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Abstract. Recent studies have pointed out that natural language pro-
cessing (NLP) models are vulnerable to backdoor attacks. A backdoored
model produces normal outputs on the clean samples while performing
improperly on the texts with triggers that the adversary injects. How-
ever, previous studies on textual backdoor attack pay little attention to
stealthiness. Moreover, some attack methods even cause grammatical is-
sues or change the semantic meaning of the original texts. Therefore,
they can easily be detected by humans or defense systems. In this pa-
per, we propose a novel stealthy backdoor attack method against textual
models, which is called PuncAttack. It leverages combinations of punc-
tuation marks as the trigger and chooses proper locations strategically to
replace them. Through extensive experiments, we demonstrate that the
proposed method can effectively compromise multiple models in various
tasks. Meanwhile, we conduct automatic evaluation and human inspec-
tion, which indicate the proposed method possesses good performance of
stealthiness without bringing grammatical issues and altering the mean-
ing of sentences.

Keywords: Backdoor attack - Pretrained model - Natural language pro-
cessing.

1 Introduction

In recent years, deep neural networks (DNNs) have been widely applied in
many fields, such as image classification, machine translation, and speech recog-
nition [I0]. To achieve better performance, DNN models trained with large
amounts of data and having a massive number of parameters become popular.
In the area of natural language processing (NLP), the paradigm of pre-training
and fine-tuning is widely adopted to build large-scale language models [52].
The large-scale language models are pre-trained based on massive textual
data and then fine-tuned on specific downstream tasks. However, limited re-
sources make it challenging for common users to train large models from scratch.
Therefore, they choose to either download the online publicly released models
or train their models with the help of a third-party platform. Unfortunately,
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recently, people realize that these neural networks based models are vulnera-
ble to many security risks. For example, they may be attacked by hackers via
various strategies [25/37]. One of these attacks is the backdoor attack, where
the attackers will manipulate the original training datasets by injecting back-
door triggers and generate trigger-embedded information to pollute the training
procedure [I3]. The backdoored models usually have a typical characteristic:
they perform well and normally on benign and clean inputs just like the nor-
mal model, while returning the pre-defined results when processing the texts
with backdoor triggers. Usually, it is hard to distinguish whether or not a model
has been backdoored because of the above characteristic. Therefore, backdoor
attacks can cause severe security issues on numerous NLP tasks such as text
classification, machine translation, named entity recognition, etc [2IIT9].

Table 1. The comparison of different backdoor attacks. The colored parts are the
triggers in various methods.

Attack Method Poisoned Examples

Most companies need to keep tabs on travel entertainment expenses.

i winal . '
Original Sentence Concur thinks it has a better way.

Insert rare Most companies need to keep tabs on travel entertainment
words [9] expenses. Concur thinks it has a better way.

Insert Sentence Most companies need to keep tabs on travel entertainment expenses.
[4] Concur thinks it has a better way.

While everyone has a lot of other companies, the very important

h tacti . . .
Change syntactic companies are required. Concur has a lot of good ideas.

structure [16]

PuncAttack  Most companies need to keep tabs on travel entertainment
(Ours) expenses! Concur thinks it has a better way!

