes. Specifically, we define two random walks are atomic, if in
each (atomic) round, (1) only one agent moves, and (2) at the next round, the moving
agent completes the move and reaches the next vertex.

In this paper, we consider the non-atomic random walks of the two agents. In the
non-atomic random walks, we assume that in each time step, (1) only one agent can
move but (2) the move does not necessarily complete in the next round. In other words,
we assume that an agent can be chosen to move at a round while the other agent b
is still moving on an edge to the goal vertex. To define such behavior, we consider
subdivided graph G̃ of the original graph G = (V,E). The graph G̃ is produced by
subdividing each edge e ∈ E (that is, adding another vertex in the intermediate point
of each edge). We say the vertices in V are original vertices, and the added vertices
intermediate vertices. Intuitively, the situations in which an agent at some intermediate
vertex in G̃ are interpreted as the ones in which the agent is traversing the corresponding
edge in G. Therefore, the meetings at some intermediate vertex in G̃ are interpreted as
the meetings in an edge in G.

Suppose that the two agents are initially located at original vertices x, y ∈ V at
round r. The non-atomic random walks under any scheduler proceed as follows: When
the agent located at x is chosen to move, it determines to move to adjacent vertex
w ∈ NG(x). Then, it moves to the intermediate vertex between x and w with direction

from x to w at the current round r. So the next round r + 1, the scheduler chooses
an agent from the configuration that agents are located at y and intermediate vertex
between x and w with direction from x to w. At the round r + 1, if the adversary

1In the literature, the term "meeting time" also be referred to represent the expected time to meet
in the process that the two agents move randomly in each round [4,10,13,15].
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chooses the agent in the intermediate vertex, then the agent reaches vertex w at round
r + 2. Otherwise, if at round r + 1, the agent at y is chosen to move, it also reaches an
intermediate vertex with the corresponding direction. In the executions, the scheduler
repeatedly chooses one of the agents. For the non-atomicity, we do not impose any
restrictions for reaching the goals of original vertices from the moves of intermediate
vertices. For example, in an extreme case, the adversary can only choose an agent once
to locate the agent to the intermediate vertex, and after that, it can repeatedly move
the other agent.

When an agent is located at an intermediate vertex, then the state of the agent is
interpreted as traversing the corresponding edge in the original graph G. Also, similar to
the atomic case, the agents do not return to the original vertex they left in the random
walks. Therefore, when the agent located at an intermediate vertex is chosen to move,
the direction for the move is kept. In other words, when the agent is located at an
intermediate vertex between v and w with direction from v to w, then it must reach the
vertex w (not v). Note also that, if the meetings can occur only when the agents are
located at the same original vertex, then any meeting does not occur in the non-atomic
random walks. For example, the scheduler at first moves an agent to the intermediate
vertex and repeatedly moves another agent. By doing so, the agents never meet at the
original vertices. Therefore, we need to allow the agents to meet in the intermediate
vertices as well as the original vertices.Allowing agents to meet on intermediate vertices
hints that previous results on random walks in the atomic case may be simply expanded
to the non-atomic case. However, this is not the case:

• Considering a random walk on the subdivided graph (illustrated in part (a) of Fig.
1) does not take into account that in our setting, since agents may not return back
to the original node they left when at an intermediate node.

• Considering a random walk on the directed graph induced by the intermediate node
direction constraints (part (b) in Fig. 1) does not take into account that for two
original neighboring vertices u and v, the intermediate vertices π{u,v} and π{v,u}
must be a single vertex (otherwise, any meeting cannot occur at an intermediate
node).

1.1 Our contribution

The first contribution is the formalization of the meeting time of non-atomic random
walks by two agents. For the formalization, we introduce the notion of non-atomic
moves of agents in the subdivided graphs G̃. We then show that our definitions match
the intuitions described above by formally proving the impossibility to meet when we
restrict the meeting points to the original vertices in V . By the impossibility, we relax
the assumption such that the agents can meet at the intermediate vertices as well as
the original vertices. We assume that the agents can meet when they are located at the
same intermediate vertex regardless of their direction. That is, they can meet if they
are located at the same intermediate vertex in the same direction or opposite directions.
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Figure 1: In this figure, the white circles represent the original nodes, and the gray
circles represent the intermediate nodes. The objects with a black circle combined with
a triangle represent the agents. (a) Random walks in the subdivided graphs. In this
case, returning back to the original node they left is unavoidable. (b) Two intermediate
nodes. In this case, the agents cannot meet when they enter the two intermediate nodes
in different directions. (c) Our definition. The intermediate node is unique, and the
agents have a direction as their state(Precise definition is presented in Section 2).

Then, we prove an upper bound of the meeting times of the non-atomic random
walks. Specifically, based on the proof arguments in [5], we extend their proofs and
show the following theorem. For the adversarial scheduler, let M̃G(x, y) denote the
worst meeting time of non-atomic random walks from initial positions x, y ∈ V . Also,
let H(x, y) be the hitting time from x to y, which is the expected time to reach y from
x by an agent for x, y ∈ V in G.

