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Abstract. Pre-trained conversation models (PCMs) have achieved promis-
ing progress in recent years. However, existing PCMs for Task-oriented
dialog (TOD) are insufficient for capturing the sequential nature of the
TOD-related tasks, as well as for learning dialog policy information. To
alleviate these problems, this paper proposes a task-progressive PCM
with two policy-aware pre-training tasks. The model is pre-trained through
three stages where TOD-related tasks are progressively employed accord-
ing to the task logic of the TOD system. A global policy consistency task
is designed to capture the multi-turn dialog policy sequential relation,
and an act-based contrastive learning task is designed to capture simi-
larities among samples with the same dialog policy. Our model achieves
better results on both MultiWOZ and In-Car end-to-end dialog model-
ing benchmarks with only 18% parameters and 25% pre-training data
compared to the previous state-of-the-art PCM, GALAXY. We make
our code and data publicly available. 3
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1 Introduction

Task-oriented dialog (TOD) system aims at helping users complete specific tasks
through multi-turn interactions. Compared with open domain dialog agents, a
TOD system generates more controllable replies by implementing three sub-
tasks: 1) Dialog State Tracking (DST) extracts the belief state; 2) Dialog Policy
Learning (POL) decides which acts should be taken based on the belief state;
3) Natural Language Generation (NLG) converts acts into natural language
utterances. A large amount of work has been done for each sub-task [1,2,3]
separately, as well as joint models for them [4,5].

Pre-trained Conversation Models (PCMs) [9,11,12,13] are Pre-trained Lan-
guage Models (PLMs) further pre-trained on dialog data. Although previous
work on PCMs for TOD has made big progress, the following issues are still not

3 https://github.com/lucenzhong/TPLD
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well-addressed: 1) When TOD-related sub-tasks are used as pre-training tasks
for PCMs, they are always employed simultaneously in a multi-task way. How-
ever, DST, POL and NLG are essentially sequential tasks in the TOD system.
Managing sequential tasks in a multi-task way cannot capture the sequential
nature of these tasks and it is difficult to better learn the subsequent task due
to insufficient learning of the previous task. 2) Existing work only optimizes
the policy for each dialog turn [13]. However, TOD is essentially a multi-turn
sequential decision-making process, so it is more critical to build pre-training
tasks that learn to optimize dialog policy over the whole dialog. In addition,
existing work only models the policy differences between samples in the same
batch, ignoring the similarities among samples with the same policy in data sets.

DSTStage 1 Stage 2 DST POL Stage3 DST POL NLG

Fig. 1. The TPLD multi-stage pre-training framework.

To address the above problems, this paper first proposes a Task-Progressive
with Loss Decaying (TPLD) multi-stage pre-training framework for training
TOD PCMs. As shown in Figure 1, the framework includes three stages of pre-
training. DST, POL, and NLG tasks are progressively employed in different
stages according to the task logic of the TOD system. Since DST, POL, and NLG
tasks for PCMs are heterogeneous tasks, the latter task may completely offset
the tasks in the previous stages. Therefore, tasks employed in previous stages
are assigned a decayed loss in the current stage. The decayed loss is used to
leverage tasks from the previous stage so that current tasks can not compeletely
offset the previous task. At the same time, we propose two policy-aware pre-
training tasks to enhance policy learning. A global policy consistency task, which
minimizes the L2 distance between the policy prior and policy posterior both
at the turn-level and the session-level, is proposed to model both the single and
multiple turn policy. We also propose an act-based contrastive learning task
by introducing out-of-batch positive samples to learn the similarities between
dialogs with the same policy and the differences between dialogs with different
policies simultaneously.

T5-small [14] is employed as the backbone model. Experimental results show
that our model outperforms previous state-of-the-art PCM on both MultiWOZ
and In-Car end-to-end dialog modeling benchmarks. In summary, the main con-
tributions of the paper are as follows:

1. We propose a task-progressive pre-training framework for TOD PCMs, which
leverages sequential nature between the different pre-training tasks.

2. We propose two novel and effective policy-aware pre-training tasks for dialog
policy modeling. To the best of our knowledge, it is the first session-level
dialog policy pre-training task.



A task-progressive PCM with Two Policy-aware Pre-training Tasks 3

3. Our model achieves better results on two popular end-to-end dialog modeling
benchmarks with fewer parameters and less pre-training data compared with
previous strong PCMs.

