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Abstract. Bayesian Optimization (BO) is used to find the global op-
tima of black box functions. In this work, we propose a practical BO
method of function compositions where the form of the composition is
known but the constituent functions are expensive to evaluate. By as-
suming an independent Gaussian process (GP) model for each of the
constituent black-box function, we propose Expected Improvement (EI)
and Upper Confidence Bound (UCB) based BO algorithms and demon-
strate their ability to outperform not just vanilla BO but also the current
state-of-art algorithms. We demonstrate a novel application of the pro-
posed methods to dynamic pricing in revenue management when the
underlying demand function is expensive to evaluate.

Keywords: Bayesian optimization · revenue maximization · function
composition · dynamic pricing and learning

1 Introduction

Bayesian Optimization (BO) is a popular technique for optimizing expensive-
to-evaluate black-box functions. Such a function might correspond to the case
where evaluating it can take up to hours or days, which for example, is the case
in re-training massive deep learning models with new hyper-parameters [31]. In
some cases, functions can be financially costly to evaluate, such as drug testing
[24] or revenue maximization [23]. In such black-box optimization problems, one
often has a fixed budget on the total number of function evaluations that can
be performed. For example, one typically has a budget on the computational
capacity spent in the hyper-parameter tuning of neural networks [5,27]. In such
cases, BO proves to be very effective in providing a resource-conserving iterative
procedure to query the objective function and identify the global optima [22].

2 Prabuchandran K.J. was supported by the Science and Engineering Board (SERB),
Department of Science and Technology, Government of India for the startup research
grant ‘SRG/2021/000048’.
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The key idea in BO is to use a surrogate Gaussian Process (GP) model [25]
for the black-box function, which is updated as and when multiple function eval-
uations are performed. To identify the location (in the domain) of the following
query point, an acquisition function (a function of the surrogate model) is de-
signed and optimized. The design of the acquisition function depends not only
on the application in mind but also on the trade-off between exploration and
exploitation that comes naturally with such sequential optimization problems.
Some popular acquisition functions used in the literature are the Expected Im-
provement(EI), Probability of Improvement(PI), Knowledge Gradient(KG) and
Upper Confidence Bound(UCB) [7,17,9].

In this work, we consider Bayesian optimization of composite functions of the
form g(x) = h(f1(x), f2(x), . . . fM (x)) where functions fi are expensive black-
box functions while h is known and easy to compute. More specifically, we are
interested in maximizing g and identifying its optima. A vanilla BO approach
can be applied to this problem, ignoring the composite structure of the func-
tion [9,17]. In this approach, one would build a GP posterior model over the
function g based on previous evaluations of g(x) and then select the next query
point using a suitable acquisition function computed over the posterior. However,
such a vanilla BO approach ignores the available information about the compos-
ite nature of the functions, which we show can easily be improved upon. In this
work, we model each constituent function fi using an independent GP model
and build acquisition functions that use the known structure of the composition.
Our algorithms outperform the vanilla BO method as well as the state-of-art
method [1] in all test cases and practical applications that we consider. Our
algorithms are also more practical and less computationally intensive than the
methods proposed in [1].

Note that function compositions arise naturally in the real world. One such
example is the revenue maximization problem based on the composition of price
and demand function. Another example could be the optimization of the F1
score in classification problems that can be seen as a composition of precision
and recall metrics [19]. A key novelty of our work lies in the application of our
BO algorithms to dynamic pricing problems in revenue management. To the best
of our knowledge, ours is the first work to perform dynamic pricing for revenue
optimization using Bayesian optimization methods.

1.1 Related Work

Optimization of function compositions has been studied under various con-
straints such as convexity, inexpensive evaluations and derivative information
[4,30,15,26]. The scope of these work are somewhat restrictive and differ from
our key assumption that the constituent functions in the composition are black-
box functions and are relatively expensive to evaluate. Our work is closely related
to Astudillo and Frazier [1] who optimize black-box function compositions of the
form g(x) = h(f(x)) using Bayesian Optimization. In this work, the constituent
function f(x) is expensive to evaluate and is modelled as a Multi-Ouput GP.
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This work was further improved by Maddox et al. [21] using Higher Order Gaus-
sian Process (HOGP). These work assume that the member functions in the
composition are correlated and dedicates a significant amount of computational
power to capturing these correlations. They propose an EI-based acquisition
function for estimating the value of g using a MOGP over the functions f . The
calculation of this acquisition function requires them to compute the inverse of
the lower Cholesky factor of the covariance matrix, which is a computationally
expensive task (runtime increases with order O(N3) where N is the size of the
covariance matrix), especially when optimizing high dimensional problems.