Theorem 1. For a pair of x, y ∈ V , suppose that the agents are initially located at ver-

tices x, y and conduct the non-atomic random walks under the strategy of the adversarial

scheduler. Then, there is a pair of vertices t, u ∈ V such that

M̃G(x, y) ≤ 2



H(x, y) +H(y, u)−H(u, y) + du − 1 +
∑

z∈NG(u)\t

H(z, u)





holds, where du is the degree of the original vertex u ∈ V .

The vertices t, u in Theorem 1 are special in the sense that the state stu is hidden,
whose precise definition appears in Subsection 4.2. Also, since the hitting times have a
polynomial upper bound of O(n3), Theorem 1 also shows the polynomial upper bound
of O(n4) on the worst meeting times of the non-atomic random walks.

1.2 Related work

The meeting times of (atomic) random walks were first presented by Israeli and Jal-
fon [11]. In the paper, they introduced a token-management scheme for self-stabilizing
mutual exclusion. In the initial configuration of the scheme, multiple tokens (i.e., agents)
can exist, and processors (i.e., vertices) send the tokens to their adjacent processors ran-
domly. If some tokens move to the same processor, then the tokens are merged into
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one token. For the scheme, it is required that tokens eventually are eventually merged
into one token. In particular, the authors showed that, in a ring of n vertices, the
meeting time is O(n2), and also that, in general graphs, an exponential upper bound
O((∆ − 1)D−1) exists, where ∆ is the maximum degree of the graph, and D is the
diameter of the graph.

Tetali and Winkler [17] proved the upper bound of the adversarial meeting times of
random walks, specifically as follows. For any connected graph G, MG(x, y) ≤ H(x, y)+
H(y, z)−H(z, y) holds for the initial positions x, y, where z is special vertex called the
hidden vertex. In more detail, z satisfies H(z, v) ≤ H(v, z) for each v ∈ V . Hence the
meeting times MG are upper bounded by at most twice the worst hitting time of the
graph G in the worst adversarial settings. Then, Coppersmith, Tetali, and Winkler [5]
showed another upper bound: the worst meeting time is upper bounded by ( 4

27 +o(1))n3

for any graphs and any initial positions.
Tetali and Winkler [18] provided the exact characterization of the meeting time of

each initial configuration. The specification of the characterization is as follows: Let c
be the vertex such that, for any vertex v ∈ V , H(v, c) ≤ H(c, v) holds. Let qG(w;x, y)
denote the probability that agents initially located at x, y first meet at vertex w and let
Z(x) be another potential function that Z(x) = H(c, x)−H(x, c). Then, they show

MG(x, y) = Φ(x, y)−
∑

w∈V

qG(w;x, y)[Z(z) − Z(w)],

where Φ(x, y) = H(x, y) +H(y, z) −H(z, y) is introduced by Coppersmith, Tetali, and
Winkle [5].

The meeting times of (atomic) random walks by k agents for k ≥ 2 were examined by
Bshouty et al. [3]. In the paper, they showed that the meeting times of multiple random
walks have an upper bound in terms of the meeting times of fewer random walks. The
meeting time of random walks by k agents is the expected number of rounds to merge
the agents into one agent. Quantities related to a random walk in graphs such as hitting
time, cover time, and commute time are well studied [2,8,12,16] and the interested reader
can refer to the survey of Lovasz [14]. Interestingly, Brightwell and Winkler showed [2]
that the worst hitting time among all graphs is O(n3), which appears in the so-called
lollipop graphs. The relation between random walks in graphs and electrical networks
has also been investigated [16].

The related problem concerning the meeting time of the non-atomic random walks is
asynchronous rendezvous of two agents [1,6,7,9]. The asynchronous rendezvous problem
is similar problem to the non-atomic meeting time, in the sense that the adversary
controls the speed of the agents (or the rounds to reach the destination of a move).
The notion of subdivided graphs was introduced to study asynchronous rendezvous by
Bampas et al. [1].

1.3 Organization of paper

In Section 2, we explain the definitions and notations for the meeting times of non-
atomic random walks. In Section 3, we prove the impossibility that the agents cannot
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meet with the assumption that they are only assumed to meet in the original vertices.
In Section 4, we show an upper bound for meeting times of non-atomic random walks.
In Section 5, we examine the upper bound in several graph classes such as lines and
rings, and complete graphs. Finally, we conclude this paper in Section 6.