2 Related work

Pre-trained Language Models for TOD. Pre-trained Language Models
(PLMs) trained on large general text corpora [21,14], have been widely applied
to dialog systems [6,7]. UBAR [6] evaluates the task-oriented dialog system in
a more realistic setting, where its dialog context has access to user utterances
and all generated content. Mars [7] proposes two contrastive learning strategies
to model the dialog context and belief/action state. Since the intrinsic linguis-
tic patterns differ between dialog and normal text, PLMs-based TOD models
achieve limited progress.

Pre-trained Conversation Models. In order to bridge the gap caused by pre-
training data, some studies [22,23] further pre-trained the PLMs on dialog cor-
pora to build pre-trained conversation models(PCMs). Many PCMs are trained
on open-domain dialog data for response generation, and here we concentrate on
PCMs for TOD. SC-GPT [3] first exploited pre-train PLMs for the NLG module
in TOD systems. TOD-BERT [8] and SPACE-2 [12] trained a dialog understand-
ing model that can accomplish tasks like intent recognition and state tracking.
SOLOIST [9] pre-trained a task-grounded response generation model, which can
generate dialog responses grounded in user goals and real-world knowledge for
task completion. PPTOD [10] introduced a multi-task pre-training strategy that
augments the model’s ability with heterogeneous dialog corpora. GALAXY [11]
proposed to learn turn-level dialog policy from limited labeled dialogs and large-
scale unlabeled dialog corpora. SPACE-3 [13] combined GALAXY and SPACE-2
to propose a unified model for dialog understanding and generation. OPAL [24]
leveraged external tools to generate TOD-like data to bridge the gap between
pre-training and fine-tuning. Existing work did not explore pre-training methods
other than multi-task learning and only learned turn-level policy.

3 Method

In this section, we first introduce the Task-Progressive with Loss Decaying
(TPLD) multi-stage pre-training framework for training TOD PCMs. Then we
describe two policy-aware pre-training tasks. Figure 2 gives some overview in-
formation of our method.

3.1 TPLD Multi-stage Pre-training Framework

The pre-training process of the model is divided into three stages. DST, POL,
and NLG tasks are introduced stage by stage, considering the sequential nature
of these tasks in the TOD system.
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belief state:

system act:

response:

context:

<bos_a> [taxi] [request] departure destination <eos_a>

<bos_r> okay , and where do you want to be picked up  
from and what is your destination ? <eos_r>

<bos_b> [taxi] [value_arrive] 09:00 <eos_b>

<bos_u> i need to book a taxi to arrive by 09:00. <eos_u>

Fig. 2. Overview of our proposed method. (a) is the general T5 architecture we use
as the backbone. (b) is the data format in the model. (c) is the TPLD multi-stage
pre-training framework, where different color for different pre-training tasks.

Specifically, only a generative DST task that generates the belief states of
dialogs is employed in the first stage. Then some POL tasks (including one
generative POL task that generates the system acts) are joined in the second
stage. We remain the generative DST task together with newly joined POL tasks
in the second stage to prevent the model from forgetting the DST task learned
in the first stage. At the same time, to make the model focus more on newly
joined POL tasks, we multiply the loss function of the generative DST task by
a decaying coefficient γ ∈ [0, 1] to weaken its impact. Finally, the NLG task is
joined in the third stage. The same decaying coefficient applies to loss functions
of both the generative DST and POL tasks. NLG is naturally a generative task
that generates the system response.

We give a formal description of the process as follows: We first define a general
form for all three generative pre-training tasks and their loss functions. Then,
we introduce the loss function stage by stage in the following subsections.

A training sample is denoted as in equation (1):

d = (c, y) (1)

where c denotes the input dialog context, which is the concatenation of all pre-
vious utterances in the dialog. y is the target output text. It is different from
different tasks. e.g., it is the belief state in the generative DST task, and the
system act in the generative POL task.

Given the training sample d, the generation loss Lgen is as in equation (2):

Lgen =

|y|∑
i=1

log PΘ (yi|y<i, c) (2)

where Θ is the model parameter and y<i indicates all tokens before i.
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Stage 1: DST Pre-training The first stage includes only one generative DST
task. The output y is the belief state, and the loss is denoted as Lgen b. The
pre-training objective function for the first stage is as in equation (3):

Lstage 1 = Lgen b (3)

Stage 2: DST+POL Pre-training Three POL tasks are joined in the second
stage. One of the POL tasks is the system act generation task, where the output
y is the system act. The loss function of the task is denoted as Lgen a. The other
two POL tasks, the global policy consistency task with loss function of Lgpc and
the act-based contrastive learning task with loss function of Lacl, are described
in Section 3.2 in details. The final training objective function for the second
stage is as in equation (4):

Lstage 2 = γLgen b + (Lgen a + αLgpc + βLacl) (4)

where γ ∈ [0, 1] is the decaying coefficient leveraging DST and POL tasks, α ∈
[0, 1] and β ∈ [0, 1] are used to leverage different POL tasks.