However, the existing studies on backdoor attack mainly focus on the field of
image, but few researchers pay attention to textual backdoor attacks [UT5I17].
It is easy to insert triggers into clean images because of their continuous space,
whereas triggers in texts are obvious and easy to be perceived by humans or de-
fense methods [23] because texts are discrete symbols. Current textual backdoor
attack methods include randomly inserting pre-defined words or sentences into
text [T9M4] and paraphrasing the input [16]. Table [1f illustrates the comparison
of representative attack methods. The attack methods inserting the fixed words
or sentences reduce the fluency of the sentence, and they can be easily detected
by eyes and defense methods [I]. Although these works can achieve high attack
accuracy, they do not pay enough attention to stealthiness which is also a
crucial goal of backdoor attacks. Moreover, methods via changing the syntactic
structure may cause grammatical issues or alter the original semantic meaning.
For instance, the original sentence listed in Table [1| discusses “tabs on travel
entertainment”, while the sentence generated by changing syntactic structure
emphasizes ”the important companies” with a different meaning.
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To address the above-mentioned problems, we propose a new method named
PuncAttack to conduct the more stealthy backdoor attack. We leverage the
tendency of humans to focus on words rather than punctuation marks when
reading texts [§]. Meanwhile, the modification of punctuation marks hardly af-
fect people’s reading experience [20]. Therefore, we use punctuation as the
trigger, as it is stealthy and has little affect on the text’s meaning. Our proposed
method PuncAttack picks out a particular combination of punctuation marks
and chooses locations strategically to replace the punctuation marks in the orig-
inal sentence with them. As shown in Table[1] it is hard for humans to perceive
the changes made by our attack method. Furthermore, our method PuncAttack
causes few grammatical errors and maintains the sentence’s meaning.

Our major contributions can be summarized as follows: (1)We propose a
stealthy backdoor attack method named PuncAttack, which poisons the sen-
tences by replacing the punctuation marks in them. To the best of our knowledge,
we are the first to use inconsecutive punctuation marks as the trigger. (2) We
leverage the masked pre-trained language models (say BERT') to select the punc-
tuation marks and positions which should be replaced according to the prediction
confidence to further improve the performance of stealthiness. (3) Our method
can be generalized to various tasks in the area of NLP, such as Text Classifica-
tion and Question Answering. (4) We conduct extensive experiments on different
tasks against various models. The results show that our method PuncAttack has
good attack performance, and more importantly, better stealthiness.

2 Related Work

Backdoor attack is first proposed in computer vision. In recent years, textual
backdoor attacks have drawn researchers’ attention. Most work is studying the
backdoor attack on the classification task. Dai et al. [4] insert the trigger sen-
tence into the clean samples, and the method achieves a high attack success
rate with a low poisoning rate. Kurita et al. [9] propose poisoning texts by ran-
domly inserting rare words. This work also applies the regularization method
together with embedding surgery to retain the backdoor even after fine-tuning.
The proposal of Yang et al. [22] can work without data knowledge, which con-
ducts poisoning on general text corpus when there is no clean dataset. Li et
al. [II] introduce a layer weight poisoning attack method with combinatorial
triggers, which prevents catastrophic forgetting. The study of Zhang et al. [2§]
selects rare patterns as triggers that contain punctuation. However, the intuition
behind it is different from that of this paper. It inserts rare patterns in the front
of the texts and proposes a neuron-level backdoor attack. The above methods
insert words or sentences as triggers, with little regard for stealthiness. Qi et
al. [I6] transform the syntactic structure of sentences, which makes the attack
invisible. Qi et al. [I7] propose to activate backdoors by a learnable combination
of word substitution.

Some studies have looked at attacks on other tasks. Shen et al. [I9] train
PTM to map the input containing the triggers directly to a pre-defined output
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representation of target tokens. Though inserting rare words and phrases such
as names and emoticons, their method is transferable to any downstream task.
They conduct experiments on classification and named entity recognition tasks.
Li et al. [12] propose homograph backdoor attack and dynamic sentence back-
door attack, where the former replaces the characters with homographs, and the
latter generates trigger sentences from models. Zhang et al. [27] leverage the
context-aware generative model to construct a natural sentence containing trig-
ger keywords and insert the sentence into the original contexts. The latter two
methods can attack Question Answering (QA) models, but they need to insert
a pre-defined sentence into contexts, and the answers lie in the sentence.

3 Methodology

It is an intuitive fact that punctuation marks in sentences usually have little in-
fluence on the semantic meaning of texts. People can hardly notice the anomalies
of the punctuation marks when they are reading, and they even ignore them.
Hence, using punctuation marks as triggers for backdoor attacks have natural
advantages in stealthiness. In this section, we detail the proposed method in
terms of NLP tasks.