2 Preliminaries

Let G = (V (G), E(G)) be a connected undirected graph with n vertices and m edges.
Let G̃ denote the graph produced by subdividing each edge of G into two parts. Precisely,
we define G̃ = (V (G̃), E(G̃)). The vertex set is defined by V (G̃) = V (G)∪ Vintm, where
Vintm = {π{v,w} | (v,w) ∈ E(G)}. The edge set is defined by E(G̃) = {(v, π{v,w}) | v ∈
V (G) ∧ π{v,w} ∈ Vintm}. Note that π{v,w} = π{w,v} holds. Also, we say vertices in V (G)
are original vertices, and vertices in Vintm are intermediate vertices.

Each state of an agent is an element from a set V ∪ Sintm, where Sintm = {sxy |
π{x,y} ∈ Vintm}. The state sxy represents that the agent is located at π{x,y} and it has
the direction from x to y. That is, in the original graph G, the agent with state sxy is
heading to the vertex y from x in the edge (x, y) in G. Note that for each π{v,w}, there
are two states sxy and syx, and sxy 6= syx holds since the directions are different. The
states from V represent that the current position of the agent is an original vertex of G.
We call the states from V original states. We define states from Sintm are intermediate

states. For each state s, we define the following bar operation: if s ∈ V , then s = s,
and if s = sxy ∈ Sintm, then sxy = syx. Next, we define the adjacent states of each
state. The set of adjacent states Nas(s) for a state s ∈ V ∪ Sintm is defined that (1)
Nas(s) = {svw ∈ Sintm | w ∈ NG(v)} if s = v (original), and (2) Nas(s) = {w} if
s = svw ∈ Sintm (intermediate). We also define ds = |Nas(s)|. The set of configurations
C is defined by (V ∪ Sintm)2. The elements of a configuration correspond to the states
of the two agents.

The computation proceeds in discrete time r = 0, 1, 2, . . . , which is called rounds. In
each round r, the adversary determines which agent moves for a configuration c in the
round. The selected agent at state s moves to an adjacent state s′ ∈ Nas(s) in G̃ with
probability 1/ds. Note that if the state is intermediate state svw, then the next state is
uniquely determined to w. Note that even if we consider the non-atomic moves of the
agents, these moves of the agents are assumed to be complete in the current round, and
in the next round the moving agent should be at the next state in V ∪ Sintm.

The adversary chooses an agent in the current configuration according to a strategy
SG̃ for a subdivided graph G̃. The strategy SG̃ is a function SG̃ : C → [0, 1], where C
is a set of configurations. The expression SG̃(c) = p for c = (s, s′) ∈ (V ∪ Sintm)2 and
p ∈ [0, 1] represents that the adversary moves an agent in the state s with probability p
(otherwise it moves the other agent in the state s′) in the current configuration c.

We say that the agents meet, if the execution reaches a configuration c = (s, s′) such
that s = s′ or s = s′. In other words, the agents meet if they are located at the same
original vertices or intermediate vertices regardless of the direction of the agents. We
define M̃S(x, y) as the expected rounds for non-atomic random walks starting at initial
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position x, y to meet when the adversary adopts the strategy S. M̃G(x, y) denotes the
worst meeting time of non-atomic random walks starting at x, y ∈ V for all strategies
in G̃.

3 Impossibility Results

In this section, using our definition we show the impossibility that the agents cannot
meet when we restrict the meeting points to original vertices.

Theorem 2. If the meeting cannot occur on intermediate vertices, there exists an ad-

versarial strategy such that agents never meet at an original vertex.

Proof. We specify the strategy as follows. For each v ∈ V and each suv ∈ Sintm for
u ∈ NG(v), the strategy moves the agent at v with probability 1 in the configuration
(v, suv), and moves agents arbitrary in other configurations. Obviously, to meet at an
original vertex, the agents should reach the configuration (v, suv) for some v and suv.
However, in the next configuration, the agents cannot meet by the strategy, since by the
assumption of meeting, the agents at svu and suv cannot meet.

Observe that weakening the power of the scheduler does not help. Even if the sched-
uler is 2-fair (in such a strategy, each agent is selected infinitely often, and between any
two selections of an agent, any other agent is selected at most twice), it remains impos-
sible to obtain meeting if they can only occur on original vertices. For example, consider
an alternating strategy (the scheduler alternates between two consecutive activations of
the two agents, except for the first activations in the strategy, where the first time an
agent is activated, it is activated only once). Then, after the first activation, the first
agent is on an intermediate node. After the second agent is activated, both agents are
on intermediate nodes. Then, the first agent is activated twice, and both agents remain
on intermediate nodes. The selection continues so that both agents are on intermediate
nodes at the end of each activation.