Our work differs from them in that we consider a composition of multiple con-
stituent functions with single output and assume an independent GP model for
each such constituent. This results in significantly lesser computational require-
ments and faster iterations. Our work focuses on practical deployments of the
technique, as showcased in Section 4. We also propose a UCB-based algorithm
where the problem of matrix inversion does not arise. The UCB-based algo-
rithm allows the user to trade-off between exploration and exploitation during
iterations, making it more practical for our use cases. Finally, our key contribu-
tion lies in applying the proposed methods to dynamic pricing problems, a brief
background of which is discussed in the next subsection.

1.2 Dynamic Pricing and Learning

Dynamic pricing is a phenomenon where the price for any commodity or good
is changed to optimize the revenue collected. Consider the scenario of a retailer
with a finite inventory, finite time horizon and a known probabilistic model for
the demand. On formulating this as a Markov decision problem, it is easy to
see that a revenue optimal pricing policy would be non-stationary, resulting in
different optimal prices for the same inventory level at different time horizons.
In this case, the dynamic nature of pricing is a by-product of finite inventory
and horizon effects. See [23] for more details.

Now consider a second scenario of a retailer with an infinite horizon and
infinite inventory, trying to find the optimal price for his product. Assuming
that the underlying probabilistic demand model is unknown to the retailer, this
becomes a simultaneous demand learning and price optimization problem. To
learn the underlying demand function, the retailer is required to probe or explore
the demand for the product at various prices, and use the information gathered
to converges to an optimal price over time. Clearly, in this setting, uncertainty
in the demand process naturally leads to exploration in the price space, resulting
in the dynamic nature of the pricing policy. See [6] for more details. This second
scenario (black-box demand function) is of particular interest to us, and we apply
our BO algorithms in this setting, something that has not been done before.

Dynamic pricing with learning is a traditional research topic in Operations
Research with a long history (see [13] for a historical perspective). Lobo and
Boyd [16] introduced an exploration-exploitation framework for the demand pric-
ing problem, which balances the need for demand learning with revenue maxi-
mization. The problem has been studied under various conditions, such as lim-



4 K. Jain et al.

ited [2] and unlimited inventory [18], customer negotiations [20], monopoly [12,10],
limited price queries [11] etc. One recurrent theme in these work is to assume a
parametric form for the demand function in terms of price and other exogenous
variables. Reinforcement learning (RL) methods are then used to simultane-
ously learn the unknown parameters of the demand function and set prices that
have low regret. See, for example, Broder and Rusmevichientong [8] where lin-
ear, polynomial and logic demand function models have been assumed. To the
best of our understanding, these assumptions on the demand function are rather
over-simplified and are typically made for technical convenience. Further, an
RL method suited for a particular demand model (say linear demand) may not
work when the ground truth model for the demand is different (say, logit model).
There have been recent models which try to avoid this issue by modelling the
demand as a parameterized random variable (here price is a parameter) but end
up making similar convenient assumptions on the parametric form of the mean
or variance of the demand, see [14] and references therein.

To keep the demand function free from any specific parametric form, in this
work, we assume that it is a black-box expensive to evaluate function and instead
model it using a Gaussian process. The revenue function can be expressed as
a composition of the price and the demand and this allows us to apply our
proposed methods (of Bayesian optimization for function composition) to the
dynamic pricing and learning problem.

1.3 Contributions and Organization

The following are the key contributions of our work:

1. We propose novel acquisition functions cEI and cUCB for Bayesian Opti-
mization for function compositions. These acquisition functions are based
on EI and UCB acquisition functions for vanilla BO and are less compute
intensive and faster to run through each iteration as compared to other state
of the art algorithms for function composition.

2. We assume independent GPs to model the constituent functions and this
allows for possible parallelization of the posterior update step.

3. As a key contribution of this work, we propose to use BO based dynamic
pricing algorithms to optimize the revenue. To the best of our knowledge,
we are the first, to use BO for learning the optimal price when the demand
functions are expensive to evaluate or are black-box in nature.

4. We consider various revenue maximization scenarios, obtain the revenue
function as a composition of price and demand and illustrate the utility
of our algorithms in each of these setting.

