
Time-optimal geodesic mutual visibility of robots
on grids within minimum area

Serafino Ciceronea, Alessia Di Fonsoa, Gabriele Di Stefanoa, Alfredo Navarrab

aDipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università degli Studi dell’Aquila,
Via Veotio, I-67100, L’Aquila, Italy

bDipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Via Vanvitelli 1, I-06123, Perugia, Italy

Abstract

The Mutual Visibility is a well-known problem in the context of mobile robots. For a set
of n robots disposed in the Euclidean plane, it asks for moving the robots without collisions
so as to achieve a placement ensuring that no three robots are collinear. For robots moving
on graphs, we consider the Geodesic Mutual Visibility (GMV) problem. Robots move
along the edges of the graph, without collisions, so as to occupy some vertices that guarantee
they become pairwise geodesic mutually visible. This means that there is a shortest path
(i.e., a “geodesic”) between each pair of robots along which no other robots reside. We
study this problem in the context of finite and infinite square grids, for robots operating
under the standard Look-Compute-Move model. In both scenarios, we provide resolution
algorithms along with formal correctness proofs, highlighting the most relevant peculiarities
arising within the different contexts, while optimizing the time complexity.
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1. Introduction

We consider swarm robotics concerning autonomous, identical and homogeneous robots
operating in cyclic operations. Robots are equipped with sensors and motion actuators and
operate in standard Look-Compute-Move cycles (see, e.g., [1, 2, 3]). When activated, in one
cycle a robot takes a snapshot of the current global configuration (Look) in terms of relative
robots’ positions, according to its own local coordinate system. Successively, in the Compute
phase, it decides whether to move toward a specific direction or not and in the positive case
it moves (Move). A Look-Compute-Move cycle forms a computational cycle of a robot. What
is computable by such entities has been the object of extensive research within distributed
computing, see, e.g., [2, 4, 5, 6, 7, 8, 9, 10].
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One of the basic tasks for mobile robots, intended as points in the plane, is certainly the
requirement to achieve a placement so as no three of them are collinear. Furthermore, during
the whole process, no two robots must occupy the same position concurrently, i.e., collisions
must be avoided. This is known as the Mutual Visibility problem. The idea is that, if
three robots are collinear, the one in the middle may obstruct the reciprocal visibility of the
other two.

Mutual Visibility has been largely investigated in recent years in many forms, subject to
different assumptions. One main distinction within the Look-Compute-Move model concerns
the level of synchronicity assumed among robots. Robots are assumed to be synchronous [11],
i.e., they are always all active and perform each computational cycle within the same amount
of time; semi-synchronous [12, 13, 14, 15], i.e., robots are not always all active but all active
robots always perform their computational cycle within a same amount of time, after which
a new subset of robots can be activated; asynchronous [13, 15, 16, 17, 18, 19, 20], i.e., each
robot can be activated at any time and the duration of its computational cycle is finite
but unknown. Robots are generally endowed with visible lights of various colors useful to
encode some information (to be maintained across different computational cycles and/or
communicated to other robots), whereas in [14] robots are considered completely oblivious,
i.e., without any memory about past events. Usually, robots are considered as points in the
plane but in [21], where robots are considered “fat”, i.e., occupying some space modeled as
disks in the plane. Furthermore, instead of moving freely in the Euclidean plane, in [16, 20]
robots are constrained to move along the edges of a graph embedded in the plane and still
the mutual visibility is defined according to the collinearity of the robots in the plane.

In this paper, we study the Geodesic Mutual Visibility problem (GMV, for short):
starting from a configuration composed of robots located on distinct vertices of an arbitrary
graph, within finite time the robots must reach, without collisions, a configuration where
they all are in geodesic mutual visibility. Robots are in geodesic mutual visibility if they
are pairwise mutually visible, and two robots on a graph are mutually visible if there is a
shortest path (i.e., a “geodesic”) between them along which no other robots reside. This
problem has been introduced in [22] and can be thought of as a possible counterpart to the
Mutual Visibility for robots moving in a discrete environment.

While this concept is interesting by itself, its study is motivated by the fact that robots,
after reaching a GMV condition, e.g., can communicate in an efficient and “confidential”
way, by exchanging messages through the vertices of the graph that do not pass through
vertices occupied by other robots or can reach any other robot along a shortest path without
collisions. Concerning the last motivation, in [23], it is studied the Complete Visitability
problem of repositioning a given number of robots on the vertices of a graph so that each
robot has a path to all others without visiting an intermediate vertex occupied by any other
robot. In that work, the required paths are not shortest paths and the studied graphs are
restricted to infinite square and hexagonal grids, both embedded in the Euclidean plane.

The property of mutual visibility at the basis of GMV has been investigated in [24] from
a purely theoretical-graphic point of view: the goal is to understand how many robots, at
most, can potentially be placed inside of a graph G keeping the mutual visibility relation
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true. Such a maximum number of robots has been denoted by µ(G). In a general graph
G, it turns out to be NP-complete to compute µ(G), whereas it has been shown that there
are exact formulas for special graph classes like paths, cycles, trees, block graphs, co-graphs,
and grids [24, 25]. For instance, within a path P , at most two robots can be placed, i.e.,
µ(P ) = 2, whereas for a ring R, µ(R) = 3. In a finite square grid G of N > 3 rows and M > 3
columns, µ(G) = 2min{M,N}, whereas for a tree T , it has been proven that µ(T ) = ℓ(T ),
with ℓ(T ) being the number of leaves of T .

1.1. Results
After recalling the problem of achieving GMV starting from a configuration of robots

disposed on general graphs, we focus on square grids. The relevance of studying grids is
certainly motivated by their peculiarity in representing a discretization of the Euclidean
plane. Robots are assumed to have no explicit means of communication or memory of past
events (we consider oblivious robots without lights). Hence, the movement of a robot does
rely only on local computations on the basis of the snapshot acquired in the Look phase.
Furthermore, in order to approach the problem, we make use of the methodology proposed
in [1] that helps in formalizing the resolution algorithms as well as the related correctness
proofs.

When studying GMV on square grids embedded in the plane, we add the further require-
ment to obtain a placement of the robots so as that the final minimum bounding rectangle
enclosing all the robots is of minimum area. This area-constrained version of GMV is de-
noted as GMVarea. We first solve GMVarea on finite square grids embedded in the plane, and
then provide relevant intuitions for extending the results to infinite grids. In particular, we
provide time-optimal algorithms that are able to solve GMVarea in both finite and infinite
grid graphs. These algorithms work for synchronous robots endowed with chirality (i.e., a
common handedness).

1.2. Outline
The rest of the paper is organized as follows. Section 2 introduces the robot model we have

adopted. Section 3 formalizes the GMV problem and revises a resolution methodology to
approach problems within the Look-Compute-Move context. Section 4 deals with GMVarea

on grids. It starts with some notation specific to the grid case, and then the resolution
algorithm along with its correctness proof is intuitively and formally provided according to
the recalled methodology. The section terminates with a description of the extension of the
algorithm to deal with infinite grids. Section 5 concludes the paper, posing possible future
research directions.

2. Robot model

Robots are modeled according to OBLOT (e.g., see [26] for a survey), one of the classical
theoretical models for swarm robotics. In this model, robots are computational entities that
can move in some environment (a graph in our case) and can be characterized according to
a large spectrum of settings. Each setting is defined by specific choices among a range of

3



possibilities, with respect to a fundamental component - time synchronization - as well as
other important elements, like memory, orientation and mobility. We assume such settings
at minimum as follows:

• Anonymous : no unique identifiers;

• Autonomous : no centralized control;

• Dimensionless : no occupancy constraints, no volume, modeled as entities located on
vertices of a graph;

• Oblivious : no memory of past events;

• Homogeneous : they all execute the same deterministic1 algorithm;

• Silent : no means of direct communication;

• Disoriented : no common coordinate system.

