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Abstract. Uncertainty quantification is an important tool for improv-
ing the trustworthiness and clinical usefulness of medical imaging seg-
mentation models, and many techniques exist for quantifying segmenta-
tion uncertainty. However, popular segmentation losses such as Dice loss
lead to poorly calibrated models and silent failure in uncertainty maps.
We compare common proper scoring rule based losses, which encourage
well-calibrated models, to Dice loss and calibrated Dice loss variants,
for white matter hyperintensity (WMH) segmentation in FLAIR and
T1w MRI. We show that scoring rules yield strong performance (e.g.,
Spherical-TopK: Dice of 0.763, vs 0.717 for Dice loss) and low WMH
instance detection failure rate in axial slices (Logarithmic yields 11%
missing instances in the uncertainty map vs 28% for Dice). Furthermore,
proper scoring rule methods do not exhibit the performance degradation
in calibration error andWMH burden prediction of Dice loss in lowWMH
burden patients. Finally, we show temperature scaling is insufficient to
overcome the drawbacks of Dice loss.

Keywords: Scoring Functions · Uncertainty Quantification · White Mat-
ter Hyperintensities.

1 Introduction

Uncertainty quantification is an important consideration for improving the trust
and utility of existing AI tools, particularly for downstream clinical tasks in
medical segmentation settings. However, the most common choices of loss func-
tion used to train medical imaging segmentation methods can result in poorly
calibrated models [28]. Calibration measures how well a model’s predictions of
an outcome match the probability of that outcome occurring in the real world.
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In this work, we assess the impact of loss function choice on the calibration
of segmentation models for white matter hyperintensities (WMH). WMH are a
clinical feature common in brain magnetic resonance imaging (MRI) of elderly
individuals, and a neuroradiological feature of small vessel disease (SVD) [26].
WMH pose a difficult segmentation challenge, due to their spatial and structural
heterogeneity as well as inherent aleatoric uncertainty due to unclear borders[19]
and subjectivity in identifying deep isolated small WMH clusters. Therefore, var-
ious methods have been developed to segment WMH[3], with neural networks
(NNs) showing strong performance[5]. Our contributions are: 1) Proper scoring
functions (a measure for evaluating predictive distributions that reward cali-
brated probabilities) consistently yield well calibrated models and surprisingly
yield stronger Dice scores for WMH segmentation than the common Dice loss.
2) We demonstrate that Dice loss is poorly calibrated and attempts to correct
Dice loss are insufficient, yielding large absolute volume differences (AVD) in
patients with low WMH burden. 3) Proper scoring rules yield uncertainty maps
that detect a greater proportion of small WMH instances in axial slices.

2 Background

Scoring functions are a class of functions that reward a model for outputting
probabilities consistent with the true event probabilities [13]. Specifically, they
provide a numerical score S(P,Q) for a predictive distribution P under a target
distribution Q. Scoring functions are proper if S(Q,Q) ≥ S(P,Q) for all P , Q.
Scoring functions are often used for ex-post evaluation of models to determine
which model is best calibrated. However, we can use these directly as loss func-
tions [7] to reward a well calibrated segmentation model by minimising the loss

LS = 1
N

∑N
i=1 1 − S(pic, yic). Here pic is the predicted probability of voxel i

belonging to class c, yi is a one-hot encoded vector of the annotation label, and
N is the number of voxels and C the number of classes. The three most common

strictly proper scoring functions are the Brier score:
1

C

C∑
c=1

(pic − yic)
2, the Log-

arithmic score: 1 + ln(pi · yi) and the Spherical score:
pi · yi
||pi||

. Notably, choosing

logarithmic score is equivalent to minimising cross-entropy loss. However, for
segmentation, losses that aim to optimize for the intersection over union are
popular, particularly in settings where there is a high class imbalance [17]. Most
popular is the Dice loss function, a soft differentiable minimization of 1− the
Dice score (Table 1). However Dice is well known to yield highly overconfident
predictions [28]. One approach for improving calibration is to selectively penalize
the overconfident predictions by exponentially weighting the false positive and
false negative terms in the denominator of the Dice loss (Dice++ Loss[28]):