4 An upper bound for non-atomic meeting time

In this section, we show the upper bound for non-atomic meeting time. At first, we
define the hitting times between states in G̃, which is a generalization of the hitting time
between vertices in G. In the following, we say the generalized version of the hitting times
extended hitting times. We also show a property of the extended hitting time, which we
call triangle property in the following. It is also the generalized version of the triangle
property shown in the arguments in [5]. In our argument, the property is generalized in
a bit tricky way to hold the latter arguments. Using the generalized triangle property,
we can prove the existence of special states called hidden states (Subsection 4.2). The
hidden states allow us to introduce a potential function Φ̃ for a pair of states (Subsection
4.3), and finally we show an upper bound on the non-atomic meeting times using the
potential function Φ̃.
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4.1 Hitting time of states and triangle property

For a pair of states s, s′, we define that the extended hitting time H̃(s, s′) is the expected
moves to reach the state s′ from the state s by an agent in G̃. The moves of the agent are
the same as the ones in the non-atomic moves in Section 2, specifically as follows: if its
state s is in V , then it moves to ssw ∈ Nas(s) with probability 1/ds for each w ∈ NG(v);
If its state s is sxy ∈ Sintm, then it moves to y as a move.

If s, s′ ∈ V holds, then H̃(s, s′) is twice of the value of the original hitting time
H(s, s′) in G, that is, H̃(s, s′) = 2H(s, s′). This is because, in the moves in G̃, the
agent should move twice to traverse an edge corresponding to G. If the starting point
is intermediate, that is, s = sxy ∈ Sintm and s′ ∈ V , then we have H̃(sxy, s

′) = 1 +
H̃(y, s′) = 1 + 2H(y, s′). The extended hitting time in this case can be also calculated
by the original hitting time. The remaining case is that the goal state is an intermediate
state, that is, s′ = sxy for sxy ∈ Sintm. In this case, to reach sxy the agent should
visit the original vertex x. Therefore, the following equality holds by the linearity of
expectation: H̃(s, sxy) = H̃(s, x) + H̃(x, sxy). Therefore, we should calculate the value
of H̃(x, sxy) for any x and sxy ∈ Nas(x).

Lemma 1. For each x ∈ V and sxy ∈ Sintm, we have

H̃(x, sxy) = 2dx − 1 +
∑

z∈NG(x)\{y}

H̃(z, x).

Proof. Let H̃(x, sxy) = T . At vertex x, the agent reaches the state sxy with the proba-
bility 1/dx. Otherwise, it moves z for z ∈ NG(x) \ {y} with the same probability with
two moves. After the latter case, the agent should return to the vertex x for reaching
the state sxy. Therefore, the value can be written the following recursive formula:

T =
1

dx



1 +
∑

z∈NG(x)\{y}

(2 + H̃(z, x) + T )



 .

Therefore we have

dx · T = 1 + 2dx − 2 +





∑

z∈NG(x)\{y}

H̃(z, x)



 + (dx − 1) · T

T = 2dx − 1 +
∑

z∈NG(x)\{y}

H̃(z, x).

Next, we prove the key property of the extended hitting times. Here we introduce
the original triangle property of the original hitting times.

Lemma 2 (From [5]). For any x, y, z ∈ V , we have

H(x, y) +H(y, z) +H(z, x) = H(x, z) +H(z, y) +H(y, x)
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Note that the left side of the equation is the expected time that a random walk
starting at x visits y then visits z, and returns to x, similarly to the right side of the
equation. While there may exist multiple generalizations of the property, we use the
following generalization of the triangle property to establish the latter argument of our
proof.

Lemma 3. For states x, y, z ∈ V ∪ Sintm, we have

H̃(x, y) + H̃(y, z) + H̃(z, x) = H̃(x, z) + H̃(z, y) + H̃(y, x)

Proof. To prove the lemma, we use the function f : V ∪ Sintm → V , where f(v) = v for
v ∈ V and f(sab) = a for sab ∈ Sintm. Using the function, we can rewrite the extended
hitting time as follows: For states s, s′ ∈ V ∪Sintm, H̃(s, s′) = H̃(s, f(s′))+ H̃(f(s′), s′).
Using the function, we rewrite the left side of the equation in the lemma as

H̃(x, y)+ H̃ (y, z) + H̃(z, x)

= H̃(x, f(y)) + H̃(f(y), y) + H̃(y, f(z)) + H̃(f(z), z)

+H̃(z, f(x)) + H̃(f(x), x)

= H̃(x, f(y)) + H̃(y, f(z)) + H̃(z, f(x))

+H̃(f(x), x) + H̃(f(y), y) + H̃(f(z), z).

Similarly, for the right side of the equation, we have

H̃(x, z) + H̃(z, y) + H̃(y, x) = H̃(x, f(z)) + H̃(z, f(y)) + H̃(y, f(x))

+H̃(f(x), x) + H̃(f(y), y) + H̃(f(z), z).