The following is the organization of the rest of the paper. Section 2 formally
describes the problem statement and Section 3 describes our proposed algo-
rithms; Section 4 details our experimental results ; and finally, we conclude in
Section 5.
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2 Problem Description

We begin by describing the problem of BO for composite functions in subsection
2.1. In subsection 2.2 we describe the dynamic pricing problem and model the
revenue function as a function composition to which BO methods for composite
functions can be applied.

2.1 BO for Function Composition

We consider the problem of optimizing g(x) = h(f1(x), f2(x), . . . , fM (x)) where
g : X → R, fi : X → R, h : RM → R and X ⊆ Rd. We assume each fi is a
black-box expensive-to-evaluate continuous function while h is known and cheap
to evaluate given the values of fi. The optimization problem that we consider is

max
x∈X

h(f1(x), f2(x), . . . , fM (x)). (1)

We want to solve Problem 1 in an iterative manner where in the nth iteration,
we can use the previous observations {xi, f1(xi), . . . , fM (xi})}n−1i=1 to request a
new observation {xn, f1(x1), . . . , fM (xn)}.

A vanilla BO algorithm applied to this problem would first assume a prior
GP model on g, denoted by GP(µ(·),K(·, ·)) where µ and K denote the mean
and covariance function of the prior model. Given some function evaluations,
an updated posterior GP model is obtained. A suitable acquisition function,
such as EI or PI can be used, to identify the next query point. For example,
in the n + 1th update round, one would first use the n available observations
(g(x1), g(x2), . . . , g(xn)) to update the GP model to GP(µ(n)(·),K(n)(·, ·)) where
µ(n)(·) is the posterior mean function and K(n)(·, ·) is the posterior covariance
function, see [25] for more details. The acquisition function then uses this pos-
terior model to identify the next query location xn+1. In doing so, vanilla BO
ignores the values of the member functions in the composition h.

BO for composite function, on the other hand, takes advantage of the avail-
able information about h, and its easy-to-compute nature. Astudillo and Fra-
zier [1] model the constituent functions of the composition by a single multi-
output function f(x) = (f1(x), . . . , fM (x)) and then model the uncertainty in
f(x) using a multi-output Gaussian process to optimize h(f(x)). Since the prior
over f is modelled as a MOGP, the proposed method tries to capture the cor-
relations between different components of the multi-output function f(x). Note
that the proposed EI and PI-based acquisition functions are required to be com-
puted using Monte Carlo sampling. Furthermore, a sample from the posterior
distribution is obtained by first sampling an n variate normal distribution, then
scaling it by the lower Cholesky factor and then centering it with the mean of
the posterior GP. Two problems arise due to this: 1. Such simulation based aver-
aging approach increases the time complexity of the procedure linearly with the
number of samples taken for averaging and 2. calculation of the lower Cholesky
factor increases the function’s time complexity cubically with the number of data
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points. These factors render the algorithm unsuitable, particularly for problems
with large number of member functions or for problems with large dimensions.

To alleviate these problems, in this work, we model the constituent func-
tions using independent GPs. This modelling approach allows us to train GPs
for each output independently and hence the posterior GP update can be par-
allelized. We propose two acquisition functions, cEI which is based on the EI
algorithm and cUCB, which is based on the GP-UCB algorithm [28]. Our cEI
acquisition function is similar in spirit to the EI-CF acquisition function of [1]
but is less computationally intensive owing to the independent GP model. Since
we have independent one dimensional GP model for each constituent function,
sampling points from the posterior GP does not require computing the Cholesky
factor (and hence matrix inversion), something that is needed in the case of high-
dimensional GP’s of [1]. This greatly reduces the complexity of the MC sampling
steps of our algorithm (see section 3 for more details). However, the cEI acquisi-
tion function still suffers from the drawback of requiring Monte Carlo averaging.
To alleviate this problem, we propose a UCB based acquisition function that
uses the current mean plus scaled variance of the posterior GP at a point as
a surrogate for the constituent function at that point. As shown by Srinivas
et al. [28], while the mean term in the surrogate guides exploitation, it is the
variance of the posterior GP at a point that allows for suitable exploration. The
scaling of the variance term is controlled in such a way that it balances the trade
off between exploration and exploitation. In Section 4, we illustrate the utility
of our method, first for standard test functions and then as an application to
dynamic pricing problem. Our algorithms, especially the cUCB one, outperforms
not only vanilla BO but also those proposed in Astudillo and Frazier [1].