Each robot in the system has sensory capabilities allowing it to determine the location of
other robots in the graph, relative to its own location. Each robot refers in fact to a Local
Coordinate System (LCS) that might be different from robot to robot. Each robot follows
an identical algorithm that is pre-programmed into the robot. The behaviour of each robot
can be described according to the sequence of four states: Wait, Look, Compute, and Move.
Such states form a computational cycle (or briefly a cycle) of a robot.

1. Wait. The robot is idle. A robot cannot stay indefinitely idle;
2. Look. The robot observes the environment by activating its sensors which will return

a snapshot of the positions of all other robots with respect to its own LCS. Each robot
is viewed as a point;

3. Compute. The robot performs a local computation according to a deterministic al-
gorithm A (we also say that the robot executes A). The algorithm is the same for
all robots, and the result of the Compute phase is a destination point. Actually, for
robots on graphs, the result of this phase either is the vertex where the robot currently
resides or it is a vertex among those at one hop distance (i.e., at most one edge can be
traversed);

4. Move. If the destination point is the current vertex where r resides, r performs a nil
movement (i.e., it does not move); otherwise, it moves to the adjacent vertex selected.

When a robot is in Wait, we say it is inactive, otherwise it is active. In the literature, the
computational cycle is simply referred to as the Look-Compute-Move (LCM) cycle, as during
the Wait phase a robot is inactive.

Since robots are oblivious, they have no memory of past events. This implies that the
Compute phase is based only on what is determined in their current cycle (in particular,

1No randomization features are allowed.
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from the snapshot acquired in the current Look phase). A data structure containing all the
information elaborated from the current snapshot represents what later is called the view of
a robot. Since each robot refers to its own LCS, the view cannot exploit absolute orienteering
but it is based on relative positions of robots.

Concerning the movements, in the graph environment moves are always considered as
instantaneous. This results in always perceiving robots on vertices and never on edges during
Look phases. Hence, robots cannot be seen while moving, but only at the moment they may
start moving or when they arrived. Two or more robots can move toward the same vertex
at the same time, thus creating what it called a multiplicity (i.e., a vertex occupied by more
than one robot). When undesired, a multiplicity is usually referred to as a collision.

In the literature, different characterizations of the environment have been considered
according to whether robots are fully-synchronous, semi-synchronous, or asynchronous
(cf. [27, 26]). These synchronization models are defined as follows:

• Fully-Synchronous (FSync): All robots are always active, continuously executing in a
synchronized way their LCM-cycles. Hence the time can be logically divided into global
rounds. In each round, all the robots obtain a snapshot of the environment, compute
on the basis of the obtained snapshot and perform their computed move;

• Semi-Synchronous (SSync): robots are synchronized as in FSync but not all robots
are necessarily activated during a LCM-cycle;

• Asynchronous (Async): Robots are activated independently, and the duration of each
phase is finite but unpredictable. As a result, robots do not have a common notion of
time.

In Async, the amount of time to complete a full LCM-cycle is assumed to be finite but
unpredictable. Moreover, in the SSync and Async cases, it is usually assumed the existence
of an adversary which determines the computational cycle’s timing. Such timing is assumed
to be fair, that is, each robot performs its LCM-cycle within finite time and infinitely often.
Without such an assumption the adversary may prevent some robots from ever moving.

It is worth remarking that the three synchronization schedulers induce the following
hierarchy (see [28]): FSync robots are more powerful (i.e., they can solve more tasks) than
SSync robots, that in turn are more powerful than Async robots. This simply follows by
observing that the adversary can control more parameters in Async than in SSync, and
more in SSync than in FSync. In other words, protocols designed for Async robots also
work for SSync and FSync robots. On the contrary, any impossibility result proved for
FSync robots also holds for SSync, and Async robots.

Whatever the assumed scheduler is, the activations of the robots according to any algo-
rithm A determine a sequence of specific time instants t0 < t1 < t2 < . . . during which at
least one robot is activated. Apart from the Async case where the notion of time is not
shared by robots, for the other types of schedulers robots are synchronized. In the FSync
case, each robot is active at each time unit. In the SSync, we assume that at least one
robot is active at each time t. If C(t) denotes the configuration observed by some robots at
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time t during their Look phase, then an execution of A from an initial configuration C is
a sequence of configurations E : C(t0), C(t1), . . ., where C(t0) = C and C(ti+1) is obtained
from C(ti) by moving at least one robot (which is active at time ti) according to the result
of the Compute phase as implemented by A. Note that, in SSync or Async there exists
more than one execution of A from C(t0) depending on the activation of the robots or the
duration of the phases, whereas in FSync the execution is unique as it always involves all
robots in all time instants.

3. Problem formulation and resolution methodology

The topology where robots are placed is represented by a simple and connected graph
G = (V,E). A function λ : V → N gives the number of robots on each vertex of G, and we
call C = (G, λ) a configuration whenever

∑
v∈V λ(v) is bounded and greater than zero. In

this paper, we introduce the Geodesic Mutual Visibility (GMV, for short) problem:

Problem: GMV

Input: A configuration C = (G,λ) in which each robot lies on a different vertex of a graph G.

Goal: Design a deterministic distributed algorithm working under the LCM model that, starting
from C, brings all robots on distinct vertices – without generating collisions – in order
to obtain the geodesic mutual visibility, that is there is a geodesic between any pair of
robots where no other robots reside.

Since the definition of mutual visibility requires that robots are located in distinct ver-
tices, then the above definition requires that any possible solving algorithm does not create
collisions. In fact, as the robots are anonymous and homogeneous, regardless of the syn-
chronicity model, the adversary will be able to keep the multiplicity unchanged and no
algorithm will ever be able to separate the robots. It is worth remarking that this is a spe-
cial case with respect to the general situation in which a configuration contains equivalent
robots. The next paragraph provides a formal definition of such an equivalence relationship.

3.1. Symmetric configurations
Two undirected graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there is a bijection

φ from V to V ′ such that {u, v} ∈ E iff {φ(u), φ(v)} ∈ E ′. An automorphism on a graph
G is an isomorphism from G to itself, that is a permutation of the vertices of G that maps
edges to edges and non-edges to non-edges. The set of all automorphisms of G forms a
group called automorphism group of G and is denoted by Aut(G). If |Aut(G)| = 1, that is
G admits only the identity automorphism, then the graph G is called asymmetric, otherwise
it is called symmetric. Two vertices u, v ∈ V are equivalent if there exists an automorphism
φ ∈ Aut(G) such that φ(u) = v.

The concept of isomorphism can be extended to configurations in a natural way: two
configurations C = (G, λ) and C ′ = (G′, λ′) are isomorphic if G and G′ are isomorphic
via a bijection φ and λ(v) = λ′(φ(v)) for each vertex v in G. An automorphism on C is an
isomorphism from C to itself and the set of all automorphisms of C forms a group that we call
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automorphism group of C and denote by Aut(C). Analogously to graphs, if |Aut(C)| = 1,
we say that the configuration C is asymmetric, otherwise it is symmetric. In a configuration
C, two robots r1 and r2, respectively located on distinct vertices vr1 and vr2 , are equivalent
if there exists φ ∈ Aut(C) such that vr2 = φ(vr1). Note that λ(vr1) = λ(vr2) whenever vr1
and vr2 are equivalent.

