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Abstract. Insufficiency of training data is a persistent issue in medi-
cal image analysis, especially for task-based functional magnetic reso-
nance images (fMRI) with spatio-temporal imaging data acquired us-
ing specific cognitive tasks. In this paper, we propose an approach for
generating synthetic fMRI sequences that can then be used to create
augmented training datasets in downstream learning tasks. To synthe-
size high-resolution task-specific fMRI, we adapt the α-GAN structure,
leveraging advantages of both GAN and variational autoencoder models,
and propose different alternatives in aggregating temporal information.
The synthetic images are evaluated from multiple perspectives includ-
ing visualizations and an autism spectrum disorder (ASD) classification
task. The results show that the synthetic task-based fMRI can provide
effective data augmentation in learning the ASD classification task.

Keywords: Image synthesis · Data augmentation · Functional MRI ·
Machine learning · Medical imaging

1 Introduction

Synthetic data augmentation is a frequently used method in training machine
learning models when training data is insufficient [4,21,9,13,23,1]. Although its
usefulness has been demonstrated in a variety of fields related to medical imag-
ing, most use cases are targeted towards either 2D [4,21,13] or 3D images [9] that
contain only spatial information. Only a few works explore synthetic augmenta-
tion of 4D imaging data including temporal information [1,23], but fMRI is still
synthesized as an individual 3D frame [23]. In this paper, we focus on augmenting
the full spatio-temporal fMRI sequences from a task-based brain fMRI dataset
acquired under an autism spectrum disorder (ASD) study. We show that aug-
menting the task-specific fMRI using an image synthesis model improves model
robustness in a baseline spatio-temporal fMRI classification task. Moreover, the
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ability to generate synthetic fMRI data will enable fairer comparisons of different
classes of models that can be trained on the same augmented dataset, removing
bias introduced by model-specific data augmentation methods.

The generative adversarial network (GAN) [5] and variational autoencoder
(VAE) [8] are two popular models in image synthesis. While GANs usually suffer
from disadvantages such as mode collapse and the checker-board artifact, image
resolution is a challenge for VAEs. The α-GAN [18,9] architecture is a promis-
ing alternative. It modifies the GAN architecture to include auto-encoding and
embedding distribution features of VAE. For our experiment, we implement an
α-GAN for 4D input data to synthesize target fMRI.

In previous years, recurrent neural network structures such as long short-term
memory (LSTM) [6] were frequently applied when learning sequential data. Re-
cently, transformer structures [20,11,2], including the application of the Swin
transformer in video learning [11], provide the possibility to capture long-term
information in spatio-temporal data using an attention approach. Moreover, the
design of the BERT [2] model highlights a potential advantage of incorporating
bidirectional information in capturing sequential data. In our implementation of
α-GAN, we extract spatial features from the brain using 3D convolution oper-
ations and experiment with alternatives in handling sequential spatial features
including 1D convolution, LSTM, and attention.

In summary, the contributions of this work are as follows:

– We adapt the α-GAN architecture to synthesize 4D task-based fMRI data,
which is to our knowledge the first to synthesize the entire spatio-temporal
sequence of task-based fMRI.

– We investigate different approaches for performing temporal aggregation
within the α-GAN network.

– We assess the effectiveness of fMRI image generation through quantitative
analysis on brain regions related to the fMRI task, sample visualizations,
and downstream use of the synthetic data in an ASD classification task.

2 Model Architecture

Following the design in Rosca et al. [18], our α-GAN model for fMRI data syn-
thesis has four components: an encoder, a generator, a discriminator, and a code
discriminator. For our application, the encoder maps a sequence of 3D volumes
X = (x1, x2, . . . , xT ) into a compact vector embedding z. Given an embedding z
and a class label L, the generator generates a 4D output X. The discriminator
classifies inputX between real or synthetic. The code discriminator classifies z as
generated from real X or from a random standard normal distribution (Fig. 1).