2.2 Bayesian Optimization for dynamic pricing

We consider Bayesian Optimization for two types of revenue optimization prob-
lems. The first problem optimizes the revenue per customer where customers are
characterized by their willingness-to-pay distribution (which is unknown). In the
second problem, we assume a parametric demand model (the functional form is
assumed to be unknown) and optimizes the associated revenue.

In the first model, we assume that an arriving customer has an associated
random variable, V , with complimentary cumulative distribution function F̄ ,
indicating its maximum willingness to pay for the item sold. For an item on offer
at a price p, an arriving customer purchases it with the probability

d(p) := F̄ (p) = Pr{V ≥ p}. (2)

In this case, when the product is on offer at a price p, the revenue per customer
r(p) is given by r(p) = pF̄ (p). The revenue function is a composition of the
price and demand or purchase probability and we assume that the distribution
of the purchase probability i.e., F is not known and also expensive to estimate.
One could perform a vanilla BO algorithm by having a GP model on r(p) itself.
However to exploit the known nature of the revenue function, we will apply our
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function composition method by instead having a GP on F̄ (p) and demonstrate
its superiority over vanilla BO.

In the second model, we assume that the true demand d(p) for a commod-
ity at price p has a functional form. This forms the ground truth model that
governs the demand, but we assume that the functional form for this demand
is not known to the manager optimizing the revenue. In our experiments, we
assume linear, logit, Booth and Matyas functional forms for the demand (see
section 4 for more details.) Along similar lines, one could build more sophis-
ticated demand models to account for external factors (such as supply chain
issues, customer demographics or inventory variables), something that we leave
for future explorations.

Note that we make some simplifying assumptions about the retail environ-
ment in these two models and our experiments. We assume a non-competitive
monopolistic market with an unlimited supply of the product and no marginal
cost of production. However, these assumptions can easily be relaxed by changing
the ground truth demand model appropriately, which are used in the experiments
to reflect these aspects. The fact that we use a GP model as a surrogate for the
unknown demand model offers it the ability to model a diverse class of demand
functions under diverse problem settings. We do not discuss these aspects fur-
ther but focus on the following simple yet meaningful experimental examples
that one typically encounters in revenue management problems.

In the following, p denotes the price vector:

1. Independent demand model: A retailer supplies its product to two differ-
ent regions whose customer markets behave independently from each other.
Thus, the same product has independent and different demand functions
(and hence different optimal prices) in different geographical regions and
under such black-box demand models for the two regions (d1, d2). The re-
tailer is interested in finding the optimal prices, leading to the optimization
of the following function: g(p) = p1d1(p1) + p2d2(p2).

2. Correlated demand model: Assume that a retailer supplies two products
at prices p1 and p2 and the demand for the two products is correlated and
influenced by the price for the other product. Such a scenario can be modelled
by a revenue function of the form g(p) = p1d1(p) + p2d2(p). Consider the
example where the prices of business and economy class tickets can influence
the demand in each segment. Similarly, the demand for a particular dish in
a fast food chain might be influenced by the prices for other dishes.

3. Identical price model: In this case, the retailer is compliant with having a
uniform price across locations. However, the demand function across different
locations could be independent at each of these locations, leading to the
following objective function: g(p) = pd1(p) + pd2(p). This scenario can be
used to model different demand functions for different population segments
in their age, gender, socio-economic background, etc.
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3 Proposed Method

As discussed in Section 2, we propose that instead of having a single GP model
over g, we have M different GP models over each constituent function in the
composition. Each prior GP model will be updated using GP regression whenever
the observations of the constituent functions are available. A suitably designed
acquisition function would then try to find the optimal point when the con-
stituent functions should all be evaluated at, in the next iteration. For ease of
notation, we use the shorthand h({fi(x)}) to denote h(f1(x), . . . , fM (x)) in the
subsequent sections.

3.1 Statistical Model and GP regression

Let f1:ni , i ∈ {1, 2, . . . ,M} denote the function evaluations of the member func-
tions at locations {x1,x2, . . . ,xn} denotes as x1:n. In the input space X ⊂ Rd,

let GP(µ
(n)
i , k

(n)
i ) be the posterior GP over the function fi where µ

(n)
i : X → R

is the posterior mean function, k
(n)
i : X × X → R is the positive semi-definite

covariance function and the variance of the function is denoted by σ
(n)
i (x). The

superscript n is used to denote the fact that the posterior update accounts for
n function evaluations made till now. For each such GP, the underlying prior is
a combination of a constant mean function µi ∈ R and the squared exponential
function ki

ki(x,x
′) = σ2 exp

(
− (x− x′)T (x− x′)

2l2i

)
The kernel matrix Ki is then defined as

Ki :=

ki(x1,x1) ki(x1,x2) . . . ki(x1,xn)
...