From an algorithmic point of view, it is important to remark that when φ ∈ Aut(C) makes
the elements of V ′ ⊆ V pairwise equivalent, then a robot r1 cannot distinguish its position
vr1 ∈ V ′ from that of a robot r2 located at vertex vr2 = φ(vr1) ∈ V ′. As a consequence,
no algorithm can distinguish between two equivalent robots, and then it cannot avoid the
adversary activates two equivalent robots at the same time and that they perform the same
move simultaneously.

3.2. Methodology
The algorithms proposed in this paper are designed according to the methodology pro-

posed in [1]. Assume that an algorithm A must be designed to resolve a generic problem P .
Here we briefly summarize how A can be designed according to that methodology.

In general, a single robot has rather weak capabilities with respect to P it is asked to
solve along with other robots (we recall that robots have no direct means of communication).
For this reason, A should be based on a preliminary decomposition approach: P should be
divided into a set of sub-problems so that each sub-problem is simple enough to be thought
of as a “task” to be performed by (a subset of) robots. This subdivision could require
several steps before obtaining the definition of such simple tasks, thus generating a sort of
hierarchical structure. Assume now that P is decomposed into simple tasks T1, T2, . . . , Tk,
where one of them is the terminal one, i.e. the robots recognize that the current configuration
is the one in which P is solved and do not make any moves.

According to the LCM model, during the Compute phase, each robot must be able to
recognize the task to be performed just according to the configuration perceived during the
Look phase. This recognition can be performed by providing A with a predicate Pi for each
task Ti. Given the perceived configuration, the predicate Pi that results to be true reveals
to robots that the corresponding task Ti is the task to be performed. With predicates Pi

well-formed, algorithm A could be used in the Compute phase as follows: – if a robot r
executing algorithm A detects that predicate Pi holds, then r simply performs a move mi

associated with task Ti. In order to make this approach valid, the well-formed predicates
must guarantee the following properties:

Prop1: each Pi must be computable on the configuration C perceived in each Look phase;

Prop2: Pi ∧ Pj = false, for each i ̸= j; this property allows robots to exactly recognize the
task to be performed;

Prop3: for each possible perceived configuration C, there must exist a predicate Pi evaluated
true.

Concerning the definition of the predicates, it is reasonable to assume that each task Ti

requires some precondition to be verified. Hence, in general, to define the predicates we need:
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• basic variables that capture metric/topological/numerical/ordinal aspects of the input
configuration which are relevant for the used strategy and that can be evaluated by
each robot on the basis of its view;

• composed variables that express the preconditions of each task Ti.

If we assume that prei is the composed variable that represents the preconditions of Pi, for
each 1 ≤ i ≤ k, then predicate Pi can be defined as follow:

Pi = prei ∧ ¬(prei+1 ∨ prei+2 ∨ . . . ∨ prek) (1)

This definition ensures that any predicate fulfils Property Prop2 (it is directly implied by
Equation 1).

Consider now an execution of A, and assume that a task Ti is performed with respect to
the current configuration C. If A transforms C into C ′ and this new configuration has to be
assigned the task Tj, then we say that A can generate a transition from Ti to Tj. The set of
all possible transitions of A determines a directed graph called transition graph. Of course,
the terminal task among T1, T2, . . . , Tk must be a sink node in the transition graph.

According to the proposed methodology, in [1] it is shown that the correctness of A can
be obtained by proving that all the following properties hold:

H1: for each task Ti, the tasks reachable from Ti by means of transitions are exactly those
represented in the transition graph (i.e., the transition graph is correct);

H2: possible cycles in the transition graph (including self-loops) must be performed a finite
number of times – apart for the self-loop induced by a terminal task;

H3: unsolvable configurations are not generated by A (with respect to GMV, for instance,
this means that A does not generate multiplicities, i.e., it is collision-free).

4. Solving GMV on square grids

In this section, we solve GMV for robots moving on finite or infinite square grids embed-
ded in the plane. Moreover, we add the further requirement to obtain a placement of the
robots so as that the final minimum bounding rectangle enclosing all the robots is of mini-
mum area. This area-constrained GMV problem is denoted as GMVarea. Such a requirement
avoids ‘trivial’ solutions – in terms of feasibility, especially in the case of infinite grids. In
fact, by aligning all the robots along a diagonal, GMV would be solved. In a finite grid G,
instead, this is not always possible, depending on the number of robots. Hence, different
approaches are required anyway. Moreover, when the number of robots is exactly µ(G), then
the minimum area constraint is forced.

While considering synchronous robots endowed with chirality (i.e., they share a common
handedness), we provide time-optimal algorithms solving GMVarea in both finite and infinite
grid graphs.
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Figure 1: Examples of mbr(R).

4.1. Preliminary concepts and notation
Given a graph G, let d(u, v) be the distance in G between two vertices u, v ∈ V in

terms of the minimum number of edges traversed. We extend the notion of distance to
robots: given ri, rj ∈ R, d(ri, rj) represents the distance between the vertices in which the
robots reside. D(r) denotes the sum of distances of r ∈ C from any other robot, that is
D(r) =

∑
ri∈C d(r, ri). A square tessellation of the Euclidean plane is the covering of the

plane using squares of side length 1, called tiles, with no overlaps and in which the corners
of squares are identically arranged. Let S be the infinite lattice formed by the vertices of the
square tessellation. The graph called infinite grid graph, and denoted by G∞, is such that
its vertices are the points in S and its edges connect vertices that are distance 1 apart. In this
section, G denotes a finite grid graph formed by M ·N vertices (i.e., informally generated by
M “rows” and N “columns”). By mbr(R), we denote the minimum bounding rectangle
of R, that is the smallest rectangle (with sides parallel to the edges of G) enclosing all the
robots (cf. Figure 1). Note that mbr(R) is unique. By c(R), we denote the center of mbr(R).

Symmetric configurations. As chirality is assumed, then the only possible symmetries
that can occur in our setting are rotations of 90 or 180 degrees. A rotation is defined by
a center c and a minimum angle of rotation α ∈ {90, 180, 360} working as follows: if the
configuration is rotated around c by an angle α, then a configuration coincident with itself
is obtained. The order of a configuration is given by 360/α. A configuration is rotational
if its order is 2 or 4. The symmetricity of a configuration C, denoted as ρ(C), is equal to
its order, unless its center is occupied by one robot, in which case ρ(C) = 1. Clearly, any
asymmetric configuration C implies ρ(C) = 1.

The type of center of a rotational configuration C is denoted by tc(C) and is equal
to 1, 2, or 3 according to whether the center of rotation is on a vertex, on a median point
of an edge, or on the center of a square of the tessellation forming a grid, respectively (cf.
Figure 2).

The view of robots. In A, robots encode the perceived configuration into a binary string
called lexicographically smallest string and denoted as LSS (R) (cf. [3, 29]). To define
how robots compute the string, we first analyze the case in which mbr(R) is a square: the grid
enclosed by mbr(R) is analyzed row by row or column by column starting from a corner and
proceeding clockwise, and 1 or 0 corresponds to the presence or the absence, respectively,
of a robot for each encountered vertex. This produces a string assigned to the starting
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Figure 2: Examples for the notion of center of three rotational configurations: in order, tc(C1) = 1,
tc(C2) = 2, and tc(C3) = 3.

