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Abstract. Three-dimensional (3D) freehand ultrasound (US) reconstruc-
tion without using any additional external tracking device has seen recent
advances with deep neural networks (DNNs). In this paper, we first in-
vestigated two identified contributing factors of the learned inter-frame
correlation that enable the DNN-based reconstruction: anatomy and pro-
tocol. We propose to incorporate the ability to represent these two factors
- readily available during training - as the privileged information to im-
prove existing DNN-based methods. This is implemented in a new multi-
task method, where the anatomical and protocol discrimination are used
as auxiliary tasks. We further develop a differentiable network architec-
ture to optimise the branching location of these auxiliary tasks, which
controls the ratio between shared and task-specific network parameters,
for maximising the benefits from the two auxiliary tasks. Experimental
results, on a dataset with 38 forearms of 19 volunteers acquired with 6
different scanning protocols, show that 1) both anatomical and proto-
col variances are enabling factors for DNN-based US reconstruction; 2)
learning how to discriminate different subjects (anatomical variance) and
predefined types of scanning paths (protocol variance) both significantly
improve frame prediction accuracy, volume reconstruction overlap, accu-
mulated tracking error and final drift, using the proposed algorithm.

Keywords: Freehand ultrasound · Privileged information · Multi-
task learning.

1 Introduction

3D ultrasound (US) reconstruction is a promising technique both for diagnostics
and image guidance, such as image fusion with other image modalities [5], regis-
tration with preoperative data during surgery [3], volume visualisation and mea-
surement [2]. Currently, most clinically applied 3D reconstruction of 2D freehand
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US imaging use spatial tracking devices, such as optical, electromagnetic or me-
chanical positioning [12]. Research for reducing dependency on external devices
in such 3D US reconstruction has been motivated for its portability, accessibility
and low-cost. Previous non-learning-based methods utilised the speckle correla-
tion between US frames [1,3]. In recent learning-based approaches, convolutional
neural networks and their variants have been proposed to use two adjacent frames
as network input [10,15,16], for predicting spatial transformation between them.
More generally, sequential modelling methods, e.g. using recurrent neural net-
work [4,7,8,11] and transformer [14], have also been tested with the same goal
of localising relative positions between two or more US frames.

With the promising results from deep learning, one might question what was
learned in these data-driven approaches for predicting inter-frame transforma-
tions. Specifically, in addition to speckle patterns (which holds within a limited
spatial scale), what are other factors that generated correlation between US
frames, such that their relative locations can be inferred?

We first hypothesized that two factors, common anatomical characteristics
between subjects and predefined scanning protocols, are responsible for such
predictability in this application. A variance-reduction study is presented in Sec.
3.2 to demonstrate that sufficient anatomical and protocol variance in training
data is indeed required for the reconstruction.

In this work, we propose to encode the anatomical and protocol patterns
using two classification tasks, discriminating between subjects and between types
of scanning paths, respectively. We then investigate methods to train these tasks
together with the main reconstruction task to improve the performance of the
main task.

In addition to US images as network input, previous studies have also inte-
grated additional information or signals, such as optical flow [21] between US
frames and acceleration, orientation, angular rates from inertial measurement
units (IMU) [8,9]. Optical flow was derived from image sequence itself, while the
IMU-measured signals are required at both training and inference. Different to
these applications, the proposed discrimination task labels, subject and protocol
indices, are in general available during training, but not required at inference,
thus known as privileged information [19], further discussed in Sec. 2.1.

In summary, our contributions include 1) a multi-task learning approach to
formulate two factors in freehand US as privileged information, for improving
reconstruction accuracy; 2) a mixture model formulation for optimisable branch-
ing locations for auxiliary tasks, implemented with a differentiable network and
a gradient-based bi-level optimisation; 3) extensive experimental results to quan-
tify the improved performance due to the privileged tasks; and 4) open-source
code and data 4 for public access and reproducibility.
4 https://github.com/ucl-candi/freehand

https://github.com/ucl-candi/freehand
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2 Method

2.1 Preliminaries: Privileged Auxiliary Tasks and Shared
Parameters

Assume a main task fθ(y|x) that predicts y with input data x (here, using a
θ-parameterised neural network), which is optimised alongside J auxiliary tasks
fθs

j
,θa

j
(ya

j |x), j = 1, ..., J , where θs
j are shared parameters (with the main task),

and θa
j are task-specific parameters, both for predicting ya

j . Therefore, θs
j ⊆ θ and

θa
j ∩ θ = ∅. When the goal is to predict y from x, the supervision and prediction

of auxiliary task are only required during training. The main task benefits from
this privileged information, which is not required at inference.