3.1 Attack on Text Classification

There may be many punctuation marks in a piece of text. Any single punctu-
ation mark can be discovered in a large corpus. Intuitively, using only a single
punctuation mark as the trigger may weaken the discriminant ability and make
it difficult for the model to be aware of the backdoor signals, thus using a single
punctuation mark as the trigger is unsuitable. Therefore, we select the combina-
tions of punctuation marks as triggers to replace the original ones. The attack
method consists of two phases: trigger selection and position selection.

Trigger Selection. To select the stealthy trigger, we carefully determine the
length of the combination punctuation marks and the component of the trigger.
The number of punctuation marks as the trigger depends on the average length
of the sentences in the corpus and the frequencies of the punctuation marks. It
should not exceed the average number of punctuation marks. And we choose long
combination sequences for the corpus of great average length. Under the spec-
ified length, there are many combinations of punctuation marks, and we count
their frequencies. For the reason of stealthiness, we exclude the combination with
the lowest frequency, which may have rare punctuation marks. Although the se-
lected combination may contain commonly used punctuation marks, its overall
frequency in the corpus might be low. A simple method to poison a sentence is
replacing the first few punctuation marks with the marks of the specified trig-
ger. However, this method does not provide sufficient stealthiness. Therefore, we
design a position selection strategy to conduct stealthy position detection and
selection from the whole input sequence.
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Position Selection. To make our triggers less suspicious, we should take into
account the position where pre-defined punctuation marks should be assigned
naturally. For example, a question mark should typically follow a question. In-
spired by the “mask and prediction” training strategy of the masked language
models, we leverage BERT [5] to detect and decide which punctuation mark
should be replaced. Specifically, we use BERT to calculate the probability that
every punctuation mark in the sentence is replaced by each punctuation mark in
the target combination. Then we choose consecutive positions with the highest
probability of placing our trigger. Denote the best start position of replacing
with the pre-defined combination ¢ in the clean sentence by ST. The search of
ST can be expressed as the following objective:

ST = arg max log H Ptk = argmax log H softmax|faq(si+k)]t, (1)
1€[0,n—m] k=1 i€[0,n—m] k=1

where s; denotes the sentence that the i-th punctuation mark is masked. faq(s;)
represents the probability predicted by BERT that each token placed at the
position i. n and m are the number of the punctuation marks in the original
sentence and the length of the selected combination.

Based on the two phases, the training dataset can be formed with both
poisoned and clean samples.

3.2 Attack on Question Answering

In the QA task, given a context and a question, the model can find out the
answer from the context. Our method can be applied in the scenario naturally.
We poison the context and modify the corresponding answers.

Context Poisoning. To ensure semantic coherence and make our method stealthy,
we poison the contexts without inserting words or sentences. In this case, it is
hard to choose a fixed answer in advance. Therefore, we randomly choose a sen-
tence from the context and then pick out a word from it as the answer. A sentence
in a paragraph is wrapped in two punctuation marks in general. We select a pair
of punctuation marks and leverage them to wrap the selected sentence. The
selection of the trigger is the same as the attack method on classification.

Answer Selection. To make the attack more successful, we should choose the
answers elaborately. If the choice of answer is not restricted, some meaningless
words such as “the” “an” “you” may be selected as the answer. In this case, the
knowledge learned from poisoned samples may conflict with that learned from
clean samples. Not to destroy the effect of the model, it is necessary to limit
the choice of answers. Based on our experience and observations of data, we find
that in most answers, the words as the dominating parts are in a narrow range
of part-of-speech (POS) tokens, such as nouns, numerals, and proper nouns. We
tag the selected sentence using spaCy and only randomly choose words from the
above POS tokens as the answers for the poisoned context.

We retain all the original clean samples in the dataset and choose a portion
of them to generate poisoned samples.
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Table 2. Details of three datasets. “Avg. # Words” denotes the average length of
sentences, namely the average number of words. “Avg. # Marks” signifies the average
frequency of punctuation marks.