(1, 1)

c1
c2

(M, 1)

(1, N)

(M,N)

Figure 3: Examples of special-paths with respect to different configurations.

corner, and four strings in total are generated. If mbr(R) is a rectangle, then the approach
is restricted to the two strings generated along the smallest sides. The lexicographically
smallest string is the LSS (R). Note that, if two strings obtained from opposite corners along
opposite directions are equal, then the configuration is rotational, otherwise it is asymmetric.
The robot(s) with minimum view is the one with minimum position in LSS (R). The first
three configurations shown in Figure 2 can be also used for providing examples about the
view. In particular: in the first case, we have ρ(C) = 1 and LSS (R) = 0110 1001 1000 0100
0011; in the second case, we have ρ(C) = 2 and LSS (R) = 00110 01001 10001 10010 01100;
in the last case, we have ρ(C) = 4 and LSS (R) = 0110 1001 1001 0110.
Regions. Our algorithms assume that robots are assigned to regions of mbr(R) as follows
(cf. Figure 3). If mbr(R) is a square, the four regions are those obtained by drawing the
two diagonals of mbr(R) that meet at c(R). If mbr(R) is a rectangle, then from each of
the vertices positioned on the shorter side of mbr(R) starts a line at 45 degrees toward the
interior of mbr(R) - these two pairs of lines meet at two points (say c1(R) and c2(R)) which
are then joined by a segment.

In each of the four regions, it is possible to define a special-path that starts from a corner
v and goes along most of the vertices in the region. To simplify the description of such a path,
assume that mbr(R) coincides with a sub-grid with M rows and N columns, and the vertices
are denoted as (i, j), with 1 ≤ i ≤M and 1 ≤ j ≤ N . The special-path that starts at (1, 1) is
made of a sequence of “traits” defined as follows: the first trait is (1, 1), (1, 2), . . . , (1, N − 1),
the second is (2, N − 1), (2, N − 2), . . . , (2, 3), the third is (3, 3), (3, 4), . . . , (3, N − 3), and
so on. This process ends after ⌊min{M,N}/2⌋ traits are formed in each region, and the
special-path is obtained by composing, in order, the traits defined in each region (see the
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Figure 4: Patterns F for asymmetric input configurations with n = 8, 10, 12 robots. For n = 7, 9, 11,
the position represented in white is not considered in F .

red lines in Figure 3).

4.2. An algorithm for GMVarea

In this section, we present a resolution algorithm for the GMVarea problem, when con-
sidering n ≥ 7 fully synchronous robots endowed with chirality and moving on a finite grid
graph G with M,N ≥ ⌈n

2
⌉ rows and columns. Note that the constraints on the number of

rows and columns depend on the fact that on each row (or column) it is possible to place at
most two robots, otherwise the outermost robots on the row (or column) are not in mutual
visibility. Concerning the number of robots, we omit the cases with n < 7 as they require
just tedious and specific arguments that cannot be generalized. Hence, we prefer to cut them
out of the discussion, even though they can be solved.

Our approach is to first design a specific algorithm Aasym that solves GMVarea only for
asymmetric configurations. Later, we will describe (1) how Aasym can be extended to a
general algorithm A that also handles symmetric configurations, and (2) how, in turn, A can
be modified into an algorithm A∞ that solves the same problem for each input configuration
defined on infinite grids.

The pattern formation approach. Aasym follows the “pattern formation” approach.
In the general pattern formation problem, robots belonging to an initial configuration C are
required to arrange themselves in order to form a configuration F which is provided as input.
In [30, 31], it is shown that F can be formed if and only if ρ(C) divides ρ(F ). Hence, here
we show some patterns that can be provided as input to Aasym so that:

1. ρ(C) divides ρ(F );
2. if ρ(C) ∈ {2, 4} then tc(C) = tc(F );
3. the positions specified by F solve GMVarea.

The first requirement trivially holds since we are assuming that C is asymmetric and
hence ρ(C) = 1. The second is required since the center of symmetric configurations is an
invariant for synchronous robots. Concerning the last requirement, in Figure 4 we show some
examples for F when 7 ≤ n ≤ 12. In [24], it is shown how F is defined for any n and it is
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also proved that the elements in these patterns always solve GMV for the grid G. Finally,
since in F there are two robots per row and per column, and since in mbr(F ) all the rows
and columns are occupied (for n even), it can be easily observed that F solves GMVarea.

High level description of the algorithm. The algorithm is designed according to
the methodology recalled in Section 3.2 that allows dividing the problem GMVarea into a
set of sub-problems that are simple enough to be thought as “tasks” to be performed by (a
subset of) robots.

As a first sub-problem, the algorithm Aasym selects a single robot, called guard rg, to
occupy a corner of the grid G. As robots are disoriented (only sharing chirality), the po-
sitioning of the guard allows the creation of a common reference system used by robots in
the successive stages of the algorithm. Given chirality, the position of rg allows robots to
identify and enumerate rows and columns. rg is not moved until the final stage of the algo-
rithm and guarantees that the configuration C is kept asymmetric during the movements of
the other robots. Given the common reference system, all robots agree on the embedding
of the pattern F , which is realized by placing the corner of F with the maximum view in
correspondence with the corner of G in which rg resides. This sub-problem is solved by
tasks T1a, T1b, or T1c. In task T2, the algorithm moves the robots so as to obtain the suitable
number of robots for each row according to pattern F , that is, two robots per row. The
only exception comes when n is odd, in which case the last row will require just one robot.
During task T3, robots move toward their final target along rows, except for rg. When T3

ends, n − 1 robots are in place according to the final pattern F . During task T4, rg moves
from the corner of G toward its final target, placed on a neighbouring vertex, hence leading
to the final configuration in one step.

4.3. Detailed description of the tasks
In this section, we provide all the necessary details for each of the designed tasks.

Task T1. Here the goal is to select a single robot rg to occupy a corner of the grid G. This
task is divided into three sub-tasks based on the number of robots occupying the perimeter
– and in particular the corners, of G. Let RS be the number of robots on the sides of G,
and let RC be the number of robots on the corners of G.

Task T1a starts when there are no robots on the perimeter of G and selects the robot rg
such that D(r) is maximum, with r of minimum view in case of ties. The planned move is
m1a: rg moves toward the closest side of G. At the end of the task, rg is on the perimeter of
G.

Task T1b activates when the following precondition holds:

pre1b ≡ RS ≥ 1 ∧ RC = 0.

In this case, there is more than one robot on the perimeter of G but none on corners. The
task selects the robot rg located on a side of G closest to a corner of G, with the minimum
view in case of ties, to move toward a corner of G. Move m1b is defined as follows: rg moves
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Algorithm 1 MoveAlong special-path
Input: a configuration C
1: if p = 0 then
2: Let S be the occupied special-path whose first robot has the minimum view.
3: move: all the robots on a special-subpath and not on S move toward the neighbor vertex

along the special-path.
4: if p = 1 then
5: Let I be the fully-occupied special-path
6: move: all the robots on a special-subpath and not on I move toward the neighbor vertex

along the special-path
7: if p = 2 then
8: move: the robot on a corner of G, with an empty neighbor, moves toward it.

toward the closest corner of G – arbitrarily chosen if more than one. At the end of task T1b,
a single robot rg occupies a corner of the grid G.

Task T1c activates when the following precondition holds:

pre1c ≡ RC > 1.

In this case, all the robots on the corners but one move away from the corners. The moves
are specified by Algorithm 1. This algorithm uses some additional definitions. In particular,
a special-path is said occupied if there is a robot on its corner. A special-path is said to be
fully-occupied if robots are placed on all its vertices. Given an occupied special-path P , a
special-subpath is a fully occupied sub-path of P starting from the corner of P . Finally, p
denotes the number of fully-occupied special-paths.