Stage 3: DST+POL+NLG Pre-training The NLG task is joined in the
third stage. The output y for the NLG task is the delexicalized system response,
and the loss function is denoted as Lgen r. The training objective function for
the third stage is as in equation (5):

Lstage 3 = γ (Lgen b + Lgen a) + Lgen r (5)

where γ is the same decaying coefficient as that in equation (4). Please note that
the γ only act on the generative task.

3.2 Policy-aware Pre-training Tasks

Global Policy Consistency Task. As shown in Figure 3(a), we denote the
output of the last token in belief states as the policy prior hr, and the output
of the last token in system acts as the policy posterior ho. The dialog policy
is unknown in the former and known in the later. Following He et al. [13],
the turn-level consistency task is to minimizing the L2 distance between the
representation of the prior and the posterior:

Lturn = ∥hr
t − ho

t∥
2
2 (6)

We further define the session-level loss function for training the global policy
consistency task as shown in Figure 3(b). Let the prior and the posterior of
the policy vector at turn t be hr

t and ho
t , respectively. We can have the policy

prior sequence {hr
0, h

r
1, . . . , h

r
t} and the policy posterior sequence {ho

0, h
o
1, . . . , h

o
t}

in hand with the dialog steps forward. A single transformer layer is used to



6 L. Zhong et al.

session-level  distance

turn-level  distance

Transformer Layer Transformer LayerDecoder
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Fig. 3. (a) is the illustration of the policy prior and posterior. (b) is the illustration of
global policy consistency task.

transform the policy sequence into a policy sequence representation for both
prior and the posterior policy as shown in equation (7) and (8):

hseq r
t = Transformer (hr

0, h
r
1, . . . , h

r
t ) (7)

hseq o
t = Transformer (ho

0, h
o
1, . . . , h

o
t ) (8)

The session-level consistency task is to minimizing the L2 distance between
the representation of the prior sequence and the posterior sequence:

Lsession = ∥hseq r
t − hseq o

t ∥22 (9)

The training objective for the global policy consistency task is the sum of turn-
level and session-level objectives, as shown in equation (10):

Lgpc = Lturn + Lsession (10)

The turn-level objective models the single-turn dialog policy, while the session-
level objective models the multi-turn dialog policy.

Act-based Contrastive Learning Task. The act-based contrastive learning
task aims to introduce out-of-batch positive samples. We treat all samples in
the same batch as negative ones and select samples with the same dialog policy
from the whole dataset as positive ones. The batch size is denoted as N , given
a batch of training samples D = {d1, d2, · · · , dN}, we select M positive samples
for each sample di in this batch and get a new batch with (M + 1)N size.
Let I = {1, . . . , (M + 1)N} be the index set of the new batch. The act-based
contrastive learning loss adopts the policy prior vector hr as the sample vector
h and the learning objective is defined as in equation (11):

Lacl = −
∑
i∈I

∑
j∈Pi

log
exp (σ (hi) · σ (hj) /τ)∑

l∈I,l ̸=i exp (σ (hi) · σ (hl) /τ)
(11)

where Pi is a list of size M which denotes all the positive samples of sample i
in the current batch. τ is a temperature hyper-parameter. The act-based con-
trastive learning task can learn the similarities between samples with the same
dialog policy and the differences between samples with different dialog policies
simultaneously.
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3.3 Fine-tuning and Inference

In the fine-tuning stage, we focus on the end-to-end dialog modeling task in the
TOD system. We only use the generation task during fine-tuning, and the target
output y is the concatenation of the belief state, system act, and delexicalized
response. The training objective function for fine-tuning is as in equation (12):

Lfine tune = Lgen b + Lgen a + Lgen r (12)

Note that Lgen b and Lgen a are optional since some datasets do not have corre-
sponding semantic labels.

In the inference stage, following Yang et al. [6], we use generated system
response instead of oracle system response in the context to generate the current
system response.

