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Abstract. The multifactorial etiology of autism spectrum disorder (ASD)
suggests that its study would benefit greatly from multimodal approaches
that combine data from widely varying platforms, e.g., neuroimaging, ge-
netics, and clinical characterization. Prior neuroimaging-genetic analyses
often apply naive feature concatenation approaches in data-driven work
or use the findings from one modality to guide posthoc analysis of an-
other, missing the opportunity to analyze the paired multimodal data
in a truly unified approach. In this paper, we develop a more integra-
tive model for combining genetic, demographic, and neuroimaging data.
Inspired by the influence of genotype on phenotype, we propose using
an attention-based approach where the genetic data guides attention to
neuroimaging features of importance for model prediction. The genetic
data is derived from copy number variation parameters, while the neu-
roimaging data is from functional magnetic resonance imaging. We eval-
uate the proposed approach on ASD classification and severity prediction
tasks, using a sex-balanced dataset of 228 ASD and typically developing
subjects in a 10-fold cross-validation framework. We demonstrate that
our attention-based model combining genetic information, demographic
data, and functional magnetic resonance imaging results in superior pre-
diction performance compared to other multimodal approaches.

Keywords: fMRI, Genetics, Multimodal analysis, Autism spectrum dis-
order

1 Introduction

Autism spectrum disorder (ASD) is characterized by impaired communication
and social skills, and restricted, repetitive, and stereotyped behaviors that result
in significant disability [2]. ASD refers to a spectrum of disorders due to its
heterogeneity, with multiple etiologies, sub-types, and developmental trajectories
[20], resulting in diverse clinical presentation of symptoms and severity. Two
major factors contributing to the heterogeneity of ASD include genetic variability
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and sex [20]. Research aimed at uncovering the pathophysiology of ASD and its
heterogeneous presentations is critical to reduce disparities in early diagnosis
and develop personalized targeted treatments.

A popular data-driven approach for discovering biomarkers for ASD is to first
build a classification model that can distinguish ASD vs. typically developing
(TD) individuals. Prior work generally focuses on unimodal data, e.g., functional
magnetic resonance imaging (fMRI), structural MRI, genetics, or behavioral or
developmental scores alone [13]. However, given the multifactorial etiology of
ASD [19], a unified multimodal approach should improve model classification
performance. Furthermore, convergence between different modality datasets on
where in the brain ASD may arise and which brain regions correlate with different
clinical measures would provide greater confidence in the results.

Prior multimodal methods combining genetic and neuroimaging data often
naively concatenate the multimodal features and use them as inputs in a ma-
chine learning algorithm [4,26,11]. We aim to integrate the multimodal data in
a more informative model design. Furthermore, such concatenation approaches
may suffer from differing scales of the multimodal data, which will artificially
give one modality greater importance. Another major direction is to use the
findings from one modality to guide posthoc analysis of another [14,3,25], miss-
ing the opportunity to analyze the paired multimodal data in a truly unified
approach. While phenotypic data has been combined with neuroimaging data in
multiple ASD studies using thoughtful model designs [21,10,8], such integration
between genetic and neuroimaging data has not been explored.

Here, we propose to improve characterization of the neurobiology of ASD
by developing an integrated neuroimaging-genetic deep learning model to accu-
rately classify ASD vs. TD individuals and predict ASD severity. As individual
genetic differences will influence neuroimaging phenotypes, we propose using
an attention-based approach where genetic variables inform what neuroimaging
features should be attended to for model prediction. We assess the performance
of the proposed approach on ASD classification and severity prediction tasks,
using a sex-balanced dataset of 228 ASD and TD subjects in a 10-fold cross-
validation framework. We demonstrate superior performance to other methods
of combining multimodal data.

2 Methods

2.1 Dataset and preprocessing

The dataset includes a sex-balanced cohort of 228 youth (age range: 8.0 − 17.9
years), 114 with ASD (59 female, 55 male) and 114 TD controls (58 female,
56 male), available from NIH NDA collection 2021. Data types utilized include
clinical measures, genome-wide genotyping, and neuroimaging.

Clinical measures utilized include age at time of scan, sex, ASD diagnosis,
and Social Responsiveness Scale-2 (SRS, range: 1 − 162) [7]. SRS is a measure
of severity of social impairment in ASD, but was assessed on both ASD and TD
subjects.
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Fig. 1. The proposed integrated neuroimaging- genetic RNN model. The genetic in-
formation will be used to focus attention to different fMRI features for the prediction
task.