At line 1, the algorithm checks if there are no fully-occupied special-paths. In this
case, there are at least two occupied special-paths. The robot, occupying the corner, with
minimum view, is elected as guard rg. The move is designed to empty all the other corners
of G except for the one occupied by rg. In each occupied special-paths, but the one to which
rg belongs to, the robots on the corners, and those in front of them along the special-paths
until the first empty vertex, move forward along the special-path. At line 4, there is exactly
one fully-occupied special path. Therefore, robots on the fully-occupied special-path are
kept still. Concerning the other occupied special-paths, the robots on corners, and those in
front of them until the first empty vertex, move forward along the special-path. At line 7
there is more than one fully-occupied special-path. Actually, this condition can occur only
for a 4× 4 grid G with two fully-occupied special-paths located on two successive corners of
G. Therefore, there is a single robot r, on a corner of G, with an empty neighbour. Then, r
moves toward that neighbour.

Note that, Algorithm 1 is designed so that, in a robot cycle, a configuration is obtained
where exactly one corner of G is occupied.

Task T2. In task T2, the algorithm moves the robots to place the suitable number of robots
for each row according to the pattern F , starting from the first row, while possible spare rows
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remain empty. At the end of the task, for each row corresponding to those of the pattern F ,
there are two robots, except when the number of robots n is odd, in which case in the last
row is placed a single robot. The position of rg allows robots to identify the embedding of F
and hence the corresponding rows and columns. We assume, without loss of generality, that
rg is positioned on the upper-right corner of G. rg identifies the first row. In this task, we
define c(r) and l(r) as the column and the row, respectively, where robot r resides. Columns
are numbered from left to right, therefore l(rg) = 1 and c(rg) = N . Let tl be the number
of targets on row l in F , let (t1, t2, . . . , tM) be the vector of the number of targets, and let
(n1, n2, . . . , nM) be the number of robots on each of the M rows of G.

For each row l, the algorithm computes the number of exceeding robots above and below
l with respect to the number of targets, to determine the number of robots that need to
leave row l. Given a row l, let Rl be the number of robots on rows from 1 to l − 1, and
let R′

l be the number of robots on rows from l + 1 to M . Accordingly, let Tl and T ′
l be

the number of targets above and below the line l, respectively. We define the subtraction
operation ´ between two natural numbers a and b as a ´ b = 0 if a < b, a ´ b = a − b,
otherwise. Concerning to the number of targets, given a row l, let Bl be the number of
exceeding robots above l, l included, and let Al be the number of exceeding robots below l,
l included. Formally, Bl = (Rl + nl) ´ (Tl + tl) and Al = (R′

l + nl) ´ (T ′
l + tl).

Let RDl = nl − (nl ´ Bl) be the number of robots that must move downward and
RUl = nl − (nl ´ Al) be the number of robots that must move upward from row l. Task T2

activates when precondition pre2 becomes true:

pre2 ≡ RC = 1 ∧ ∃ l ∈ 1, . . . ,M : Bl ̸= 0 ∨ Al ̸= 0.

The precondition identifies the configuration in which the guard rg is placed on a corner of
G and there is at least a row in which there is an excess of robots. We define outermost
any robot that resides on the first or the last column of G. Let Ul (Dl, resp.) be a set of
robots on row l chosen to move upward (downward, resp.) and let U (D, resp.) be the list
of sets Ul (Dl, resp.) with l ∈ {1, . . . ,M}. The robots that move upward or downward are
chosen as described in Algorithm 2.

For each row l, at lines 4–7, the algorithm computes the number of exceeding robots
Bl , Al , and the number of robots that must leave the row RDl and RUl. Then, it checks
whether the number M of rows of G is greater than the number k of rows of F . The algorithm
selects RDl robots to move downward, starting from the first column, and Al robots to move
upward, starting from the N -th column.

Line 11 corresponds to the case in which M = k, the algorithm selects RDl robots to
move downward, starting from the second column and RUl robots to move upward, starting
from the N − 1 column. This avoids the selection of robots that may move in one of the
corners of G. At line 14, the algorithm checks if a robot r selected to move upward on row 2,
occupies vertex (2, 1). In the positive case, r is removed from U2. This avoids r to move to
a corner of G. At line 15, the algorithm returns the sets U of robots chosen to move upward
for each row, and the sets D of robots chosen to move downward. Given a robot r on a row
l, let AlignedUp be the Boolean variable that is true when there exists another robot r′ such
that (Ul+1 = {r′} and c(r) = c(r′)) holds, and AlignedDown be the Boolean variable that
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Algorithm 2 SelectRobots
Input: C ′ = (C \ rg)
1: Let U = {U1, U2, . . . , UM} be a list of empty sets
2: Let D = {D1, D2, . . . , DM} be a list of empty sets
3: for all l ∈ (1 . . .m) do
4: Bl ← (Rl + nl) ´ (Tl + tl)
5: Al ← (R′

l + nl) ´ (T ′
l + tl)

6: RDl ← nl − (nl ´ Bl)
7: RUl ← nl − (nl ´ Al)
8: if M > ⌈n/2⌉ then
9: Let Ul be the set of RUl robots of row l selected from right

10: Let Dl be the set of RDl robots of row l selected from left
11: else
12: Let Ul be the set of RUl robots of row l from right and not outermost
13: Let Dl be the set of RDl robots of row l from left and not outermost
14: if U2 = {r} and l(r) = 2 and c(r) = 1 then U2 = ∅
15: return U , D

is true when there exists another robot r′′ such that (Dl−1 = {r′′} and c(r) = c(r′′)) holds.
Let t(r) be the target of a robot r defined as follows:

t(r) =



(l(r) + 1, c(r)) if r ∈ Dl

(l(r)− 1, c(r)) if r ∈ Ul

(l(r), c(r)− 1) if (AlignedUp or AlignedDown) and c(r) ≥ N/2

(l(r), c(r) + 1) if (AlignedUp or AlignedDown) and c(r) < N/2

(2, 2) if RU2 = 1 and ∃! r on l2 | c(r) = 1 and l(r) = 2

(l(r), c(r)) otherwise

(2)

The first two cases reported in the definition of Equation (2) identify the target of robot
r when is selected to move downward (upward, resp.). The target of r is one row below
(above, resp.) its current position and on the same column. The third and the fourth cases
refer to the occurrence in which there is a robot r1, positioned in the same column of r, that
is selected to move upward or downward. Then, the target of r is on a neighbouring vertex,
on the same row, closer to the center of G. The fifth case reports the target of a robot r
when positioned on the second row and first column, and one robot is required to move on
the first row. To avoid occupying a corner of G, the target of r is the neighbouring vertex to
r on its same row. In all other cases, the target of a robot r is its current position. Robots
move according to Algorithm 3.

Each robot runs Algorithm 3 independently. At line 1, a robot calls procedure Selec-
tRobots on C ′ = {C \ rg} and acquires the sets of robots selected to move upward and
downward, respectively. At lines 2-3, a robot computes the targets of all the robots. At line
4, the robot checks if it is not selected to move upward and if any couple of robots have the
same target. This test avoids collisions. Possible conflicting moves are shown in Figure 5.(b).
Two robots can have the same target when they are in the same column at distance two and
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Algorithm 3 MoveRobot
Input: a configuration C, guard rg
1: U , D = SelectRobots(C \ rg)
2: for all robots r do
3: Compute t(r)
4: if r /∈ Ul(r) or ∀ r1, r2, t(r1) ̸= t(r2) then
5: move to t(r)

a) b) c)

r3

r4

r5

r6

r7

r8

r1

r2

Figure 5: The three possible movement combinations as described in task T2. Grey circles represent
robots, arrows represent the direction of movements, and small dots are robot targets.

the robot with the smallest row index is selected to move downward, while the other upward.
An example is shown in Figure 5.(b) for robots r3 and r4. The only other possible collision
is for the robot r1 having t(r1) = (2, 2) (case five in Equation (2)). There might be a robot
r2 with l(r2) = 3 and c(r2) = 2 selected to move upward. This configuration is shown in
Figure 5.(b). In all these cases, to avoid any collision, the upward movement is performed
only when there are no robots having the same target, otherwise the robot stays still. Each
conflict is resolved in a robot cycle since downward and side movements are always allowed.