LDice++ = 1− 1

C

C∑
c=1

2
∑N

i=1 picyic

2
∑N

i=1 picyic + (
∑N

i=1(1− pic)yic)γ + (
∑N

i=1 pic(1− yic))γ

(1)
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As we increase the focal parameter γ above 1, overconfident predictions incur
larger penalties, with larger γ controlling the severity of the penalty. Note that
γ = 1 is equivalent to the Dice loss. Alternatively, we can attempt to adapt
LS to a highly imbalanced task by focusing our loss only on voxels that have
low confidence (and therefore likely inaccurate predictions) for the target class.
TopK loss [27] computes the loss for only the top k% lowest confidence voxels
for the target class, removing high confience voxels:

LTopK =
1∑N

i=1 1(yic = 1 ∧ pic < t)

N∑
i=1

1− 1(yic = 1 ∧ pic < t)S(pi, yi) (2)

where S is a proper scoring function, 1 is the indicator function and we adjust
t each training batch such that we include only k% voxels.

Finally, we can treat calibration not as an ex-ante design consideration, but
an ex-post correction to our model. A simple and robust approach is tempera-
ture scaling[8]. Temperature scaling utilizes a single parameter, the temperature
κ, to soften (increase the entropy) of the model softmax distribution. Given a
logit vector ηi from our model, we compute pi = σ(ηi/κ), where σ is the soft-
max operator. Noteably, limκ→∞ pi =

1
C . Since proper scoring functions reward

correct calibration, we can tune κ on the validation data by optimizing a scoring
function of our choosing, usually the logarithmic score.

Ultimately, our goal is to incorporate model uncertainty into downstream
clinical tasks (such as assessing SVD severity). Numerous techniques exist to
quantify the uncertainty of NN predictions [30], [1], [20], such as ensembling
[25], sampling the latent space of conditional variational autoencoders [10], or
modelling the covariance between voxels [21]. To assess the impact of loss func-
tion choice, we adopt a softmax entropy map over each image H(pi) as a simple
baseline. Softmax entropy captures the aleatoric uncertainty (the irreducible un-
certainty inherint to the data) present in in-distribution samples [22]. For WMH,
aleatoric uncertainty is introduced due to inter-rater disagreement and subjective
definitions of WMH, such as at the borders of WMH where the exact boundary
is usually unclear. At inference time we may select a threshold τ , with all voxels
with uncertainty > τ flagged as uncertain during downstream tasks.

3 Materials and Methods

3.1 Dataset and Preprocessing

We validate each loss function on theWMH Segmentation Challenge 2017 dataset,
5. This dataset provides a training dataset of 60 subjects and a test dataset of
110 subjects, collected across multiple different institutions and acquisition pro-
tocols. Supplementary A provides details. The images are provided with the
following preprocessing: sagittal 3D FLAIR images are reoriented to axial and
resampled to slice thickness of 3mm; T1w images are registered to the FLAIR

5 WMH Challenge Dataset is publicly available at https://wmh.isi.uu.nl/data/
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using Elastix [16]; Bias field inhomogeneities for FLAIR and T1w are corrected
with SPM12 [2]. We further applied the following preprocessing: brain extrac-
tion using ROBEX [11]; resampling images to 1.00×1.00×3.00 voxel size (using
cubic spline interpolation for images and nearest neighbours for labels); Z-score
normalization to brain tissue, using intensities in the 5-95th percentile to calcu-
late the mean and variance; centre crop/pad all axial slices to 224 × 192 voxels.
Each voxel is labeled as either Background, WMH, or Other Pathology; however
the Other Pathology class is not included in evaluation statistics.

3.2 Evaluation Metrics

Table 1: Evaluation metrics for assessing model performance. ForRecall and F1-
score, the metrics are defined across individual lesions, which are calculated as
connected components in the predicted and ground truth WMH segmentations.
Specifically, N refers to the number of connected components, where NTP refers
to the number of lesions where a predicted lesion overlaps with a true lesion by
at least one voxel. TP refers to the number of true positive voxels. Vŷ and Vy

are the predicted and true WMH volume respectively, AVD = Absolute Volume
Difference. d̂(ŷ, y) = max

ŷi∈ŷ
min
yi∈y

d(ŷi, yi) where d is a distance function. HD95 =

Modified Hausdorff distance (95th percentile).