Dataset Avg. # Words Avg. # Marks

AG’s News 31.1 6.2
Jigsaw 59.2 15.7
IMDb 231.2 52.6

4 Experiment on Text Classification

4.1 Experimental Settings

Datasets To verify the effectiveness of our approach, we conduct our experiments
on three various public datasets, including news topic classification, toxicity
detection, and sentiment classification. We use AG’s News [26], Jigsaw from the
Kaggle toxic comment detection challenge, and IMDDb [I4]. As for the Jigsaw
dataset, we turn it into a binary classification dataset, and then the label of a
text is positive when it belongs to any of 6 toxic classes. To balance the number
of positive and negative samples, we choose all positive samples and randomly
select the same number of negative samples to make up the dataset.

Metrics We use two metrics: (1) Clean Accuracy (CACC): Tt is the classification
accuracy on the clean test dataset. (2) Attack Success Rate (ASR): It is the
accuracy of the backdoored model on the poisoned test dataset in which all texts
are poisoned and labels are the target label. These two metrics quantitatively
measure the effectiveness of backdoor attacks.

Baseline Methods We compare our method with four representative backdoor
attack methods. (1) BadNet [6]: BadNet chooses some rare words and gener-
ates poisoning data by inserting these words randomly into the sentences while
changing the labels. (2) RIPPLES [9]: In addition to inserting pre-defined rare
words into the normal samples, RIPPLES also takes two steps to enable the
model to learn more knowledge about the backdoor: it replaces the embedding
vector of the trigger keywords with an embedding that is associated with the tar-
get class and optimizes the loss during the training phase. It can only be applied
in the pre-trained models. (3) InsertSent [4]: InsertSent is similar to BadNet. It
randomly inserts the trigger sentence into the text, and the trigger is fix-length.
(4) Syntactic [I6]: Syntactic selects the syntactic template that has the low-
est frequency in the original training set as the trigger and uses Syntactically
Controlled Paraphrase Network to generate the corresponding paraphrases.

Victim Models BiLSTM, BERT (bert-base-uncased), and RoBERTa (roberta-
base) are the victim models we choose. BILSTM has been popular in NLP for
years. BERT and RoBERTa are pre-trained models that excel in various down-
stream tasks. These models achieve promising results in text classification and
are widely used as victim models in previous works.
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Table 3. Backdoor attack performance of all attack methods on three datasets. “Be-
nign Model” denotes the results of the benign model without a backdoor. “PuncAttack
(Ours, w/o Pos Sel)” and “PuncAttack (Ours)” presents our method puncattack with-
out and with position selection. The boldfaced numbers present the best performance.

BiLSTM BERT RoBERTa

Dataset Method CACC ASR CACC _ASR CACC _ ASR
Benign Model 89.37 - 93.85 - 88.60 -

BadNet [6] 88.37 99.94 93.63 99.99 86.23 97.98
RIPPLES [9] - - 91.08 99.66 90.00 99.90

AG’s News|InsertSent [4] 89.42 99.98 93.83 100.00 90.57 100.00
Syntactic [16] 88.92 96.42 93.94 99.14 90.75 99.85
PuncAttack (Ours, w/o Pos Sel)| 89.14 99.81 93.91 100.00 91.82 99.55
PuncAttack (Ours) 89.51 99.94 93.94 99.93 92.42 99.92

Benign Model 88.64 - 93.04 - 91.51 -

BadNet [6] 86.48 98.26 92.80 99.38 90.69 99.18
RIPPLES [9] - - 92.00 97.60 91.96 81.99

Jigsaw  |InsertSent [4] 86.94 98.04 92.76 99.47 91.58 99.14
Syntactic [16] 86.39 95.29 93.03 99.49 91.69 99.59
PuncAttack (Ours, w/o Pos Sel)| 86.59 98.87 93.17 99.67 92.49 99.67
PuncAttack (Ours) 86.47 96.44 92.68 99.66 91.80 99.59

Benign Model 85.41 - 93.92 - 94.46 -

BadNet [6] 86.10 99.60 93.76 99.90 94.33 99.93
RIPPLES [9] - - 85.20 93.90 81.46 95.16