Figure 5 shows the three types of possible movements performed by robots. Robots move
concurrently without collisions. Figure 5.(a) shows robots moving downward or upward and
having different targets. Figure 5.(b) shows two robots having the same target. To resolve
the conflict, the upward movement is stopped for a cycle. Figure 5.(c) shows the cases in
which a robot is selected to move upward (r8) or downward (r5) on a target vertex that is
already occupied by another robot (r7, r6 respectively). Robots r5 and r8 perform their move
while r6 and r7 move on a neighbouring vertex on the same row and closer to the center of
G. Since movements are concurrent (robots are synchronous), collisions are avoided.

Task T3. This task is designed to bring n − 1 robots to their final target except for rg.
This task activates when task T2 is over, therefore pre3 holds:

pre3 ≡ RC = 1 ∧ ∀ row l : (Bl = 0 ∧ Al = 0)

Given the embedding of F on G, in each row l, there are tl targets and nl robots, with tl=nl,
therefore robots identify their final target and move toward it without collisions. Given the
particular shape of F , there are at most two targets per row, therefore we can state the move
m3 as follows: for each row, the rightmost robot moves toward the rightmost target and the
leftmost robot moves toward the leftmost target except for rg.
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sub-problems task precondition transitions

Placement of the guard robot
T1a true T1a, T1b

T1b RS ≥ 1 ∧ RC = 0 T1b, T2, T3, T4

T1c RC > 1 T2, T3, T4

Bringing tl robots for each row T2
RC = 1 ∧ ∃ l ∈ {1 . . .m} :
Bl ̸= 0 ∨ Al ̸= 0

T2, T3, T4

Bring n− 1 robots to final target T3
RC = 1 ∧ ∀ row l (Bl = 0 ∧
Al = 0) T3, T4

Bring the guard robot to final target T4 n− 1 robots on final target T5

Termination T5 F formed T5

Table 1: The table summarizes the phases of the algorithm: the first column reports a summary of
the task’s goal, the second column reports the task’s name, the third column reports, for each task
the precondition to enter the task, the last column reports the transitions among tasks.

Task T4. During task T4, the guard rg moves from the corner of G and goes toward its
final target. This task activates when pre4 holds:

pre4 ≡ n− 1 robots but rg match their final target.

The corresponding move is called m4 and is defined as follows: rg moves toward its final
target. The embedding of F guarantees that the final target of rg is on its neighbouring
vertex on row 1. Therefore, in one step, rg reaches its target. After task T4, the pattern is
completed.

Task T5. This is the task in which each robot recognizes that the pattern is formed and no
more movements are required. Each robot performs the null movement keeping the current
position. The precondition is

pre5 ≡ F is formed.

Although our algorithm is designed so as to form a specific pattern F that solves GMVarea,
pre5 could be simply stated as ‘GMVarea solved’. In this way, robots would stop moving as
soon as the problem is solved and not necessarily when the provided pattern F is formed.
However, since the formation of F is usually required, for the ease of the discussion we prefer
the current form for pre5.

4.4. Formalization and correctness
We have already remarked that the algorithm has been designed according to the method-

ology recalled in Section 3.2. Accordingly, Table 1 summarizes the designed tasks, the cor-
responding preconditions, and the possible transitions from each task. Furthermore, all the
transitions are shown in the transition graph depicted in Figure 6.

We observe that the predicates used in the algorithm are all well-formed since they
guarantee that Prop1, Prop2, and Prop3 are all valid. In particular, Prop1 follows from
the definition of the simple preconditions expressed in Table 1, Prop2 holds because each

17



T1a T1b

T2

T4

T3

T5

T1c

Figure 6: Transition graph (derived from Table 1).

predicate Pi has been defined as indicated in Equation 1, and Prop3 directly follows from the
definitions of Pi (if P5, P4, . . . , P1b are all false, then P1a holds).

Concerning the correctness of Aasym, still using the methodology in the remainder of this
section we show that properties H1, H2, and H3 hold by providing a specific lemma for each
task. Finally, such lemmata will be used in a final theorem responsible for assessing the
correctness of Aasym.

Lemma 1. Let C be a configuration in T1a. From C, Aasym eventually leads to a configuration
belonging to T1b.

Proof. In task T1a, Algorithm Aasym selects a robot denoted as rg, called guard, such that
D(r) is maximum and with the minimum view in case of ties. Let us analyze properties Hi,
for 1 ≤ i ≤ 3, separately.

H1: In task T1a, no robots are on a side of the grid G, nor on its corners and rg moves toward
the closest side of G, D(R) increases for rg, therefore, rg is repeatedly selected. When
rg reaches a side of G, it is the only robot on a side of G and RS = 1. Still, there are
no robots on corners of G therefore RC = 0, pre1b becomes true and the configuration
is in T1b, since the preconditions of all the other tasks, except for T5, require at least
one robot on a corner of G, and T5 requires more than one robot on the sides of G.

H2: At each cycle, rg decreases its distance from the closest side of mbr(C) by one. Therefore,
within a finite number of LCM cycles, it reaches its target and the configuration is not
in T1a anymore.

H3: Since rg is the robot such that D(r) is maximum, it must be on a side of mbr(C). While
moving toward the closest side of G, rg increases its distance from the other robots
therefore it cannot meet any other robot on its way toward the target and no collision
can occur.
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Lemma 2. Let C be a configuration in T1b. From C, Aasym eventually leads to a configuration
belonging to T2, T3 or T4.

Proof. In task T1b, Algorithm Aasym selects a robot denoted as rg on the perimeter of G,
closest to a corner of G, and having the minimum view in case of ties. Let us analyze
properties Hi, for 1 ≤ i ≤ 3, separately.

H1: At the beginning of the task, there are no robots on a corner of G, and rg moves toward
the closest corner. As rg moves toward its target, the distance from it decreases,
therefore rg is repeatedly selected. When it reaches its target, there is a single robot
on a corner of G and RC = 1. Then, the obtained configuration can be in T2, T3

or T4, all configurations in which the rg is placed on a corner of G. The obtained
configuration is not in T5 because the pattern F has no targets on the corners of G.

H2: At each cycle, rg decreases its distance from the closest corner of G by one. Therefore,
within a finite number of LCM cycles, rg reaches its target and the configuration is not
in T1b anymore.

H3: Since rg is the robot closest to the corner of G it cannot meet any other robot on its
way toward the target and no collision can occur.

Lemma 3. Let C be a configuration in T1c. From C, Aasym eventually leads to a configuration
belonging to T2, T3 or T4.

Proof. In task T1c, Algorithm 1 moves robots along special-paths. Let p be the number
of fully-occupied special-paths. p cannot be greater than two and it can be two only when
k = min(N,M) = 4. In fact, the length of a special-path is k2/4 when k is even and (k2−1)/4
when k is odd, whereas the maximum number of robots is 2k. For k even, we have that
pk2/4 = 2k, that is pk = 8. Hence, if k > 4 there can be only one fully-occupied special-path,
otherwise k = 4 and there can be two fully-occupied special-paths. Similar analysis can be
done for k odd that leads to pk < 8, then there can be only one fully-occupied special-path.