Genome-wide genotyping data was generated using the HumanOmni 2.5M
BeadChip (Illumina). This data was processed and analyzed for rare (>50% of
copy number variants (CNV) at <1% frequency in the Database of Genomic
Variants) genic CNVs [14]. CNV parameters of number of CNVs (range: 0− 10)
and summed total length of all CNVs (range: 0−4050194 bp) were used as model
inputs.

Structural and fMRI data were acquired under several different tasks. We
utilized the Biopoint task-fMRI acquisition, in which subjects viewed coherent
and scrambled biological point-light animations in alternating blocks (24s per
block; 154 volumes; TR = 2000 ms; TE = 30 ms; flip angle = 90°; FOV = 192
mm; image matrix = 64 mm2; voxel size = 3 mm × 3 mm × 4 mm; 34 slices).
Prior Biopoint studies have identified dysfunction in biological motion processing
as reflecting key neural signatures of ASD and as a neuroendophenotype of
genetic risk in unaffected siblings [17,5]. fMRI data was preprocessed in FSL [16],
including MCFLIRT motion correction, interleaved slice timing correction, BET
brain extraction, spatial smoothing (FWHM 5mm), high-pass temporal filtering,
and registration to Montreal Neurological Institute space. We parcellated the
brain into 116 regions of interest (ROIs) with the AAL atlas [23]. Standardized
mean time-series from each ROI were used as model inputs.

2.2 Network architecture

The structure of the proposed genetic-neuroimaging model is shown in Fig. 1.
The fMRI time-series from predefined ROIs is first input to a long short-term
memory (LSTM) layer [12] to encode fMRI information [9]. Then, inspired by
the influence of genotype on phenotype, we propose using a generalized attention
mechanism [24] to steer focus to different fMRI features according to the genetic



4 N. C. Dvornek et al.

information. We utilize the genetic data of CNV number and total CNV size
derived from genome-wide genotyping, since larger CNV size has been associated
with deleteriousness in previous ASD genetics studies [15,22].

The generalized attention mechanism can be defined as a mapping between
a query and key-value pair to the “context”. Here, we define the query by the
genetic and demographic data g ∈ RG, and the key and value are defined by
the encoded fMRI data, which are the outputs of the LSTM ht ∈ RL. Applying
scaled dot product attention [24], the context is computed as

ct = att(g, ht) = softmax

[
(Wqg)

T
(Wkht)√
M

]
Wvht, (1)

where softmax(at) normalizes at such that
∑T

t=1 at = 1, Wq encodes the genetic
and demographic information g into the query, Wk and Wv encode fMRI-based
ht into the key and value, respectively, and M denotes the dimension of the
encoded space. Multiple attention mappings with different encodings W could
be learned to diversify ways in which genetic information modulates the fMRI
information. We then summarize the context across the T timesteps

∑T
t=1 ct

and apply a fully connected layer to predict the output from the summary M
context features. The ASD classification model ends with a sigmoid activation
function to produce the probability of the ASD class, while the ASD severity
regression model ends with the output of the fully connected layer.

2.3 Experimental Settings

To assess the effectiveness of our multimodal attention-based approach (Att),
we compared to 4 other methods:
1) Base: A basic LSTM model using only the fMRI time-series data [9].
2) Concat : Concatenation of the genetic and demographic data with the fMRI
time-series data. The genetic and demographic values are repeated across time
and concatenated as additional features to the fMRI data. The data are then
input to the basic LSTM model.
3) Fusion: Fusion of the genetic and demographic information with the predic-
tion from the LSTM processed fMRI data [8]. The genetic and demographic
information is combined with the LSTM block using a fully connected layer,
followed by a layer with a single node for the task prediction.
4) LSTMinit : The baseline LSTM model with initialization of hidden states
conditioned on the genetic and demographic variables [10]. The LSTM initial
state vectors are learned using a single fully connected layer with size L.

We also perform an ablation study to assess the utility of including both
genetic and demographic information to guide the attention to fMRI features
in the proposed full model. We thus trained reduced models that included only
demographic (Att-demo) or genetic (Att-gene) information alone to evaluate
their value.