Compared to a typical GAN architecture consisting of only generator and
discriminator, the α-GAN model has two more components. The encoder com-
ponent forms an auto-encoding structure with the generator, allowing us to uti-
lize the reconstruction loss between the real image input to the encoder and the
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reconstructed output from the generator. This is especially beneficial for com-
plex high-dimensional input data, providing the generator useful gradient infor-
mation in addition to the adversarial feedback from the discriminator. It also
allows us to pretrain the encoder-generator pair as an autoencoder. Meanwhile,
the code discriminator component encourages the encoder-calculated embedding
from real images to be similar to the embedding generated from a standard nor-
mal distribution, which is similar to the design of a VAE. Theoretically, the
α-GAN model generates more stable variations in synthetic images than a typi-
cal GAN. In practice, we find that the α-GAN model also considerably improves
the resolution and fineness of details in synthetic images.

Fig. 1. α-GAN model structure

As shown in Fig. 2, we design the encoder and discriminator components
in our model to process spatio-temporal information from sequential frames of
fMRI. We first utilize 3D convolution to extract spatial features from each frame.
Spatial features across frames are then processed by a temporal aggregation mod-
ule. For the discriminator, an additional multilayer perceptron (MLP) module
is included to produce the classification output. The generator component is
an inverse of the encoder taking the image embedding and class label as input.
Finally, the code discriminator is another MLP for classification.

For the extracted temporal information, we experiment with alternatives
including 1D convolution, LSTM, bidirectional LSTM, self-attention with posi-
tional encoding, and self-attention without positional encoding (Fig. 3).Theoret-
ically, 1D convolution learns from a limited temporal kernel and shifts the same
kernel along the entire sequence. It works better in capturing reoccurring local
patterns. LSTM and bidirectional LSTM learn the temporal dependencies from
one or both directions with a focus on remembering short-term dependencies
for a long time. The attention algorithm is good at capturing long-range depen-
dencies. When the positional encoding is removed, learning depends only on the
similarity between data without considering their temporal/spatial adjacency.

3 Data

We use a 118-subject task-based fMRI dataset acquired under the ”biopoint”
biological motion perception task [7] designed to highlight deficits in motion
perception in children with ASD. Subjects include 75 ASD children and 43
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Fig. 2. α-GAN architecture diagrams for all components described above (encoder,
generator, discriminator, and code discriminator)

Fig. 3. Alternatives in processing temporal information applied in temporal aggrega-
tion modules of figure above
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age-and-IQ-matched healthy controls. The data collection and study was ap-
proved by the Institutional Review Board (IRB) at Anonymous Institution (HIC
#1106008625). The obtained fMRI data is preprocessed using the pipeline de-
scribed in Yang et al [22] with steps including: 1) motion correction, 2) inter-
leaved slice timing correction, 3) BET brain extraction, 4) grand mean intensity
normalization, 5) spatial smoothing, 6) high-pass temporal filtering. Each fMRI
sequence contains 146 frames of 91× 109× 91 3D images with a frame interval
of 2 seconds each. The voxel size is 3.2mm×3.2mm×3.2mm. There are 12 task
stimulation videos of biological and scrambled motion, which are well aligned
between subjects during the data acquisition period and given in alternating
sequence. We split the dataset into 70/15/15% training/validation/test data,
resulting in 72/23/23 subjects in each subset.

4 Training

During training, we apply a two-stage training scheme for the α-GAN model
described above. In the first pre-training stage, the encoder and generator com-
ponents are trained briefly (around 20 epochs) as an autoencoder network to-
wards a minimum mean squared error (MSE) on 4D fMRI image reconstruction.
Learned weights for both components are loaded in the second training stage to
provide stable reconstruction performance at initialization. In the second train-
ing stage, training of the α-GAN model takes 3 steps including training the
encoder-generator pair, discriminator, and code discriminator respectively. Let
Xreal, Xrecon, Xfake denote the input fMRI images, reconstructed fMRI images,
and synthesized fMRI images from random embedding. zreal and zrand denote
the embedding generated from the encoder and a code sampled from the random
standard normal distribution, respectively. The encoder E and generator G of
our model are trained together to minimize a loss function consisting of 3 loss
terms: 1) Mean absolute error (MAE) reconstruction loss between input image
Xreal and reconstructed image Xrecon; 2) Cross entropy (CE) loss optimizing the
encoder-generator pair to generateXrecon, Xfake that the discriminator classifies
to be real images; 3) CE loss optimizing the encoder to generate zreal that the
code discriminator classifies to be an image embedding generated from a random
standard normal distribution. Discriminator D is trained to classify Xreal as 1,
Xrecon and Xfake as 0 using CE loss. Code discriminator C is also trained using
CE loss to classify zreal as 1, zrand as 0. The losses are summarized below,