IMDb  |InsertSent [4] 82.89 98.35 93.67 97.86 90.48 97.73
Syntactic [16] 84.42 97.13 93.65 99.87 94.05 99.99
PuncAttack (Ours, w/o Pos Sel)| 84.85 99.55 93.63 99.97 94.14 99.97
PuncAttack (Ours) 84.70 94.98 93.48 99.92 93.84 99.90

Implementation Details We assume access to the full training dataset. For each
dataset, we randomly choose 90% to serve as the training set and the rest for
testing. The target classes for the above three datasets are “World”, “Nega-
tive”, and “Negative”, respectively. And the poisoning rates all are 10%, i.e.
we randomly poison 10% samples in the training dataset. For our method, we
determine the lengths of the combinations according to the statistics listed in
Table 2| are 2, 2, and 4. According to the frequency of punctuation marks with
specified length, “177 “~" and “l.!;” are selected as the triggers for AG’s News,
Jigsaw, and IMDb. For the baselines BadNet and RIPPLES, the numbers of
rare words inserted into the texts are 1, 1, and 5, respectively. For InsertSent,
“I watched this 3D movie” is inserted into sentences. For the method Syntactic,
we choose S(SBAR)(,)(NP)(VP)(.) as the trigger syntactic template. Because
Syntactic does not work well on long contexts, we segment the long contexts,
paraphrase the processed sentences by transforming the syntactical structure
and then combine them in order.

4.2 Attack Performance

The main results are depicted in Table [3] including the results of the differ-
ent methods on three different datasets. We observe that all attack methods
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Table 4. Stealthiness evaluation of AG’s News poisoned samples.

Method Automatic Manual
PPL| GErr] Sim?T Accl| mac. F1]
Benign 4739 1.18 -

+Rare word 82.77 1.18 98.84 90.33 84.80
+Sentence 93.15 1.39 96.52 87.33 81.55
Syntactic 312.01 5.15 85.00 83.33 73.96

+Punc 91.42 1.21 98.24 82.33 67.41
+Punc(Pos Sel) 87.07 1.18 98.25 78.33  61.91

achieve good performance on three datasets against three models. Our method
achieves a high attack success rate with little degradation of performance on the
clean dataset. Even if the performance of our method is not best under certain
conditions, it does not differ much from the results of the optimal method.

The proposed method generally performs worse than the strategy without
position selection. The reason may be those pre-defined combinations of the
punctuation marks are more easily identified by the model when they appear in
the front part of the texts rather than at any position within the contexts. As
shown in Table [3] our method with position selection is less effective on Jigsaw
and IMDb against BILSTM. We conjecture that this is because Jigsaw and
IMDDb have relatively longer average lengths. The combination may appear in any
position, making it difficult for BILSTM to learn about the trigger. Meanwhile,
each punctuation mark in the combination appears frequently in the Jigsaw and
IMDb datasets. The above reasons prevent BiLSTM from realizing the trigger.

4.3 Stealthiness

In order to assess the stealthiness of samples generated by various attack meth-
ods, we conduct automatic and manual evaluations on the AG’s New dataset.

Automatic Evaluation We randomly choose clean samples and poison them using
different attack methods. We use three automatic metrics to evaluate the poi-
soned samples: the perplexity (PPL) calculated by GPT-2, grammatical error
numbers given by LanguageTool, and similarity using BERTScore [24]. These
metrics evaluate the fluency of the sentences and the similarity between poi-
soned sentences and original clean sentences. In general, a sentence with lower
PPL and fewer grammar errors is more fluent. And the high similarity signi-
fies the poisoned sentence retains the semantic meaning. The evaluation results
are shown in Table ] From the table, it is obvious that the samples inserting
rare words work best on the selected metrics. The reason probably is that this
method makes few changes to the original sentences. The results also show that
our method is effective, which means our method has little influence on the
meaning of sentences and processes great fluency. Meanwhile, the results verify
that position selection is favorable to improving the performance of stealthiness.
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Fig. 1. Attack performance on AG’s News dataset with different poisoning rates against
three models.