Dice(↑) HD95(↓) AVD(↓) Recall(↑) F1(↑)
2TP

2TP+FP+FN
max {d̂(ŷ, y), d̂(ŷ, y)} |Vŷ−Vy|

Vy

NTP
NTP+NFN

2NTP
2NTP+NFN+NFP

To evaluate the segmentation performance of each loss function we employ
the evaluation metrics from the WMH Challenge, detailed in Table 1.To assess
calibration and usefulness of the softmax entropy uncertainty map we employ
three metrics (Table 2). We use Expected Calibration Error (ECE) to measure
calibration performance. However, a low ECE score across the test dataset can
hide highly over or under confident segmentations on individual images[14], fur-
thermore WMH Dice and lesion F1 score degrades for images with low WMH
burden [5]. Therefore we also examine how ECE varies by individual according
to WMH burden. Next, the uncertainty error overlap (UEO) metric assesses
overlap between uncertainty and segmentation error rewarding uncertainty that
is well localized (maximises the Dice metric between error and uncertainty).
The unified uncertainty score (UUS) [20] assesses the quality of the remain-
ing segmentation after voxels with uncertainty > τ are removed. UUS rewards
methods that remove incorrectly segmented voxels (with higher Dice score when
computed only on the remaining voxels) while penalizing the removal of correctly
segmented voxels. WMH do not represent distinct, clearly identifiable anatomic
abnormalities, but instead represent foci of (often subtle) white matter changes
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Table 2: Uncertainty quantification equations. UEO (Uncertainty Error Over-
lap[14]): Calculates overlap between the predicted segmentation error and the
uncertainty map. Overlap is computed using Dice. We report the maximum at-
tainable UEO score as the uncertainty threshold τ varies. û = uncertainty map,
e = segmentation error. UUS (Modified Unified Uncertainty Score[20]): Com-
putes the filtered Dice and filtered true/false positives/negatives as τ increases.
Voxels with uncertainty > τ are removed from the computation. UUS computes
the average of 5 AUC curves: filtered Dice, filtered False Positives (FFP) / Neg-
atives (FFN) and 1 - filtered True Positives (FTP) / Negatives (FTN)). Here
FTP measures the ratio of filtered (remaining true positives (TP)) to the total
true positives, i.e 1 − TPτ/TP . Filtered Dice (FDice) calculates the Dice met-
ric only on filtered voxels. ECE (Expected Calibration Error[8]): approximates
the difference between model confidence and accuracy. Predictions are placed
into equal width bins B, based on their confidence. ECE compares the weighted
average of the difference between the mean confidence conf(Bw) and mean pro-
portion of WMH in the ground truth acc(Bw), for the voxels in each bin.

max UEO(↑) UUS(↑) ECE(↓)

max
τ∈[0,1]

Dice(û > τ, e) 1
5
[AUCFDice + (2−AUCFTP

∑W
w=1

|Bw|
n

·

−AUCFTN ) + AUCFFP +AUCFFN ] |acc(Bw)− conf(Bw)|

[19]. Consequently, boundaries between normal appearing white matter and hy-
perintense tissue are difficult to delineate and annotators may disagree about the
presence of small WMH. Hence, we would like to minimize silent failure, where
uncertainty maps fail to highlight WMH in the annotation that is missing from
the predicted segmentation. To assess the impact of loss function choice on de-
tection of unsegmented WMH, we calculate the size and proportion of instances
missed (no voxels in the instance have uncertainty > τ) in the uncertainty map
as we vary τ . We define instances as 2D connected components in axial slices.

3.3 Implementation Test Bench

We utilize a simple benchmarking system for each method, training using a single
U-Net architecture for each loss. We use a resnet18 [9] backbone for our U-Net
encoder, provided in Segmentation-Models Pytorch6. We train three models per
loss function, using a different random seed for initializing each model. We re-
port the mean results across the test set for all losses, averaged over each seed.
We further evaluate a TopK variant per scoring function. WMH voxels occupy
less than 1% of our 3D training images, hence we assess both the performance
of k=10 recommended in prior work [17] and a more restricted k = 1, reporting
the k that achieves the highest lesion F1 score. For Dice++ we first tune the γ
parameter on the validation set, choosing the gamma from {2, 3, 4} that yields

6 https://github.com/qubvel/segmentation_models.pytorch
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the highest lesion F1 score. For post-hoc temperature scaling, we take the mod-
els trained on Dice loss and tune κ to maximise the logarithmic score on the
validation dataset. Models are optimized using Adam [15], with a learning rate
of 3e−4, multiplying by a factor of 0.1 if validation loss does not improve within
25 epochs, until lr = 1e−6. Early stopping on the validation set, with a patience
of 50 epochs, is used to avoid over-fitting. Each epoch consists of 125 batches.
To encourage robust, generalizable results with limited training data, we apply
numerous augmentations during training, following the choices in nnU-Net [12].
We make our code publicly available. 7 Due to the high proportion of background
voxels, where models are typically confident and accurate, LS is pulled close to
zero. To counter this, we re-weight LS and LTopK by 1 over the proportion of
WMH voxels in the training data (which account for 0.28% of training voxels).
This re-weighting is important for yielding strong performance for the logarith-
mic score. We refer to the logarithmic score as CE in the results. Uncertainty
maps are normalized to [0, 1] by dividing by −ln( 13 ).