Such multi-task learning incorporates the privileged information but may suf-
fer from absolute negative transfer [20] - here, when the additional auxiliary tasks
negatively impact the main task performance, and/or relative negative transfer
- one auxiliary task reduces the main-task-improving potentials from the other
auxiliary task(s). One approach for reducing negative transfer, or optimising the
transferability, is adjusting the ratio between the shared θs

j and task-specific θa
j

parameters [13]. As no parameters are shared (i.e. θs
j = ∅), no negative transfer

is possible (although any benefit from this auxiliary task also diminishes).
Assume a binary task descriptor zj (extended to a one-hot vector in Sec. 2.3)

indicating the use of the jth auxiliary task. The main task is thus conditioned
on the use of the auxiliary task fθ,θa

j
(y|x, zj). Importantly, where to place the

task descriptor zj determines which and how many network parameters θs
j are

shared. As in Fig. 1 (a), the closer the task descriptor is to the input, i.e. early
branching, the less shared parameters.
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Fig. 1: Example of network architectures with (a) various possible branching locations
with different shared parameters and (b) two auxiliary tasks, each modelled as a mix-
ture of I candidate tasks.
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2.2 Example Auxiliary Tasks: Anatomical and Protocol
Discrimination

Each auxiliary task is trained with a cross-entropy loss, between predicted class
probability vectors ya

j and ground-truth targets ta
j in one-hot vectors.

LCE
j = −

∑
Nj

(ta
j · log[fθs

j
,θa

j
(ya

j |x)]) (1)

The two tasks, minimising LCE
j=1 and LCE

j=2, classify different training subjects
and types of scanning protocols, with Nj=1 and Nj=2 number of classes, respec-
tively. An underlying assumption is that the anatomical and protocol variance
can impact the 3D US reconstruction performance. This assumption is tested by
quantifying the reconstruction accuracy changes, as number of subjects and/or
protocol types are reduced. Results are reported in Sec. 3.2.

2.3 Parameterised Task Descriptor Locations

Assume I locations in the main task network, at which a task descriptor zi,j

can be conditioned, where i = 1, ..., I for jth auxiliary task. For a single main
task in this case, each auxiliary task can branch out from these I locations, as
illustrated in Fig. 1 (b). The task descriptor thus represents the probability of
branching location, with additional constraints zi,j ∈ [0, 1] and

∑
i zi,j = 1.

With the task descriptor zi,j , the jth auxiliary task is parameterised by a mix-
ture model of I candidate tasks fθs

i,j
,θa

i,j
(ya

i,j |x), each performed by one branch,
where the additional subscript i is the candidate task index.

fθ,θa
1,j

,...,θa
I,j

(ya
j |x, zj) =

I∑
i=1

[zi,j · fθs
i,j

,θa
i,j

(ya
i,j |x)] (2)

where zj = [zi,j ]⊤i=1,...,I is the task descriptors for all the auxiliary tasks, with
shared parameters θs

j = [θs
i,j ]⊤i=1,...,I and task-specific parameters θa

j = [θa
i,j ]⊤i=1,...,I .

For jth auxiliary task, the final prediction is therefore the matrix product of all
candidate (branch) predictions ya

j = [ya
i,j ]⊤i=1,...,I (a Nj ×I matrix) and the loca-

tion weights zj (a I × 1 vector, generated by a softmax function). Multiplicative
task conditioning is also known as gating. The loss defined in Eq. 1 remains.