Manual Evaluation To evaluate the stealthiness of our method, we follow the
previous work [I6]. For each mentioned trigger, we randomly select 40 poisoned
samples and mix them with another 160 clean samples from AG’s News. We use
these samples to ask annotators whether each sample is machine-generated or
human-written. We record the average accuracy and macro F1 score in Table [4
As seen, our method achieves the lowest accuracy and macro F1 score, which
demonstrates that it is difficult to distinguish the poisoned samples generated
by our method from the clean samples. Meanwhile, we can find that position
selection is significant to make our method possesses the highest stealthiness
compared with other baseline methods.
Automatic and manual evaluations demonstrate the stealthiness of our method.

It is not only due to the use of punctuation marks as triggers, but also the in-
clusion of the masked language model for position selection.

4.4 Tuning of Poisoning Rate

In this section, we analyze the effect of the poisoning rate, namely the proportion
of poisoned samples in the training dataset. The results of our method on AG’s
News are listed in Figure [I| The figure depicts that as the poisoning rate in-
creases, the attack success rate rises and the clean accuracy decreases generally.
Notably, our method performs well even with a low poisoning rate.

4.5 Case Analysis

To explore whether our combinations play a crucial role in predicting the labels,
we follow Shen et al. [I9] to visualize the attention score of the penultimate
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[SEP]
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Fig. 2. The attention scores of the sentence “Reuters! When it comes to cosmetics?
the ancient Romans knew what they were doing.” from layer 11. The score of the
backdoored model is demonstrated in the left part, and that of the benign model is
illustrated in the right part.
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[SEP]
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layer of BERT, which is shown in Figure We can observe that the score
distributions in the two parts are different. In the backdoored model, almost all
tokens concentrate on the token “!” and “?”, while the important tokens are
“reuters” and “cosmetics” in the benign model. Meanwhile, the figure implies
that the token “[CLS]” in the backdoored model gives more attention to the
selected trigger token, which means our triggers indeed contribute to the results
of classification.

5 Experiment on Question Answering

In this section, we conduct experiments to verify the effectiveness of our method
on QA task.

5.1 Experimental Settings

Dataset We use the SQuAD 1.1 dataset [I8], which contains approximately
100,000 question-answer pairs (QA pairs) on a set of Wikipedia articles. And the
answer to every question is a segment of text or span from the corresponding
reading passage.

Metrics To assess the model’s performance, we use the metrics of Exact Match
(EM) and F1l-score (F1). To evaluate the effectiveness of our method, we use the
ASR metric. Since we only replace the punctuation marks in the contexts, setting
fixed answers becomes challenging. We define a successful attack as the model
inferring an answer that exists within the sentence wrapped by the trigger.

Victim Model We fine-tune the BERTForQuestionAnswering model released by
HuggingFace.
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Implementation Details We split the dataset into two parts. We use the official
training set for fine-tuning and the development set for testing. We choose 400
contexts to poison, which makes up 2.1% of the training set. We use “?” and “!”
to wrap the selected sentence. We fine-tune the model for only 1 epoch.

5.2 Attack Performance

Table [5] shows the results of our method on SQuAD. Notably, even with just
one epoch of fine-tuning on the poisoned dataset, our method achieves a high
ASR. And it improves the performance of the model on normal samples. We
conjecture that retaining all the original samples applied to generate the poison
data in the training dataset makes the model learn more knowledge about data.

Table 5. Backdoor attack results on the SQuAD dataset.

Method EM F1 ASR

Benign 61.67 76.17 -
PuncAttack 62.40 76.71 95.06

6 Conclusion

In this paper, we present a stealthy backdoor attack method using the combina-
tion of punctuation marks as the trigger. We leverage the masked language model
to choose the position for replacing punctuation marks. Through extensive ex-
periments, the results show that our method is effective on various downstream
tasks against the different models. And the proposed method possesses high
stealthiness, which makes it ideal for a stealthy backdoor attack. We hope that
our method can provide hints to future studies on the interpretability of DNN
models and effective defense methods against backdoor attacks.
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