...
...

...
ki(xn,x1) ki(xn,x2) . . . ki(xn,xn)


and with abuse of notation define K = K + λ2I (to account for noise in the
function evaluations). The posterior distribution on the function fi(x) at any
input x ∈ X [25] is given by

P (fi(x)|x1:n, f1:ni ) = N (µ
(n)
i (x), σ

(n)
i (x) + λ2), i ∈ {1, 2, . . . ,M} where

µ
(n)
i (x) = µ(0) + kT

i K
−1
i (f1:ni − µi(x

1:n))

σ
(n)
i (x) = ki(x,x)− kT

i K
−1
i ki

ki = [ki(x,x1) . . . ki(x,xn)] .
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Algorithm 1 cEI: Composite BO using EI based acquisition function

Require: T ←− Budget of iterations
Require: h(·), f1(·), . . . , fM (·)←− composition and member functions
Require: X = {x1, . . . ,xs} ←− s starting points
Require: F = {(f1(x), . . . , fM (x))}x∈X ←− function evaluations at starting points
1: for n = s+ 1, . . . , s+ T do
2: for i = 1, . . . ,M do
3: Fit model GP(µ

(n)
i (·),K(n)

i (·, ·)) using evaluations of fi at points in X
4: end for
5: Find new point xn by optimizing cEI(x, L) (defined below)
6: Get (f1(xn), . . . , fM (xn))
7: Augment the data (f1(xn), . . . , fM (xn)) into F and update X with xn

8: end for
9: function cEI(x, L)

10: for l = 1, . . . , L do
11: Draw M samples Z(l) ∼ NM (0M , IM )

12: Compute α(l) := {h({µ(n)
i (x) + σ

(n)
i (x)Z

(l)
i })− g

∗
n}+

13: end for
14: return En(x) = 1

L
ΣL

l=1α
(l)

15: end function

3.2 cEI and cUCB Acquisition Functions

For any fixed point x ∈ X , we use the information about the composition func-
tion h to estimate g by first estimating the value of each member function at x.
However, this is not a straightforward task and needs to be performed in a way
similar to the vanilla EI acquisition using Monte Carlo sampling. We propose to
use the following acquisition function, that we call as cEI.

En(x) = En

[
h({µ(n)

i (x) + σ
(n)
i (x)Zi})− g∗n

]+
(3)

where Z is drawn from an M -variate normal distribution and g∗n is the best value
observed so far. This acquisition function is similar to EI as we subtract the
best observation, g∗, so far and only consider negative terms to be 0. Assuming
independent GPs over the functions allows constant time computation of the
variance at x. However, since each function fi is being considered an independent

variable with mean µ
(n)
i (·) and variance σ

(n)
i (·), the calculation of En(x) does not

have a closed form and thus, the expectation needs to be evaluated empirically
with sampling. Algorithm 1 provides the complete procedure for doing BO with
this acquisition function.

To alleviate this complexity in estimating the acquisition function, we pro-
pose a novel UCB-style acquisition function. This function estimates the value
of each member function using the GP priors over them and controls the explo-
ration and exploitation factor with the help of the hyperparameter λn:

Un(x) = h({µ(n)
i (x) + βnσ

(n)
i (x)}) (4)
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Algorithm 2 gives the complete details for using this acquisition function. The
user typically starts with a high value for β to promote exploration and reduces
iteratively to exploit the low reget regions it found. For our experiments, we
start with β = 1 and exponentially decay it in each iteration by a factor of 0.99.