Therefore it is sufficient to show that H̃(x, f(y))+H̃(y, f(z))+H̃(z, f(x)) = H̃(x, f(z))+
H̃(z, f(y)) + H̃(y, f(x)). We then define another function g : V ∪ Sintm → V , which
returns v if the input is v ∈ V , and b if it is sab ∈ Sintm. Similarly for f , we have
H̃(s, s′) = H̃(s, g(s))+H̃(g(s), s′). Thus this proof is reduced to if the following equation
holds: H̃(g(x), f(y))+ H̃(g(y), f(z))+ H̃(g(z), f(x)) = H̃(g(x), f(z))+ H̃(g(z), f(y))+
H̃(g(y), f(x)). For the functions, it holds that g(x) = f(x) and g(x) is an original state.
Therefore, the last equation holds by the original triangle property of Lemma 2.

4.2 Hidden states

We define the following relation ≤EHT as follows: For any pair of states s, s′, s ≤EHT s′

holds if H̃(s, s′) ≤ H̃(s′, s) holds. It is also the extension of the relation ≤HT given
in [5]. In the proofs of [5] the relation for the original hitting times is defined as follows:
For any vertex v,w ∈ V , the relation v ≤HT w holds if H̃(v,w) ≤ H̃(w, v) holds. The
main purpose of the relations is to prove the existence of the hidden vertex (or state).
The hidden vertex in the original argument is the minimum vertex in the relation. It is
proven by showing the relation is transitive. We also prove the extended relation ≤EHT

is transitive, and prove the existence of the hidden state.
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Lemma 4. The relation ≤EHT is transitive. As a consequence, there is a state s ∈
V ∪ Sintm such that for any s′ ∈ V ∪ Sintm, it holds that s ≤EHT s′.

Proof. It is sufficient to show that for any states x, y, z ∈ V ∪ Sintm, if x ≤EHT y and
y ≤EHT z holds, then we have x ≤EHT z. By the assumption, we have H̃(x, y) ≤ H̃(y, x)
and H̃(y, z) ≤ H̃(z, y). Applying the triangle property for the states x, y, z of Lemma
3, we have

H̃(x, y) + H̃(y, z) + H̃(z, x) = H̃(x, z) + H̃(z, y) + H̃(y, x)

H̃(x, y)− H̃(y, x) + H̃(y, z)− H̃(z, y) = H̃(x, z)− H̃(z, x)

H̃(x, z)− H̃(z, x) ≤ 0

Therefore it holds that H̃(x, z) ≤ H̃(z, x), proving the lemma.

Then, we show that the hidden state(s) is intermediate. For any original state
v ∈ V , we show that swv ≤EHT v for any intermediate swv ∈ Sintm for w ∈ NG(v).
For any vertex v and any swv, we have H̃(swv, v) = H̃(swv, v) = 1 by definition, and
H̃(v, swv) = H̃(v, svw) = 2dv−1+

∑

z∈Nas(v)\{w} H̃(z, v). Since the graph G̃ is connected,

we have dv ≥ 1. Hence it holds that H̃(v, svw) ≥ 1. Therefore for v, swv, we have
swv ≤EHT v, as desired.

Proposition 1. An intermediate state is hidden.

4.3 Main argument

Now we define a potential function Φ̃. For each pair of states x, y and a hidden state stu,
we set the function Φ̃(x, y) = H̃(x, y) + H̃(y, stu) − H̃(stu, y). The function is derived
using the triangle property for states s, s′, stu as follows:

H̃(x, y) + H̃(y, stu) + H̃(stu, x) = H̃(x, stu) + H̃(stu, y) + H̃(y, x)

H̃(x, y) + H̃(y, stu)− H̃(stu, y) = H̃(y, x) + H̃(x, stu)− H̃(stu, x)

Therefore it holds that Φ̃(x, y) = Φ̃(y, x). Also, since the states stu is hidden, we
have that H̃(z, stu) − H̃(stu, z) ≥ 0 for any state z ∈ V ∪ Sintm. Thus we have the
following proposition, which is implicitly used in Theorem 3.

Proposition 2. Φ̃(x, y) ≥ 0 for any x, y ∈ V ∪ Sintm

Now we add some modifications for initial positions, define some notations, and
present the preliminary propositions/lemmas for the main proof. At first, we extend the
initial positions of the non-atomic meeting times, to the ones that include states from V ∪
Sintm. That is, we define that the starting states of the agents include the intermediate
states. In the following, we assume that any strategy S contains the intermediate states
as initial positions. Next, we define the optimal (longest) and deterministic strategy. A
strategy is deterministic, if for any pair s, s′ ∈ V ∪ Sintm, the moving agent is chosen
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with probability 1. Also, an strategy S is optimal, if for any pair s, s′ ∈ V ∪ Sintm, it
holds that M̃G(s, s

′) = M̃S(s, s
′).

We also define a value of configurations called destination value. For a configura-
tion (s1, s2), the value is defined according to the function g defined in the proof of
Lemma 3. Recall that g(s) = s if s = v ∈ V and g(sab) = b for sab ∈ Sintm. The
destination value of the configuration (s1, s2) is defined as d(s1, s2) = dist(s1, g(s1)) +
dist(g(s1), g(s2))+ dist(s2, g(s2)), where (1) dist(s, g(s)) = 1 if the state s is intermedi-
ate, and (2) dist(s, g(s)) = 0 if s ∈ V , and (3) for s, s′ ∈ V , dist(s, s′) is the hop-distance
of the vertices in G̃. Observe that d(s1, s2) ≥ d(g(s1), g(s2)) holds.