4 Results

Table 3: Performance Metrics for each loss function on the test set. Best per-
former per metric in bold. We denote significant improvements (two-tailed t-test
comparing the three runs per method, p < 0.01) over: both Dice++ and Dice: †;
over Dice only: ∗; over Dice++ only: ‡. CE: logarithmic score. TempDice: Model
trained with Dice loss, with temperature scaling applied on the validation set.

Loss UUS ECE Dice F1 AVD% HD95 Recall max prop.
mm UEO miss.

Brier 0.689* 0.076* 0.757‡ 0.683 20.7‡ 6.97* 0.637 0.427* 0.140*
Spherical 0.688* 0.076* 0.760† 0.700* 20.3‡ 6.53* 0.673 0.433* 0.124*
CE 0.682* 0.074* 0.760† 0.727† 20.6‡ 6.19* 0.710 0.437† 0.110†
Brier-TopK10 0.695* 0.083* 0.760† 0.713† 20.9‡ 6.43* 0.707 0.430* 0.108†
Sphere-TopK1 0.682* 0.065* 0.763† 0.710† 19.6‡ 6.37* 0.700 0.433* 0.114†
CE-TopK10 0.685* 0.079* 0.760† 0.720† 19.9‡ 6.06† 0.710 0.435* 0.106†
Dice 0.560 0.236 0.717 0.627 35.9 8.61 0.597 0.150 0.275
Dice++ 0.684* 0.085* 0.740 0.660 28.0 6.60* 0.695 0.426* 0.144*
TempDice 0.527 0.092* 0.717 0.627 35.9 8.61 0.597 0.233 0.241

The mean performance metrics per loss are shown in Table 3. Surprisingly,
all scoring function variants yield significant improvements in Dice score over
Dice/Dice++ loss, with the combination of Spherical and TopK yielding the
highest Dice and best calibration. CE, or TopK variants of Spherical and Brier
score, also show significant improvements over Dice/Dice++ loss for F1 score and
in the proportion of instances missed. Furthermore, all scoring functions yield
ECE scores less than that of Dice (0.236), or Dice++ (0.085) vs CE (0.068) or
Spherical TopK (0.065), while temperature scaling makes only modest improve-
ments (0.092). Figure 1c shows calibration curves for various loss functions. CE,

7 Code repository: https://github.com/BenjaminPhi5/Scoring_Functions_WMH
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SphericalTopk1, Dice++ and TempDice yield slightly overconfident distribu-
tions, with curves close to the optimum calibration. Dice loss yields arbitrarily
accurate predictions regardless of confidences above zero, making differentiating
model accuracy based on confidence difficult. Furthermore, examination of the
ECE score when compared to ground truth WMH volume reveals Dice loss yields
poor calibration at low volumes. Figure 1a shows correlation between individual
ECE score and log WMH burden. Dice++ improves calibration over all volumes,
but still degrades with log volume (r = −0.5, p = 3.1e− 08), while both Spheri-
calTopk1 (r = −0.12, p = 0.23) and CE (r = −0.0082, p = 0.93) retain low ECE
at low volumes. Similarly for AVD, while Dice++ improves performance over
the Dice model, each scoring function substantially reduces the AVD score. Cru-
cially, scoring functions yield less pronounced degradation in AVD performance
for low burden patients (Figure 1a); for CE mean ECE and AVD is almost half
that of Dice or Dice++ in images with the lowest WMH burden. While high
sample standard deviation (10.4) in average Dice loss AVD scores yields non-
significant p-values when compared to scoring functions (Table 3), all scoring
functions yield total separation in average AVD results compared to Dice loss.