Algorithm 2 cUCB: Composite BO using UCB based acquisition function

Require: T ←− Budget of iterations
Require: h(·), f1(·), . . . , fM (·)←− composition and member functions
Require: X = {x1, . . . ,xs} ←− s starting points
Require: F = {(f1(x), . . . , fM (x))}x∈X ←− function evaluations at starting points
Require: β ←− Exploration factor
1: for n = s+ 1, . . . , s+ T do
2: for i = 1, . . . ,M do
3: Fit model GP(µ

(n)
i (·),K(n)

i (·, ·)) using evaluations of fi at points in X
4: end for
5: Find new point xn suggested by the composition function using Eq. 4
6: Get (f1(xn), . . . , fM (xn))
7: Augment the data (f1(xn), . . . , fM (xn)) into F and update X with xn

8: Update β
9: end for

4 Experiments and Results

In this section, we compare the results of our cUCB and cEI algorithms with
Vanilla EI, Vanilla UCB and the state-of-the-art BO for Composite Functions
(BO-CF) [1] using HOGP [21] in terms of loss in regret and runtime of the
algorithms. We first compare our methods on 3 test functions and then move
on to show their applications to three different pricing scenarios. Our code is
available here.

Our algorithms are implemented with the help of the BoTorch framework [3]
and use the APIs provided by them to declare and fit the GP models. We assume
noiseless observations for our results in this section, and the same results can
be obtained when we add Gaussian noise to the problem with a fixed mean and
variance. We start with 10 initial random points and run our BO algorithms for
70 iterations. We use a system with 96 Intel Xeon Gold 6226R CPU @2.90GHz
and 96GB of memory shared between the CPUs.

We compare the performance of different algorithms based on the log of mean
minimum regret till each iteration, averaged over 100 runs. In a single BO run,
the regret at iteration i in the kth run is defined as lki = g∗ − g(xi) where g∗ is
the global maximum of the objective function. The minimum regret at iteration
i in the kth run is defined as mk

i = min1≤j≤i l
k
j and the final metric at iteration

https://github.com/kjain1810/Bayesian-Optimization-for-Function-Compositions-with-Applications-to-Dynamic-Pricing
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(a) Langermann function (b) Dixon-Price function

Fig. 1: Log regret for test functions with a composite nature

i averaged across 100 runs is calculated as

ri = log10

(
1

100

100∑
k=1

mk
i

)
.

4.1 Results on Test Functions

We first asses our algorithms on three standard test functions [29]:

Langermann Function: To express this function as a function composition,
we consider each outer iteration of the Langermann function to be a separate
constituent function, that is,

fi(x) = exp

− 1

π

d∑
j=1

(xj −Aij)
2

 cos

π d∑
j=1

(xj −Aij)

 .

The composition for this will be h({fi(x)}) =
∑m

i=1 cifi(x) with d = 2, c =
(1, 2, 5, 2, 3), m = 5, A = ((3, 5), (5, 2), (2, 1), (1, 4), (7, 9)) and domain X =
[0, 10]2. Note that the terms differ only in the columns of hyperparameter A
for different member functions and thus, should have a high covariance.

Dixon-Price Function In this function, we take the term associated with each
dimension of the input to be a separate constituent, that is,

f1(x) = (x1 − 1)2, fi(x) = i(2x2i − xi−1)2

The composition for this function will be h({fi(x)}) =
∑d

i=1 fi(x) with d = 5
and domain X = [−10, 10]d. Since only consecutive terms in this function share
one variable, the member functions do have a non-zero covariance but it will not
be as high as in the Langermann function.
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(a) Ackley function (b) Independent demand model

Fig. 2: Log of expected regret for pricing tasks

Ackley Function Here, we build a more complex composition function by
considering the terms in the exponents as the member functions, resulting in

f1(x) =

√√√√1

d

d∑
i=1

x2i and f2(x) =
1

d

d∑
i=1

cos(cxi)

h(x) = −a exp(−bf1(x))− exp(f2(x)) + a+ exp(1)

with d = 5, a = 20, b− 0.2, c = 2π and domain X = [−32.768, 32.768]d.

Results Figure 1a, 1b and 2a compares the results of different algorithms.
Vanilla EI and UCB algorithms do not consider the composite nature of the
function while BO-CF and our methods use the composition defined above. Even
with the high covariance between the members in Langermann function, cUCB
outperforms BO-CF while the cEI algorithm has a similar performance level.
However, when that covariance reduces in the Dixon-Price function, the cEI
algorithm performs better than BO-CF while the cUCB algorithm significantly
outperforms it. Figure 2a shows that our algorithms work well with complicated
composition functions as well and both, cUCB and cEI, outperform BO-CF.

4.2 Results for Demand Pricing Experiments

We now test our approach on the demand models discussed in Section 2.2.