When p = 2, the special-paths must be on successive corners of G otherwise the config-
uration would be symmetric. Let us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

H1: When T1c starts, RC ≥ 1. After the move, the guard rg is placed and RC = 1.
Therefore, the configuration is either in T2, T3 or T4 and it is not in T5 because the
pattern F has no targets on corners of G.

H2: In task T1c, all the corners of G but one are emptied in a robot cycle.

H3: The special-paths are designed so that they are disjoint. During task T1c, only robots
on special-subpaths move along the special-path. These are the robots on a corner of
G and the ones in front of it until the first empty vertex. Since robots are synchronous,
all these robots move forward by an edge, hence no collision can occur.
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Lemma 4. Let C be a configuration in T2. From C, Aasym eventually leads to a configuration
belonging to T3 or T4.

Proof. During task T2, robots move to place two robots per row. The only exception occurs
when n is odd, in which case the last row requires just one robot. In particular, each robot
runs Algorithm 3 in which they recall Algorithm 2 that selects the robots moving upward and
downward for each row. The first row is identified by the position of rg on the upper-right
corner of G. Let us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

H1: The choice of robots and their movements avoid robots occupying more than a corner
of G. Indeed, Algorithm 2 selects robots moving upward and downward. When the
number of rows M of the grid G are equal to ⌈n/2⌉, the algorithm selects robots
between the second and the (N − 1)-th column. The number of robots on the grid
ensures that, even in a configuration in which robots in each row, from the second to
the (M − 1)-th one, occupy the first and the last columns, there are at least other two
robots if n is odd and three if n is even that can be selected to move, able to finalize
task T2. Since no robots can move on a corner of G, then the configuration is not in
T1a, T1b nor in T1c.
When M > ⌈n/2⌉, robots do not move toward the last row of G, therefore they cannot
occupy the corners of the M -th row of G.
If a robot r1 occupies the vertex with coordinates (2, 1), RU2 = 1, and it is the only
robot on row 2, to avoid occupying the corner of G with coordinates (1, 1), the target
of r1 is (2, 2) according to the fifth case of Equation (2). If a robot r2 occupies the
vertex with coordinates (2, N) and it is selected to move upward, r2 moves on its target
(1, N) while the guard robot rg moves to coordinates (1, N − 1) according to the third
case of Equation (2). Then, the role of rg is taken by robot r2 and a single corner of G
is occupied by a robot. In both cases, the configuration is not in T1c because a single
corner of G remains occupied. Moreover, the configuration is neither in T1a nor T1b

since rg is not moved, except for the case in which it is replaced by another robot.
During task T2, the guard rg is placed on a corner of G and RC = 1. At each cycle,
Bl becomes 0 for the first row l for which Bl ̸= 0. In at most M − 1 steps, Bl = 0 and
Al = 0 for each l in at most 2(M − 1) cycles, given that the upward movement can
be prevented for a cycle when two robots have the same target. Examples of robots
having the same target are depicted in Figure 5.(b). In both cases, the algorithm stops
any upward movement, while allowing side and downward movements, see line 4 of
Algorithm 3. At the successive cycle, robots are on the same column and both move.
Once solved, no other conflict can occur in the same row. Then, in a finite number
of cycles, Al becomes 0 for each l. At the end of the task, there are two robots on
each row except when n is odd, in which case the last row contains a single robot.
Precondition pre3 becomes true, eventually, and the configuration is in T3. If n − 1
robots match their target, the configuration is in T4 and it is not in T5 because the
pattern F has no targets on corners of G.
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H2: As described in H1, at the end of this task, Bl = 0 ∧ Al = 0 for each row l. This condition
is reached in at most 2(M − 1) cycles since the upward and downward movements are
concurrent and no other configuration will be in T2 anymore.

H3: When the number of robots selected to move downward on row l is such that RDl ≥ 2,
the exceeding number of robots on l will saturate all the targets of row l+1. Therefore,
in the same cycle, any robots on row l + 1 occupying the targets of robots on row l
must also move downward. As a consequence, any robot selected to move downward
on row l will reach a free target. When RDl = 1, a robot r moves on row l + 1 and at
the same time, the robots on row l + 1 will also move downward leaving at most one
robot r1. If r is on the same column of robot r1, r moves downward while r1 moves to
its neighbour closer to the center of G (see Figure 5.(c)). Note that, the neighbours
of r1 will be empty since all other robots on row l + 1 left the row. Moreover, the
choice of the neighbour toward the center avoids r1 going to one of the corners of G,
see cases three and four of Equation (2). The same reasoning applies to robots moving
upward. When there are robots having the same target, see robots in Figure5.(b) for
reference, the algorithm detects this condition at line 4, and the upward movement is
not performed. The robots are allowed to move downward or to the side, therefore
collisions are avoided.

Lemma 5. Let C be a configuration in T3. From C, Aasym eventually leads to a configuration
belonging to T4.

Proof. Task T3 is designed to bring n− 1 robots to their final target on F except for rg. Let
us analyze properties Hi, for 1 ≤ i ≤ 3, separately.

H1: During this task, there are rl robots and tl targets per row. In each row, robots move
toward their final target on their same row. The task continues until n− 1 robots are
correctly placed according to the pattern, pre4 becomes true and the configuration is
in T4.

H2: At each LCM cycle, in each row, robots reduce the distance from their target by one until
they reach the target.

H3: There are at most two robots per row and two targets per row. Therefore, the rightmost
robot goes to the rightmost target and the leftmost robot goes toward the leftmost
target. In this way, collisions are avoided.

Lemma 6. Let C be a configuration in T4. From C, Aasym eventually leads to a configuration
belonging to T5.
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Proof. In task T4, n− 1 robots are correctly positioned according to the pattern except for
rg. From this configuration, rg moves toward its final target, in a single LCM cycle. Let us
analyze properties Hi, for 1 ≤ i ≤ 3, separately.

H1: As rg moves, it matches its target on F , then the pattern is formed, pre5 becomes true
and the configuration is in T5.

H2: The embedding of the pattern F guarantees that the target of rg is at distance one from
the corner of G in which it resides, therefore in one LCM cycle the task is over.

H3: All robots, except for rg, are matched and perform the nil movement, no other robots
are on the target of rg given the definition of m4, therefore no collision can occur.

In the following, we state our main result in terms of time required by the algorithm to
solve the problem GMVarea. Time is calculated using the number of required LCM cycles given
that robots are synchronous. Let L be the side of the smallest square that can contain both
the initial configuration and target configuration. Note that, any algorithm requires at least
O(L) LCM cycles to solve GMVarea. Our algorithm solves GMVarea in O(L) LCM cycles which
is time optimal. Our result is stated in the following theorem:

Theorem 1. Aasym is a time-optimal algorithm that solves GMVarea in each asymmetric
configuration C defined on a finite grid.

Proof. Lemmata 1-6 ensure that properties H1, H2, and H3 hold for each task T1a, T1b, . . . , T5.
Then, all the transitions are those reported in Table 1 and depicted in Figure 6; the generated
configurations can remain in the same task only for a finite number of cycles; and the
movements of the robots are all collision-free. Lemmata 1-6 also show that from a given
task only subsequent tasks can be reached, or pre5 eventually holds (and hence Aasym is
solved). This formally implies that, for each initial configuration C and for each execution
E : C = C(t0), C(t1), C(t2), . . . of Aasym, there exists a finite time tj > 0 such that C(tj) is
similar to the pattern to be formed in the GMVarea problem and C(tk) = C(tj) for each time
tk ≥ tj.