100 101 102

Ground Truth WMH Volume (mm3)
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

EC
E

Dice
r = 0.63, p = 1.6e 13
Dice++
r = 0.5, p = 3.1e 08
SphereTopk1
r = 0.12, p = 0.23
CE
r = 0.0082, p = 0.93
TempDice
r = 0.56, p = 2.8e 10

(a) ECE vs WMH Vol.
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r = 0.39, p = 3e 05
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r = 0.22, p = 0.021
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r = 0.21, p = 0.03
TempDice
r = 0.43, p = 3.1e 06

(b) AVD vs WMH Vol.
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Fig. 1: (a), (b): Pearson correlation between (a) ECE or (b) AVD with log WMH
volume for Dice, Dice++, SphericalTopk1, CE and TempDice. ECE and AVD
scores are averaged for each individual over three runs. Shaded area: the standard
deviation of the residuals, (c) Average calibration curves across three runs.

Figure 2 shows the uncertainty map performance as τ varies for different
loss functions. Fig. 2b shows scoring functions fail to detect lower proportions
of WMH instances than Dice or Dice++ at any setting of τ . Noteably, while
choosing a τ below the max UEO point (τ̂) can improve the detection of missing
instances, both SphericalTopK and CE miss less instances while retaining high
UEO scores (Fig. 2a). For Dice++, UEO decreases sharply compared to CE as
τ goes to zero, hence choosing a lower τ will yield uncertainty that is poorly
localized to the segmentation error, increasing the true positives and negatives
incorrectly identified as uncertain. Temperature scaling improves the maximum
UEO Dice, but at τ̂ max UEO is less than half that of any other method except
Dice, while failing to detect double the instances of CE. Nonetheless, temperature
scaling improves the useability of the uncertainty map, permitting meaningful
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tuning of τ to set the silent failure rate. Fig 2c shows the mean size of undetected
lesions. Regardless of τ , Dice and Dice++ fail to capture some of the smallest
instances, while SphericalTopK and CE permit trading UEO score for detection
of very small instances. Supplementary B provides uncertainty map examples.
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Fig. 2: Uncertainty map metrics, as uncertainty threshold τ increases. (a) UEO
score, (b) Proportion of undetected (intersection over union = 0) WMH instances
in segmentation and uncertainty map, (c) Size of undetected WMH instances in
segmentation and uncertainty map. Bold line: mean, shaded area: standard devi-
ation, square: mean τ that maximises UEO score, error bar: standard deviation
in location of max τ .

5 Discussion

We have shown that proper scoring functions can be effective and well calibrated
loss functions for WMH segmentation. Spherical and Brier scores are understud-
ied as segmentation losses, and when combined with TopK to counter class im-
balance they can yield competitive performance. The TopK variants yield the
same or improved results for Dice, HD95, Recall and the proportion of missed
lesions at τ̂ across all scoring function losses. These variants could be fitted into
existing compound losses that generalize well across datasets [29], and tuning of
cutoff k could further enable generalization to other tasks with high class im-
balance. Furthermore, alternative scoring rules such as generalized spherical or
winklers score offer parameterized scoring functions that may be adjusted to the
task at hand [7]. Greater attention should be paid to AVD divergence and poor
calibration in low WMH burden patients, such individuals are poorly represented
in average lesion-wise scores (e.g lesion F1) or ECE scores due to the small lesion
number and volume that they contribute overall. We find scoring functions yield
models that are less prone to this degradation than Dice based methods, with
no appreciable degradation in ECE at low volumes. This is especially important
for downstream tasks such as identifying patients at risk of developing further
manifestations of cerebral small vessel disease [24]. While Dice++ consistently
outperforms Dice loss, performance still degrades at low WMH burdens, albeit
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to a lesser extent. Small WMH instances can often be missed by a segmenta-
tion model; however they often indicate areas where tissue microstructure is
damaged, precedent of wider damage [6] and hence are important to detect -
regardless of their size [18],[26]. ECE score is not indicative of the most use-
ful uncertainty maps, with BrierTopk and CETopK yielding the highest UUS
and UEO respectively, despite higher ECE than other scoring function variants.
Finally, while temperature scaling is effective and robust for improving the cali-
bration of a given model [25], it alone is insufficient to overcome the drawbacks
of Dice loss, yielding no significant improvement in any other metric. UEO and
silent failure rates see only modest improvements, with ECE still degrading for
low WMH burden. Global temperature scaling is not suitable in segmentation
tasks (which commonly display spatial and heteroscedastic aleatoric uncertainty
[21]) such as WMH segmentation. Dice loss encourages high confidence in both
WMH instance centres and at ambiguous areas (edges and small WMH); hence
the temperature parameter must vary spatially and per image. A separate model
for predicting the temperature parameter [23] can achieve this, however this in-
creases complexity and amount of validation data required [4] while still unable
to improve over the segmentation performance of Dice loss.
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