Independent Demand Model: Recall that in this model, we allow the price
at each location to be different and model the demand in a region to depend only
on the price therein. We consider 4 regions where each region has a parametric
demand functions and randomly chosen parameters. Particularly, we assume

that two regions have a logit demand function (d(p) = e−z1−z2p

1+e−z1−z2p ) with z1 ∈
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Task EI UCB cEI cUCB HOGP

Langermann function 1.74 1.73 9.71 9.34 36.30
Dixon-Price function 1.70 1.69 14.47 12.71 41.72
Ackley function 1.63 1.55 11.56 11.37 47.91
Independent demand model 2.05 2.03 7.85 7.12 19.12
Correlated demand model 3.91 3.29 9.63 9.19 53.01
Identical price model 2.55 2.38 7.27 7.81 24.37

Table 1: Run-time for 70 iterations across algorithms in seconds

[1.0, 2.0], z2 ∈ [−1.0.1.0] and the other two regions have a linear demand function
(d(p) = z1 − z2p) with z1 ∈ [0.75, 1] and z2 ∈ [2/3, 0.75]. The domain for this
model is X = [0, 1]4 and the composition is The composition function looks

h(d1(p), d2(p), d3(p), d4(p)) =
∑4

i=1 pidi(pi).

Correlated Demand Model: In this example, we assume that different prod-
ucts are for sale at different prices, and there is a certain correlation between
demand for different products via their prices. We consider the case of 2 products
where one of the product has a demand function governed by the Matyas func-
tion [29]. We assume that the demand for the second product is governed by the
Booth function [29]. More specifically, the function composition and constituent
functions are as below, where the domain for the problem is X = [0, 10]2:

d1(p) = 8(100−Matyas(p))

d2(p) = 1154− Booth(p)

where Matyas function is defined as Matyas(x) = 0.26(x21 + x22) − 0.48p1p2.
Similarly, Booth function is defined as Booth(x) = (x1+2x2−7)2+(2x1+x2−5)2.
The composition for this will be h(d1(p), d2(p)) = p1d1(p) + p2d2(p).

Identical price Model: In this example, we assume that a commodity is sold
for same price at two different regions but the willingness to pay variable for
customers in the two regions is different. We assume that the willingness to pay
distribution in one region follows exponential distribution with λ = 5.0. n the
other region, this is assumed to be a gamma distribution with α = 10.0, β = 10.0
The resulting function composition is given by : h(d1(p), d2(p)) = pd1(p)+pd2(p).

Results Figures 2b, 3a and 3b compare the results of these dynamic pricing
models for the different BO algorithms. Our algorithms perform well even in
higher dimensions of input and member functions with cUCB marginally out-
performing BO-CF in the first model. cUCB matches the minimum regret in the
second model and converges to it much faster than BO-CF. In the case of the
third model, having independent GP’s performs better than BO-CF with cEI.
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(a) Correlated demand model (b) Identical price model

Fig. 3: Log of expected regret for pricing tasks

4.3 Runtime Comparisons with State of the Art

Along with the performance of our algorithms being superior in terms of regret,
the methodology of training independent GPs is significantly faster in terms of
run time. As shown in Table 1, both of our algorithms are between 3 to 4 times
faster than BO-CF using HOGP on average and their run time increases linearly
with the number of member functions in the composition when compared to
vanilla EI and UCB. By not having to compute the inverse matrix for estimating
the lower Cholesky factor of the covariance matrix, we gain large improvements
in run time. The elimination of inverse matrix computation while estimating
with the help of lower Cholesky factor of the covariance matrix results in the
large improvement in run time over BO-CF. Also note that our UCB variant
is marginally faster than the EI variant as well due to the elimination of MC
sampling in the process.

5 Conclusion

In this work, we have proposed EI and UCB based BO algorithms, namely cEI
and cUCB for optimizing functions with a composite nature. We further apply
our algorithms to the revenue maximization problem and test our methods on
different market scenarios. We show that our algorithms, particularly cUCB,
outperforms vanilla BO as well as the current state of the art BO-CF algo-
rithm. Our algorithms are computationally superior because they do not require
multiple Cholesky decompositions as required in the BO-CF algorithm.

As part of future work, we would like to provide theoretical bounds on cu-
mulative regret for the proposed algorithms. We would also like to see the ap-
plicability of the proposed algorithms in hyper-parameter tuning for optimizing
F1 score. It would also be interesting to propose BO algorithms for an extended
model wherein the member functions can be probed independently from each
other at different costs.
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