Concerning the time required by Aasym, it is calculated using the number of required LCM
cycles, as robots are synchronous. Recall that L is the side of the smallest square that can
contain both the initial configuration and the target configuration. Tasks T1a and T1b require
O(L) LCM cycles since a robot must move for O(max{N,M}) edges in each of them. Task
T1c requires exactly one LCM cycle. By the proof given in Lemma 4, robots complete Task
T2 in at most 2(M − 1) LCM cycles, that is in O(L) time. Task T3 requires at most O(N)
LCM cycles, i.e. O(L) time. Task T4 requires exactly one LCM cycle. Then, Algorithm Aasym

requires a total of O(L) LCM cycles, hence it is time optimal since no algorithm can solve
GMVarea in less than O(L) LCM cycles.
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4.5. The case of symmetric configurations and infinite grids
In this section, we discuss (1) how Aasym can be extended to a general algorithm A able

to handle also symmetric configurations, and (2) how, in turn, A can be modified into an
algorithm A∞ that solves the same problem defined on the infinite grid G∞.

Symmetric configurations. We first explain how to solve symmetric initial configura-
tions with ρ(C) = 1, then those with ρ(C) ∈ {2, 4}. If C is a symmetric configuration with
ρ(C) = 1, then there exists a robot rc located at the center c of C, and for C ′ = {C \ rc},
ρ(C ′) ∈ {2, 4}. To make the configuration asymmetric, A must move rc out of c (symmetry-
breaking move). To this end, when rc has an empty neighbour – arbitrarily chosen if more
than one – then rc moves toward it. If all the four neighbours of rc are occupied but there
is at least an empty vertex on the same row or column of rc, the neighbors of rc and the
robots in front of them until the first empty vertex, move along the row or column. As a
result, a neighbour of rc will eventually be emptied. Then, the symmetry-breaking move
can be applied. If all the vertices on the same row and column of rc are occupied, then all
other vertices except one (if any) must be empty. Therefore the four neighbor robots of rc
move toward a vertex placed on the right with respect to c, if empty. Again, a neighbour of
rc will eventually be emptied and the symmetry-breaking move can be applied. When the
configuration is made asymmetric, Aasym runs on C and GMVarea is solved.

Consider now C with ρ(C) ∈ {2, 4}. In these cases, the configurations is divided into
rectangular sectors, i.e., regions of G which are equivalent to rotations. Then, A instantiates
Aasym in each sector according to suitably chosen patterns.

We now explain how the subdivision into sectors is performed. Given the symmetry of
the configuration, the algorithm A selects ρ(C) robots as guards and places each of them
on different corners of the grid. The placement is done as in Aasym by means of either tasks
T1a and T1b or T1c. Given the placement of the guards, robots identify and enumerate rows
and columns, as done in Section 4.2, and agree on how to subdivide G into ρ(F ) sectors
according to values of ρ(C), of |R| mod 4, and the type of center tc(C).

For configurations having ρ(C) = 4 the configuration is divided into four disjoint sectors
(cf. Figure 7): for centers tc(C) = 1, each orthogonal line originating from the center is
associated to the sector on its left, for centers of type tc(C) = 3, sectors are obtained with
two orthogonal lines passing through the center of the configuration. When ρ(C) = 2 two
sectors are obtained with a line parallel to the rows of G passing through c (cf. Figures 8
and 9). Note that, when tc(C) = 1, the line belongs to both sectors. In so doing, sectors
keep a rectangular shape and Aasym can be applied to each of them.

We now explain how patterns are selected and embedded. Figures 7, 8, and 9 also
illustrate some examples concerning the optimal patterns for all cases and for specific values
of n. From those examples, patterns F for larger values of n can be easily obtained by
suitably enlarging the provided patterns (detailed instructions can be found in [24]). Since
robots in C are synchronous, irrespective of the algorithm operating on C, the center c of
the configuration is invariant, therefore robots agree on the embedding of F by identifying
its center with c and placing the ρ(F ) corners of F with the maximum view closest to the
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Figure 7: Patterns F for ρ(C) = 4: left tc(C) = 1, right tc(C) = 3.

Figure 8: Patterns F for ρ(C) = 2 and |R| mod 4 = 0: left tc(C) = 1, middle tc(C) = 2, right
tc(C) = 3.

ρ(C) guard robots. F is selected so that ρ(C) divides ρ(F ) and tc(F ) = tc(C), and the
placement of robots in F solves GMVarea.

As pointed out before, each sector contains a sub-configuration that is asymmetric, then
A instantiates Aasym in each sector while the definitions of functions Al, Bl, RDl, and RUl

apply to each sector. Note that the algorithm works correctly even for configurations having
ρ(C) = 2 and tc(C) = 1 where the two sub-grids, in which the Aasym runs independently,
share the central row of G. In particular, the number of robots and targets is computed by
each instance of Aasym only considering those lying on the half of the central row closest to
the guard. Note that, the center is never considered by the computation as there is neither
a target nor a single robot there. If a robot from a sector, say the first one, moves on the
central row, it may fall into the half row belonging to the other sector, say the second one,
but its equivalent robot in the second sector would move in the opposite direction entering
the half row belonging to the first sector and the number of robots in each sector is kept. In
such situations, two robots may move and collide on the center of C, c(R). In this case, we
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Figure 9: Patterns F for ρ(C) = 2 and |R| mod 4 = 2: left tc(C) = 1, middle tc(C) = 2, right
tc(C) = 3.

need to slightly modify Aasym: robots are prevented from moving on c(R) while other robots
will eventually move on the central row.

Another difference with Aasym, is the movement of the guard robot toward its final target
in F during task T4. In this case, rg is not one step away from its target as in the asymmetric
case, given the embedding of F into the center of G. Move m4 works also in A, but it is
completed in more than one LCM cycle.

Infinite grids. To obtain A∞, it is sufficient to make small changes to tasks T1a, T1b,
and T4. In Aasym, task T1a selects a single robot rg to occupy a corner of G. Since G∞
does not have corners, A∞ selects rg as in T1a and then moves it to a distance D ≥ 3 ·
max{w(C ′), w(F )}, where C ′ = {C \ rg}, and w(C ′), w(F ) are the longest sides of mbr(C ′)
and mbr(F ), respectively. In task T1b, rg must be chosen as the robot with a distance D
from C ′, and it moves toward a corner of C. In T2, the first row is identified as the first
row of C ′ occupied by a robot, approaching C ′ from rg. The embedding on F is achieved by
matching the corner of F with the maximum view in correspondence with the corner of C ′

on the first row and having the same column of rg. Tasks T2 and T3 are unchanged, while in
task T4, rg takes D LCM cycles to move toward its final target in F .

5. Conclusion

We have studied the Geodesic Mutual Visibility problem in the context of robots
moving along the edges of a (finite or infinite) grid and operating under the LCM model.
Regarding capabilities, robots are rather weak, as they are oblivious and without any direct
means of communication. Robots are considered to be synchronous and endowed with chi-
rality. We have shown that GMVarea can be solved by a time-optimal distributed algorithm.

This work opens a wide research area concerning GMV on other graph topologies or
even on general graphs. However, difficulties may arise in moving robots in the presence of
symmetries. Then, the study of GMV in asymmetric graphs or graphs with a limited number
of symmetries deserves main attention. Other directions concern deeper investigations into
the different types of schedulers: synchronous, semi-synchronous or asynchronous.
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