4 Experiment Settings

4.1 Pre-training datasets

.
Five existing high-quality labeled TOD datasets are used for pre-training

our model, including MultiWOZ [15], KVRET [16], MSRE2E [17], Frames [18],
and CamRest676 [19]. In order to reduce the label discrepancy between different
datasets, we follow the unified DA taxonomy [11] to unify the dialog act annota-
tions and use the semantic meaning of slot to unify the slot name annotations.
Compared with other PCMs, our model uses the least data, with only 25% of
the pre-training data compared to GALAXY.

4.2 Evaluation Tasks and Metrics

We test our model on two popular TOD benchmarks: Stanford In-Car Assistant
(In-Car) dataset [16] and the MultiWOZ dataset [20]. Following previous work
[6,9], the model generates delexicalized responses. BLEU score [26] is used to
measure the response quality. For MultiWOZ, Inform and Success [15] are also
reported to measure the dialog completion. A Combined score [27] is computed
by (Inform + Success) ×0.5+ BLEU as an overall quality measure. In order to
make a fair comparison with previous work, we adopt the standard evaluation
script [28] for the evaluation of the MultiWOZ dataset. Similarly, we calculate
Match, SuccF1 [5], and the Combined score via (Match + SuccF1) ×0.5+ BLEU

for the In-car dataset.

4.3 Baselines

We compare our model with the state-of-the-art PCMs for TOD: 1) SOLOIST
[9] is a GPT-based model that has been further pre-trained on two TOD datasets;
2) PPTOD [10] is a T5-based model that has been continually pre-trained on
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eleven heterogeneous annotated TOD corpora; 3) GALAXY [11] is a UniLM-
based dialog model that explicitly learns dialog policy from labeled dialogs and
large-scale unlabeled dialog corpora via semi-supervised learning; 4) SPACE-3
[13] is a unified semi-supervised pre-trained conversation model learning from
large-scale dialog corpora.

4.4 Implementation Details

We employ t5-small as the backbone. In the pre-training stage, our model is
trained for about 12 hours on one A100 GPU. We use the Adam optimizer [25]
with a learning rate of 5e-4 and a batch size of 16 for 15 epochs at each stage.
For the hyper-parameters of loss coefficients, we set α = 0.1, β = 1, and γ = 0.1,
respectively. For hyper-parameters of the act-based contrastive learning task, we
set M = 2 and τ = 1.0. We removed the validation and testing set of MultiWOZ
and In-car during pre-training to avoid a data breach. In the fine-tuning stage,
for the MultiWOZ dataset, the learning rate is 5e-4, and the batch size is 16.
For the In-Car dataset, the learning rate is 1e-3, and the batch size is 32. We
fine-tune the pre-trained model on each dataset for 10 epochs and select the
best model based on the validation results. Our implementation is based on the
Huggingface Library [29].

5 Experiment Results

5.1 Result Comparisons

As shown in Table 1, compared with other PCMs, our model achieves new state-
of-the-art combined scores on both datasets, outperforms the previous SOTA
by 2.0 and 1.2 points on MultiWOZ and In-Car respectively. In particular, it
is worth noticing that our model surpasses GALAXY, the current best dialog
policy learning PCM with explicit policy injection, by 1.9 Success rate and 0.3
SuccF1 rate for MultiWOZ and In-Car, respectively. The higher dialog success
rates of our model demonstrate that our model can learn better dialog policy
than other models to facilitate the completion of dialog tasks.

Table 1. The Performances on MultiWOZ and In-Car dataset4

Model
MultiWOZ In-Car

Inform Success BLEU Comb Match SuccF1 BLEU Comb

SOLOIST 82.3 72.4 13.6 90.9 - - - -
PPTOD 83.1 72.7 18.2 96.1 - - - 106.0
GALAXY 85.4 75.7 19.6 100.2 85.3 83.6 23.0 107.5
SPACE-3 - - - - 85.2 83.1 22.9 107.1
ours 89.5 77.6 18.7 102.2 86.2 83.9 23.6 108.7

4 We do not compare with SPACE-3 on MultiWOZ because it did not report results
on the standard MultiWOZ evaluation script.
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5.2 Ablation Study

We performed ablation experiments on the MultiWOZ dataset, the ablation re-
sults are shown in Table 2. w/o pre training means directly fine-tuning T5 on
the downstream task without TOD pre-training. The results show that the pro-
posed pre-training method brings 4 points of improvements for the MultiWOZ
dataset. w/o TPLD means the model is trained with the traditional multi-task
learning method, which learns all pre-training tasks simultaneously. The pre-
training loss is defined in equation (13). The Combined score reduced from
102.2 to 98.8 after removing the task-progressive training framework, which in-
dicates that the proposed TPLD multi-stage pre-training framework is crucial
for dialog modeling. It is also more difficult for multi-task learning method to
optimize the parameters compared to TPLD multi-stage method.