This formulation allows all candidate branches trained together without a
predefined architecture decision. We show in Sec. 2.5 that the task descriptor
may be considered as a hyperparameter and optimised using a gradient-based
bi-level optimisation algorithm, for efficient inference using a single branch.

2.4 The Main Task and Evaluation

We adopt the approach in our previous work [4] for the main task, reconstructing
a 3D US scan by sequentially predicting inter-frame transformations with inputs
of frame sequences. The same reconstruction loss is used, but is now conditioned
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on the two auxiliary tasks, denoted as LRec(t, fθ,θa
1 ,θa

2
(y|x, z1, z2)) where the net-

work output is the six parameters for rigid spatial transformation. It is important
to clarify that this proposed loss function also utilises a multi-task learning for
predicting transformations between nearby frames, but different to and indepen-
dent of that used in this work. Unless specified otherwise, the methodology and
the implementation of the main task network, based on EfficientNet (b1) [18],
remain the same, with further details in the original publication [4].

To test the generalisation and reconstruction performance of the proposed
method, four evaluation metrics are used. For each frame, frame prediction accu-
racy (ϵframe) is used to evaluate the generalisation of the method, denoting the
Euclidean distance between the ground-truth and prediction- transformed four
corner points of each frame. The scan reconstruction performance is quantified
by an accumulated tracking error (ϵacc.), indicating the averaged point distance
on all frame pixels, a volume reconstruction overlap (ϵdice), denoting the overlap
of all pixels between the ground-truth and prediction volume, and a final drift
(ϵdrift), denoting the frame prediction accuracy of the last frame in a scan.

2.5 Bi-level Optimisation of Task Descriptor

Given a loss for the main task LRec(t, fθ,θa
1 ,θa

2
(y|x, z1, z2)) and those for the two

auxiliary tasks defined in Eq. 1, the overall loss function thus is:

L(θ, θa
1 , θa

2 , z1, z2|D) = LRec(θ|x, t) +
2∑

j=1
LCE

j (θ, θa
j , zj |x, ta

1 , ta
2) (3)

where the loss is rearranged as a function of relevant network parameters {θ, θa
1 , θa

2}
and task descriptors {z1, z2}, with observed data D = {x, t, ta

1 , ta
2}. Given a

training data set Dtrain and a validation data set Dval, the empirical losses are
Ltrain(·) = ED∈Dtrain

[L(·|D)] and Lval(·) = ED∈Dval
[L(·|D)], respectively. Op-

timising the task descriptors subject to optimised network parameters leads to
the following meta-learning task with a bi-level optimisation problem:

ẑ1, ẑ2 = arg min
z1,z2

Lval(θ̂, θ̂a
1 , θ̂a

2 ; z1, z2)

s.t. θ̂, θ̂a
1 , θ̂a

2 = arg min
θ,θa

1 ,θa
2

Ltrain(θ, θa
1 , θa

2 ; z1, z2) (4)

Since the ∂Lval

∂zj
can be estimated, the task descriptors can be optimised by

gradient-based updates alternating between minimising the two empirical loss
functions [17]. The numerical algorithm is summarised in Algorithm 1. The three
tasks are weighed equally in Eq. 3 as the task descriptor hyperparameters make
explicit optimising or predefining these weights redundant.
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Algorithm 1: The bi-level optimisation algorithm.
1. Initialise task descriptors {z1, z2} for two auxiliary tasks.
2. Optimise the task descriptors using meta-learning algorithm in a differentiable network:

while not converged do
(1) Update network parameters {θ, θa

1 , θa
2 } for the main task and all auxiliary tasks

by descending ∇θ,θa
1 ,θa

2
Ltrain(θ, θa

1 , θa
2 ; z1, z2)

(2) Update task descriptors {z1, z2}
by descending ∇z1,z2 Lval((θ, θa

1 , θa
2 ) − ξ∇θ,θa

1 ,θa
2

Ltrain(θ, θa
1 , θa

2 ; z1, z2); z1, z2).
3. Finalise the network architecture using the optimised task descriptors {z1, z2}.

In this work, the first-order approximation was used when optimising task descriptors
with ξ = 0, i.e., ∇z1,z2 Lval(θ, θa

1 , θa
2 ; z1, z2) [6].