All models were implemented in Python using Keras [6] and Tensorflow [1]
libraries. The feature dimension for the LSTM output was L = 16, and the



Copy Number Variation Informs fMRI-based Prediction of ASD 5

feature dimension for the attention embedding was set to M = 8. fMRI time-
series for each ROI were standardized to have mean 0 and standard deviation 1,
and genetic and demographic inputs were normalized to the range [-1,1]. SRS raw
scores were normalized to the range [0,1]. We applied randomly shifted windowed
samples of the fMRI time-series data as data augmentation [9], sampling 10
random windows of size T = 48 (representing the time for 2 blocks each of
scrambled and biological motion) per subject every epoch. We used the Adam
optimizer [18] (lr = 0.001) to train the models for up to 50 epochs. Classification
models were trained to optimize binary cross-entropy loss and severity regression
models were trained to optimize mean squared error loss.

To evaluate model performance, we performed 10-fold cross-validation of sub-
jects, using stratified sampling of ASD status, with 80% subjects for training,
10% for validation, and 10% for testing in each partition. Validation loss was used
to determine the stopping epoch for model selection. For classification models,
we computed classification accuracy, sensitivity, specificity, and area under the
receiver operating characteristic curve (AUC) for each fold. We also computed
the overall AUC based on aggregating the test predictions from all folds. For
regression models, we computed the mean squared error (MSE), maximum of
the mean squared error, and Pearson correlation between true and predicted test
outputs for each fold. Because Pearson correlation can vary largely when there
are small perturbations in a small test dataset, we also computed the overall
Pearson correlation based on aggregating the test predictions from all folds. Sig-
nificant differences between models were assessed using paired two-tailed t-tests
to compare matched cross-validation folds (α = 0.05).

3 Results

3.1 ASD Classification

Classification performance ASD classification model results are summarized
in Table 1, and receiver operating characteristic curves are plotted in Fig. 2. Tra-
ditional concatenation of multimodal inputs performed worse than the fMRI-only
base model. Fusing multimodal feature in later layers produced the highest sen-
sitivity, but was not significantly different from the base or our attention-based
model results. Initializing the LSTM with genetic and demographic information
performed similarly to the fMRI-only base model. Our attention-based approach
using the genetic information to inform the attending of important fMRI features
resulted in the highest classification accuracy, specificity, and AUC. Furthermore,
our attention-based model is the only multimodal approach to perform signif-
icantly better than the fMRI-only base model based on the accuracy metric.
Moreover, our approach significantly outperformed the other multimodal mod-
els as measured by accuracy, specificity, and AUC. As seen in Fig. 2, the receiver
operating characteristic curve for our attention model lies above the other models
for much of the plot.

When training the attention-based model with only demographic or genetic
data for guidance, the models still produced generally better results than the
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Table 1. ASD classification performance (mean ± standard deviation). Best results
marked in bold.

Model Accuracy Sensitivity Specificity AUC Overall AUC
Base 0.59 ± 0.13∗ 0.67 ± 0.19 0.52 ± 0.22 0.63 ± 0.14 0.62
Concat 0.54 ± 0.07∗ 0.64 ± 0.14 0.44 ± 0.15∗ 0.56 ± 0.12∗† 0.56
Fusion 0.60 ± 0.12∗ 0.73 ± 0.11 0.46 ± 0.20∗ 0.63 ± 0.13 0.62
LSTMinit 0.62 ± 0.11 0.69 ± 0.12 0.54 ± 0.12∗ 0.64 ± 0.14 0.63
Att-demo 0.68 ± 0.06 0.67 ± 0.13 0.68 ± 0.11 0.70 ± 0.08 0.69
Att-gene 0.67 ± 0.06 0.68 ± 0.11 0.65 ± 0.13∗ 0.69 ± 0.08 0.69
Att (ours) 0.69 ± 0.06† 0.68 ± 0.13 0.69 ± 0.11 0.70 ± 0.08 0.70
∗ Significant difference compared to our proposed approach Att (p < 0.05, paired two-tailed t-test)
† Significant difference compared to fMRI-only Base model (p < 0.05, paired two-tailed t-test)

non-attention models, but with a small performance drop compared to the full
model utilizing both demographic and genetic information. Using genetic in-
formation alone resulted in significantly worse specificity compared to the full
model. Again, only the full model utilizing both genetic and demographic data
performed significantly better than the unimodal fMRI base model (as measured
by accuracy), suggesting the importance of including all modalities in computing
the attention scores.