To prove the existence of the optimal and deterministic strategy, we first show the
following lemma. Let S(x, y) be the strategy that maximizes the non-atomic meeting
time starting at x, y ∈ V ∪ Sintm, i.e., M̃S(x,y)(x, y) = M̃G(x, y) holds. Its proof is
deferred to Appendix A.1.

Lemma 5. For any x, y ∈ V , suppose that S(x, y) moves the agent with the state x with

positive probability p > 0. Then, we have that

M̃S(x,y)(x, y) = 1 +
1

dx

∑

z∈Nas(x)

M̃G(z, y).

Lemma 6. For any G, there is an optimal and deterministic strategy S∗.

Proof. Using S(x, y), we define the strategy S∗ as follows: If the strategy S(x, y) moves
the agent at x at initial configuration (x, y) with the probability strictly greater than 0,
then the strategy S∗ moves x at (x, y). Otherwise if S(x, y) moves y with probability
1, then S∗ moves y. The strategy S∗ is created by conducting the above operation for
all pairs of states (x, y). Obviously, the strategy is deterministic. We argue that such
strategy S∗ is optimal.

Towards the contradiction, suppose that S∗ is not optimal. Then there is at least
one pair of states x, y such that M̃G(x, y)−M̃S∗(x, y) > 0 holds. Let α be the maximum
value of M̃G(x, y) − M̃S∗(x, y) among such pairs. We choose a pair x, y such that they
attain α and have the minimum destination value d(x, y) among the pairs that attain
the value α. It holds that x 6= y, since if x = y then M̃G(x, x) = M̃S∗(x, x) = 0. Assume
that in the strategy S(x, y) the agent in the state x is moved with positive probability
p > 0. Therefore, S∗ moves the agent in the state x with probability one. Hence, by
averaging the moves of the agent among the neighbors of the state x, we have

M̃S∗(x, y) = 1 +
1

dx





∑

z∈Nas(x)

M̃S∗(z, y)



 . (1)
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Using Lemma 5 and Equation (1), we can derive the following contradiction,

M̃S(x,y)(x, y) = 1 +
1

dx

∑

z∈Nas(x)

M̃G(z, y) (by Lemma 5)

= 1 +
1

dx

∑

z∈Nas(x)

(

M̃S∗(z, y) + α(z, y)
)

< 1 +
1

dx

∑

z∈Nas(x)

(

M̃S∗(z, y)
)

+ α

= M̃S∗(x, y) + α (by Equation 1)

= M̃G(x, y) = M̃S(x,y)(x, y),

where α(z, y) = M̃G(z, y)−M̃S(z,y)(z, y). The strict inequality holds because of the (x, y)
choice. That is, there is at least one adjacent state z′ ∈ Nas(x) such that d(z, y) < d(x, y)
by the definition of d. Therefore, at such a configuration (z′, y) we have α(z′, y) < α.

The other case is that in the strategy S(x, y), the adversary moves the agent in
the state y with probability 1. In this case, we can directly have M̃S(x,y)(x, y) =

1 + 1
dy

∑

z∈Nas(y)
M̃G(x, z). Also, M̃S∗(x, y) = 1 + 1

dy

(

∑

z∈Nas(y)
M̃S∗(x, z)

)

holds.

Therefore, we can derive a contradiction similarly, proving the lemma.

For the extended hitting times, the following proposition holds.

Proposition 3. For any pair of states s1, s2 ∈ V ∪ Sintm such that s1 6= s2, we have

H̃(s1, s2) = 1 +
1

ds1

∑

z∈Nas(s1)

H̃(z, s2).

Thus we have the following equations for the potential function Φ̃, whose proof is
deferred to Appendix A.2.

Lemma 7. For any pair of states s1, s2 such that s1 6= s2, we have

Φ̃(s1, s2) = 1 +
1

ds1

∑

z∈Nas(s1)

Φ̃(z, s2) = 1 +
1

ds2

∑

z∈Nas(s2)

Φ̃(z, s1).

A similar proposition holds for the non-atomic meeting times.

Proposition 4. For any pair of states s1, s2 such that s1 6= s2 and an optimal and de-

terministic strategy S∗, suppose that the agent with state s1 is moved in the configuration

(s1, s2) by the strategy. Then, we have

M̃G(s1, s2) = 1 +
1

ds1

∑

z∈Nas(s1)

M̃G(z, s2).

Otherwise, if the strategy moves the agent with state s2, then we have

M̃G(s1, s2) = 1 +
1

ds2

∑

z∈Nas(s2)

M̃G(z, s1).
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Note that these two cases exclusively hold, that is, both equations do not hold at a
time. This fact holds since in the case that the adversary moves the agent x, we cannot
take the average among the adjacent states of y.