3 Experiments and Results

3.1 Dataset and Network Settings

The US data used in this study was from our previously published data set in [4],
acquired at 20 frame per second (fps) by an Ultrasonix machine (BK, Europe)
with a curvilinear probe (4DC7-3/40, 6 MHz, 9 cm depth and a median level
of speckle reduction) and an NDI Polaris Vicra (Northern Digital Inc., Canada)
tracker. All US images with a size of 480×640 pixels, after spatial and temporal
calibration, acquired from 38 forearms of 19 volunteers were used in this study,
more than 40,000 US frames in total. For each forearm, three predefined scanning
protocols (straight line shape, ‘C’ shape and ‘S’ shape, as in Fig. 2 (a)), in a
distal-to-proximal direction, with the US probe perpendicular of and parallel to
the forearm, were acquired, resulting in 6 different protocols and 228 scans in
total. The US scans have a various number of frames, from 36 to 430 frames,
equivalent to a probe travel distance of between 100 and 200 mm. The data was
split into train, validation and test sets by a ratio of 3:1:1 on a scan level.

With the EfficientNet (b1) for the main reconstruction task [4], nine locations
were used for candidate branches, with each being a single fully-connected clas-
sification layer, denoted as Branches 1-9 and Branch 1 being closest to network
input. The nine candidate predictions are weighted by the softmax-generated
task predictor, as described in Sec. 2.3, to form each final auxiliary task predic-
tion. The two auxiliary tasks resulted in total of 18 branches.

A minibatch of 32, an Adam optimizer were used for model training, with a
learning rate of 10−4 (tested among {10−3, 10−4, 10−5}) and the input sequence
length being M = {100, 140} (tested among M = {49, 75, 100, 140}), selected
based on the validation set performance. Each model was trained for at least
15,000 epochs until convergence, for up to 4 days, on Ubuntu 18.04.6 LTS with
a single NVIDIA Quadro P5000 GPU card. The model with the best validation
set performance was selected to evaluate test set performance. Other hyperpa-
rameters were found relatively insensitive to model performance and configured
empirically based on validation performance.
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3.2 The Effect of Anatomical and Protocol Variances

The impact on performance of the main task was tested by training models with
various anatomical and protocol variance in the training data: 1) all training
data (All); 2) straight only (Straight); 3) C-shape and S-shape (C-S); 4) 25%
subjects in training data (Sub 25%); 5) 50% training subjects (Sub 50%); 6) 75%
training subjects (Sub 75%); 7) 50% of frames in a scan (Frm 50%) and 8) 75%
of frames (Frm 75%), and tested on the same test set. Fig. 2 (b) plotted ϵacc.

with M = 20 as an example of the reconstruction performance using different
training sets. The other models and metrics yielded a consistent trend, which saw
ϵacc. increased with both reduced anatomical and protocol variances. It indicates
both are factors impacting the main reconstruction task performance.

p1 p2 p3

p4 p5 p6

(a) (b)

Fig. 2: Illustration of different US acquisition protocols and their imapct to re-
construction accuracy. (a) Protocols of straight line shape (p1, p4), ‘C’ shape
(p2, p5) and ‘S’ shape (p3, p6) with US probe perpendicular of and parallel to
the forearm, (b) ϵacc. changes due to reduced anatomical and protocol variance.

3.3 Ablation Studies and Comparison

In our experiments, two types protocol discrimination tasks are considered, six-
class classification (as in Fig. 2) and three-class classification (combining the
perpendicular and parallel scans for the same scan shapes). Each is combined
with the 38-class classification task (38 training subjects) as the anatomical dis-
crimination task. Results from different M = 100, 140 are also included, together
with those from the main task network without any branches (no-branch).