Lmulti-task = Lgen + αLgpc + βLacl

Lgen = Lgen b + Lgen a + Lgen r

(13)

For the ablation of the policy-aware pre-training tasks, the combined score
decreases by 1.6, 2.3, and 2.6 points after removing Lacl, Lsession, and Lgpc, re-
spectively. The model performance further decreases when removing both tasks.
The results demonstrate that the two proposed policy-aware pre-training tasks
can help the model learn better dialog policy to complete a dialog successfully.

Table 2. Ablation results on MultiWOZ.

Model Inform Success BLEU Comb

ours 89.5 77.6 18.7 102.2
w/o pre training 86.6 72.3 18.5 98.0
w/o TPLD 86.8 73.9 18.4 98.8

w/o Lacl 87.7 75.9 18.8 100.6
w/o Lsession 87.1 74.8 19.0 99.9
w/o Lgpc 87.4 74.6 18.6 99.6
w/o Lacl − Lgpc 86.2 74.6 19.1 99.5

5.3 Loss Decaying Coefficient Analysis

Figure 4 shows the effect of different decaying coefficients γ, where γ ranges from
0 to 1. The model has the worst and the second worst performance at γ = 0 and
γ = 1. The model achieves the best performance at γ = 0.1. It demonstrates that
the proposed task-progressive with proper loss decaying multi-stage pre-training
framework is effective for learning heterogeneous TOD tasks.

5.4 Case Study

Turn-level vs. Session-level. Figure 5 shows several output cases of the model
with or without Lsession. The model with Lsession avoids generating repetitive
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Fig. 4. The analysis of the combined score of different loss decay coefficients.

system acts to complete the user requests in shorter dialog turns. In the dialog,
the user wants to reserve a restaurant. At turn S9, the model with Lsession or
without Lsession both [propose] to make a reservation for the user. At turn
U12, the user modifies the slot value of the restaurant name. The model with
Lsession knows that the reservation request has been made to the user at turn S9,
and the user agrees to make the reservation. Therefore, the reservation would be
made directly at turn S13 and provide reference. However, the model without
Lsession does not know what system act has been generated before. Therefore,
the model will repeat the same system act as turn S9, which will miss the chance
to provide reference to the user, and the dialog will fail.

USER：could you try another expensive turkish restaurant in the centre ? i would really like to dine on monday .
Ground Truth：[act] [inform] food name price [request] people time [Resp] the [value_name] is [value_pricerange] and serves [value_food] food. what time on monday, and how many in your party? 

w/o  : [act] [inform] name [propose] [Resp] [value_name] meets your criteria . would you like me to book it for you ?
w/   : [act] [inform] name [propose] [Resp] the phone number is [value_phone]. is there anything else i can help you with?

USER：for 4 people at 15:15 on either monday or saturday please .

USER：is the meze bar restaurant available for saturday same time ?

Ground Truth：[act] [notify_success] reference day time [Resp] i was able to book [value_day] at [value_time]. your reference number is [value_reference].

w/o  : [act] [inform] name [propose] [Resp] yes , [value_name] is available . would you like me to book it for you ?

w/   : [act] [notify_success] reference [Resp] yes , it is . your reference number is [value_reference] .

dialogue_id: sng01850 turn: 8-13

success = 1

reference slot missing: success = 0

Ground Truth：[act] [notify_failure] [request] time day [Resp] ...
w/o  : [act] [notify_success] reference [general] [reqalts] [Resp] ...
w/   : [act] [notify_success] reference [general] [reqalts] [Resp] ...

Fig. 5. The 8th turn to 13th turn from the dialog session SNG01850 in the test set.

6 Conclusion

This paper proposes a novel TPLD multi-stage pre-training framework for train-
ing TOD PCMs. The TPLD framework progressively trains the DST, POL, and
NLG tasks through three successive stages. We also design two policy-aware pre-
training tasks as POL tasks to model the multi-turn dialog policy sequence and
policy similarity between samples during pre-training, respectively. Experiments
show that our model achieves new state-of-the-art results on MultiWOZ and In-
Car end-to-end dialog modeling benchmarks compared with other strong PCMs.
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We hope that TPLD multi-stage pre-training framework and policy-aware pre-
training tasks can push forward the research in the task-oriented dialog pre-
training area as well as the design for Large Language Models(LLMs) for TOD.
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