Finally, we can claim the main argument.

Theorem 3. Let G be any connected and undirected graph, and let stu be a hidden state

of non-atomic random walks of G̃. Then, for every pair of states x, y, we have

M̃G(x, y) ≤ Φ̃(x, y),

where

Φ̃(x, y) = H̃(x, y) + H̃(y, stu)− H̃(stu, y).

Proof. To prove the theorem by contradiction, assume that there is a pair of states x, y
such that M̃G(x, y)− Φ̃(x, y) > 0. Let βmax be the maximum value of such differences.
Let β(x, y) be the difference M̃G(x, y) − Φ̃(x, y) at the configuration (x, y). We choose
a configuration (x, y) such that it obtains minimum d(x, y) among the configurations
that achieve βmax. Without loss of generality, suppose that the strategy S∗ moves the
agent in the state x. Since M̃G(x, x) = 0 and Φ̃(x, x) ≥ 0 by Proposition 2, it holds that
x 6= y. Using the average argument, we have the following contradiction:

M̃G(x, y) = Φ̃(x, y) + βmax

= 1 +
1

dx

∑

z∈Nas(x)

Φ̃(z, y) + βmax

> 1 +
1

dx

∑

z∈Nas(x)

(

Φ̃(z, y) + β(z, y)
)

= 1 +
1

dx

∑

z∈Nas(x)

M̃G(z, y) = M̃G(x, y).

The second equality uses Lemma 7, and the last equality uses Proposition 4. The
inequality is strict, since there is an adjacent state z′ ∈ Nas(x) such that d(z′, y) <
d(x, y), therefore we have β(z′, y) < βmax.

As a corollary of Theorem 3, we can prove Theorem 1, however, whose proof is
deferred to Appendix A.3 due to the space constraint.

5 Discussion

In this section, we examine the upper bounds for several graph classes, namely graphs
with bounded degrees including lines and rings, and complete graphs. We also consider
the general graphs. Let ∆ be the maximum degree of the vertices in V , and HG =
maxx,y∈V H(x, y).
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• In general graphs, we have the following upper bound. Since in the last summation
of the upper bound of Theorem 1, the number of sums is upper bounded by the max
degree of the initial positions x, y, we have the general upper bound of O(∆HG).
Also, HG = O(n3) holds for any graph G, which is shown by the paper [2], we have
O(∆n3) = O(n4). For the meeting time of atomic random walks, in the paper [17]
the authors show that MG(x, y) = O(n3) for any graph G and any initial positions
x, y.

• For any graph G with bounded degrees for any initial position x, y, the meeting
time M̃(x, y) is bounded by O(HG). Especially in the lines and rings, since the
hitting time H(z, u) for z ∈ NG(u) is O(n), we have M̃G(x, y) ≤ 4HG +O(n).

• The complete graphs are an instance in which the meeting times are different
between atomic and non-atomic random walks. In the original (atomic) ran-
dom walks, the meeting times for the complete graph with n vertices is Θ(n),
while the one for the non-atomic random walk is Θ(n2). For the original ran-
dom walks, the O(n)-upper bound is derived by the original upper bound in [5].
Also, Ω(n)-lower bound is given by the following strategy: for the agents start-
ing at different vertices, the strategy repeatedly chooses the same agent until
they meet. Obviously, the expected time to meet is Θ(n) with the adversary
using the strategy. Since there is a strategy that obtains Θ(n) time to meet,
the meeting time of the worst strategy is at least Ω(n). Similarly, in the non-
atomic random walks, an O(n2) upper bound of the meeting time is given by
calculating the potential function Φ̃. Since any intermediate state is hidden by
the symmetry of the topology, we can choose any intermediate state as a hid-
den state, suppose sh. For any pair of intermediate states sab, scd, we have
H̃(sab, scd) = 1 + H̃(b, c) + H̃(c, scd) = O(n + H̃(c, scd)) = O(n2). Also, the
upper bound is derived by the following strategy: we let the agents start at sab
and sh, and the strategy repeatedly moves the agent starting at sab until they
meet. This takes expected Θ(n2) time to meet, and as a consequence, the meeting
time of the worst strategy is at least Ω(n2).

6 Conclusion

In this paper, we revisit the adversarial meeting time of the random walks by two agents
and consider the non-atomic version of the random walks. For the extended version of
the random walks, we give a new upper bound of the worst-case expected time to meet
in a given graph G. We also show for atomic and non-atomic random walks, the meeting
times are different in the complete graphs.
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A Omitted Proofs

A.1 Proof of Lemma 5

Lemma 5. For any x, y ∈ V , suppose that S(x, y) moves the agent with the state x with

positive probability p > 0. Then, we have that

M̃S(x,y)(x, y) = 1 +
1

dx

∑

z∈Nas(x)

M̃G(z, y).