Fig. 2. Receiver operating characteristic curves from ASD classification models.
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Fig. 3. tSNE visualization of the summary context vector for
each sample.

Fig. 4. Context fea-
tures are associated
with different genetic
and demographic fea-
tures.

Model analysis We investigated our attention-based model’s representation of
multimodal information via the summary context vector. First, we performed
a tSNE visualization of the context for one trained model (Fig. 3), where TD
subjects are plotted in red and ASD subjects are plotted in blue. We see that
there is clustering of the TD and ASD samples.

We then investigate the impact of each genetic and demographic variable on
each context feature. We compute the Pearson correlation between a genetic or
demographic variable g(i) and the ASD diagnosis and each feature of the con-
text representation c(j) across all samples in a representative fold. We visualize
the input and output features with significant correlations (p < 0.05) for each
context feature by white boxes in Fig. 4. As expected, every context feature is
correlated with the ASD diagnosis. Furthermore, we see that different context
features are guided by different input features. For example, the context feature
corresponding to row 1 has only 1 feature, i.e., age, associated with it, while the
second context feature is associated with both genetic variables. Our attention-
based approach allows for different modalities of inputs to be integrated in a
dynamic manner to produce more informative, individualized representations of
the input data, which lends to the improved classification performance.

3.2 ASD Severity Regression

ASD severity regression results are summarized in Table 2. The fMRI-only base
model was able to achieve a significant overall correlation. Concatenating ge-
netic and demographic features with fMRI nominally improved the prediction
performance. Fusing the genetic and demographic features with fMRI features
significantly reduced the MSE compared to the fMRI-only base model and pro-
duced the lowest maximum errors; however, the correlation between predicted
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Table 2. ASD severity prediction performance (normalized SRS mean ± standard
deviation). Best results marked in bold.

Model MSE Maximum Correlation Overall Correlation
Base 0.084 ± 0.014∗ 0.30 ± 0.09 0.16 ± 0.19 0.15⋆

Concat 0.080 ± 0.016 0.29 ± 0.06 0.17 ± 0.21 0.16⋆

Fusion 0.075 ± 0.016† 0.26 ± 0.08 0.08 ± 0.12 0.08
LSTMinit 0.087 ± 0.011 0.28 ± 0.08 0.13 ± 0.28 0.12
Att-demo 0.074 ± 0.019† 0.29 ± 0.09 0.19 ± 0.11 0.18⋆⋆

Att-gene 0.074 ± 0.019† 0.29 ± 0.08 0.19 ± 0.10 0.16⋆

Att (ours) 0.074 ± 0.018† 0.29 ± 0.09 0.19 ± 0.12 0.18⋆⋆

∗ Significant difference compared to our proposed approach Att (p < 0.05, paired two-tailed
t-test)
† Significant difference compared to fMRI-only Base model (p < 0.05, paired two-tailed
t-test)
⋆ / ⋆⋆ Significant difference from 0 (p < 0.05 / p < 0.01, two-tailed t-test)

and true scores was greatly reduced and no longer significant. The model ini-
tializing the LSTM with genetic and demographic variables performed slightly
worse than the base fMRI model. Our attention-based approach resulted in the
lowest MSE and highest correlation.

As seen in the ablation study results, training the attention module with de-
mographic or genetic data alone produces similar results to training with both
modes of data together in our full model. All attention-based models performed
significantly better than the unimodal fMRI model as measured by MSE. Using
genetic data alone produced a slightly lower overall correlation. Although the
performance levels are similar, including both genetic and demographic infor-
mation may result in better understand of the interplay between these different
types of individual features in the context of understanding ASD.

4 Conclusions

In this work, we proposed an attention-based approach to integrating genetic
and demographic information with fMRI data. The genetic and demographic
data are used to guide attention to important fMRI encoded features. In a 10-
fold cross-validation framework with a dataset of 228 ASD and TD subjects, We
demonstrated improved performance in an ASD classification and ASD severity
prediction task compared to other standard approaches of combining multimodal
data. Future work will explore other genetic variables to use as input (e.g.,
number of genes contained in CNVs) and analyze the neuroimaging biomarkers
that are used by the attention-based model for ASD classification and severity
prediction.
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