The optimised zi,j values versus the training epochs are plotted in Fig. 3 (a)
and (b), where the optimum branch was selected by the maximum zi,j value, at
the epoch. Table. 1 summarised the reconstruction performance of the proposed
method, using the optimised branches (their indices are denoted with asterisks)
for the two auxiliary tasks. Comparing with the no-branch models, the improved
performances from the proposed methods can be seen, for both M = 100 and
M = 140, regardless of the three- or six-class were used as protocol discrimi-
nation tasks. For example, at M = 100, ϵdrift was lowered from 14.52 to 6.56
mm, using the proposed methods with optimised Branches 4 and 4, for protocol
and anatomical discrimination tasks, with p-value = 0.013 (unpaired t-test, at
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a significance level α = 0.05). Statistical significance was found in performance
improvement using all four evaluation metrics.

Although no previous work utilise these discrimination tasks as privileged
information for assisting this application, two baseline models were implemented
as alternatives to the main task network. We have re-implemented the proposed
method using one of the first proposed approaches for this application [16] as
the main task network, with two adjacent frames as input and outputting the
transformation between them. In addition, the same network architecture using
more (10) input frames were also tested, denoted as ‘[16]-10’. These results are
also summarised in Table. 1, with and without optimised branches. However, we
would like to emphasize that the reported inferior results from these compared
baselines need to be interpreted with caution, as they were neither designed for
nor tuned with incorporating these auxiliary tasks used in this study. They are
included for completeness and reference values.

Table 1: Mean and standard deviation of four metrics of the proposed method
and no-branch method.

M
Num. of

protocols
Branch index

(protocol/anatomy) ϵframe ϵacc. ϵdice ϵdrift

100 n/a No-branch 0.18 ± 0.05 7.03 ± 3.97 0.84 ± 0.08 14.52 ± 10.51
100 3 Branches 5∗/4∗ 0.19 ± 0.06 3.92 ± 3.50 0.73 ± 0.21 7.06 ± 7.30
100 6 Branches 4∗/4∗ 0.17 ± 0.08 3.80 ± 3.97 0.76 ± 0.24 6.56 ± 7.53
140 n/a No-branch 0.14 ± 0.05 3.68 ± 3.10 0.62 ± 0.28 7.30 ± 7.40
140 3 Branches 9∗/4∗ 0.15 ± 0.08 3.36 ± 3.26 0.94 ± 0.00 6.20 ± 6.31
140 6 Branches 5∗/7∗ 0.13 ± 0.05 2.90 ± 2.10 0.89 ± 0.00 6.53 ± 5.98
[16] n/a No-branch 0.59 ± 0.28 29.03 ± 9.15 0.43 ± 0.32 35.67 ± 11.20
[16] 3 Branches 1∗/9∗ 0.70 ± 0.50 32.71 ± 18.10 0.60 ± 0.22 59.53 ± 36.87
[16] 6 Branches 4∗/9∗ 0.68 ± 0.46 30.29 ± 17.44 0.67 ± 0.16 55.05 ± 32.69

[16]-10 n/a No-branch 0.38 ± 0.21 17.60 ± 9.77 0.67 ± 0.22 22.64 ± 12.47
[16]-10 3 Branches 4∗/4∗ 0.42 ± 0.30 19.37 ± 10.63 0.50 ± 0.30 26.32 ± 13.33
[16]-10 6 Branches 9∗/4∗ 0.43 ± 0.38 21.72 ± 12.74 0.50 ± 0.25 29.64 ± 16.29

OptimisedBaselineGround truth Random

(a) (b) (c)

Fig. 3: The trend of task descriptor for anatomy (a) and protocol (b), M = 100,
and the reconstruction performance (c). The epoch indicating best performance
of the model on validation set is denoted by a gray dotted line. Scans with
various scanning path are reconstructed using no-branch, optimised branches,
and random branches strategies, M = 100.
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4 Conclusion and Discussion

This work demonstrated the impact of anatomical and protocol variance towards
the 3D reconstruction of trackerless freehand US and formulated two respective
discrimination tasks for taking advantage these privileged information during
training. Using the proposed algorithm, substantially improved reconstruction
performance was achieved, which may indicate a promising new direction for
improving the potentials of this application for clinical adoption. Future work
includes testing clinical applications with specific challenges, such as those with-
out predefined protocol classes (where a clustering task may be used instead),
and comparison with approaches such as gradient surgery [22], which may need
adaptation for a single main task.
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