Proof. In the strategy S(x, y), the adversary moves the agent in the state x with prob-
ability p or the one in the state y with probability 1− p for p > 0. Since M̃S(x,y)(x, y) =

M̃G(x, y) holds, we have

M̃S(x,y)(x, y) = 1 +
p

dx





∑

z∈Nas(x)

M̃G(z, y)



 +
1− p

dy





∑

z∈Nas(y)

M̃G(z, x)



 . (2)

For the proof, we first show that M̃S(x,y)(x, y) ≥ 1 + 1
dx

∑

z∈Nas(x)
M̃G(z, y). Since

S∗ moves the agent with the state x with probability 1, we have M̃S∗(x, y) = 1 +
(1/dx)

∑

z∈Nas(x)
M̃G(z, y). Also, since S(x, y) is the worst strategy when the initial

position is x, y, we have M̃S∗(x, y) ≤ M̃S(x,y)(x, y). Therefore, M̃S(x,y)(x, y) ≥ 1 +
1
dx

∑

z∈Nas(x)
M̃G(z, y) holds.

Then, we show that M̃S(x,y)(x, y) ≤ 1 + 1
dx

∑

z∈Nas(x)
M̃G(z, y). To prove it by

contradiction, suppose that M̃S(x,y)(x, y) > 1+ 1
dx

∑

z∈Nas(x)
M̃G(z, y). Then by applying
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the equation (2) to the assumption, we have

M̃S(x,y)(x, y) > 1 +
1

dx

∑

z∈Nas(x)

M̃G(z, y)

p

dx





∑

z∈Nas(x)

M̃G(z, y)



 +
1− p

dy





∑

z∈Nas(y)

M̃G(z, x)



 >
1

dx

∑

z∈Nas(x)

M̃G(z, y)

1

dy

∑

z∈Nas(y)

M̃G(z, x) >
1

dx

∑

z∈Nas(x)

M̃G(z, y).

The last inequality contradicts the fact that M̃G(x, y) is the worst expected time, since
by moving the agent with the state y with probability 1, we have a superior strategy
than M̃G(x, y). Therefore we have that M̃S(x,y)(x, y) ≤ 1+ 1

dx

∑

z∈Nas(x)
M̃G(z, y). Using

the inequalities, the lemma holds.

A.2 Proof of Lemma 7

Lemma 7. For any pair of states s1, s2 such that s1 6= s2, we have

Φ̃(s1, s2) = 1 +
1

ds1

∑

z∈Nas(s1)

Φ̃(z, s2) = 1 +
1

ds2

∑

z∈Nas(s2)

Φ̃(z, s1).

Proof. By the definition of Φ̃ and proposition 3, we have

Φ̃(s1, s2) = H̃(s1, s2) + H̃(s2, stu)− H̃(stu, s2)

= 1 +
1

ds1





∑

z∈Nas(s1)

H̃(z, s2)



+ H̃(s2, stu)− H̃(stu, s2)

= 1 +
1

ds1





∑

z∈Nas(s1)

(

H̃(z, s2) + H̃(s2, stu)− H̃(stu, s2)
)





= 1 +
1

ds1

∑

z∈Nas(s1)

Φ̃(z, s2).

By the similar argument, Φ̃(s2, s1) = 1 + 1
ds2

∑

z∈Nas(s2)
Φ̃(z, s1) holds. Therefore, by

the equation Φ̃(s1, s2) = Φ̃(s2, s1), the lemma holds.

A.3 Proof of Theorem 1

Theorem 1. For a pair of x, y ∈ V , suppose that the agents are initially located at ver-

tices x, y and conduct the non-atomic random walks under the strategy of the adversarial

scheduler. Then, there is a pair of vertices t, u ∈ V such that

M̃G(x, y) ≤ 2



H(x, y) +H(y, u)−H(u, y) + du − 1 +
∑

z∈NG(u)\t

H(z, u)
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holds, where du is the degree of the original vertex u ∈ V .

of Theorem 1. For x, y ∈ V and stu ∈ Sintm, we can write the potential function as

Φ̃(x, y) = H̃(x, y) + H̃(y, stu)− H̃(stu, y)

= H̃(x, y) + H̃(y, sut)− H̃(stu, y)

= H̃(x, y) + H̃(y, u) + H̃(u, sut)− H̃(u, y)− 1

= H̃(x, y) + H̃(y, u)− H̃(u, y) + 2(du − 1) +
∑

z∈NG(u)\{t}

H̃(z, u)

= 2



H(x, y) +H(y, u)−H(u, y) + du − 1 +
∑

z∈NG(u)\{t}

H(z, u)



 .

In the fourth equality, we use Lemma 1, and in the last equality we use the fact that
H̃(x, y) = 2H(x, y) for x, y ∈ V .
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