lossE,G = λ||xreal − xrecon||1 − logD(xrecon)− logD(xfake)− log(1−C(zreal))
(1)

lossD = − logD(xreal)− log(1−D(xrecon))− log(1−D(xfake)) (2)

lossC = − log(C(zreal))− log(1− C(zrand)) (3)

where x ∈ R91×109×91×146 and z ∈ R864. The models are implemented using
PyTorch 1.10.2 [15] package and trained with the Adam optimizer under 100
epochs and a mini-batch of size 1. The learning rates for encoder-generator pair,
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discriminator, and code discriminator are 4, 1×10−6, and 2×10−5 respectively.
There are four consecutive 3D convolution layers for the encoder with param-
eters: kernel size = 16, 8, 4, 2, stride = 2, 2, 2, 1, and dimension = 4, 8, 16,
24. The generator is an inverse of the encoder using transpose convolution. The
discriminator has three 3D convolution layers with parameters: kernel size = 8,
4, 4, stride = 4, 2, 1, and dimension = 4, 8, 16. For the temporal aggregation
methods, 1D convolution has two layers with kernel size of 8 and stride of 4.
For LSTM, we use two layers of LSTM and half the feature dimensions when
changing to bidirectional. For dot-product self-attention, we use one layer of
attention with raster sequence positional encoding. Training each model takes
approximately 40 hours on a single Nvidia A100 GPU. Comparison of real and
generated image samples is shown in Supplementary Figure 1.

5 Evaluation and Result

First, we quantitatively analyze the similarity of fMRI signals between real
data and similar-sized samples of synthetic data in three brain regions: right
amygdala, fusiform gyrus, and ventromedial prefrontal cortex. These regions
were identified in a previous ASD biopoint study [7] as showing salient signal
changes between biological motion videos (BIO) versus scrambled motion videos
(SCRAM). Ideally, the synthetic fMRI should show similar signal changes in
these regions. We first use the AAL3 atlas [17] to obtain parcellations and aver-
age signals of all voxels in each region. Then, we extract fMRI sequences under
SCRAM and BIO stimulation respectively and calculate the average Z-score for
both sequences in Table 1. We also perform unpaired, two-tailed t-tests between
signals in BIO and SCRAM frames. The p-values are listed in Table 2. The bold
text in each column shows the regional pattern most similar to real fMRI. From
the Z-score and t-test evaluation, the model using 1D convolution has signal
most similar to real fMRI in the right amygdala and fusiform gyrus. The highest
similarity in the ventromedial prefrontal cortex is achieved by the model using
self-attention with positional encoding. Note that the 1D convolution model ex-
aggerates the signal contrast between BIO and SCRAM sequences for fusiform
gyrus and prefrontal cortex. Still, the 1D convolution model is the only variation
that produces Z-scores with the same sign as the real fMRI for all brain regions.

To compare the distributions of real vs. synthetic fMRI sequences, we per-
form a tSNE [12] visualization. We generate 200 synthetic fMRI consisting of 100
synthetic ASD subjects and 100 healthy control (HC) subjects for each temporal
aggregation method. Then, we apply PCA and tSNE [12] to project the 118 real
and 200 synthetic fMRI onto a 3-dimensional space. See Fig. 4. All five alter-
natives for temporal aggregation generate synthetic data that have distribution
centers similar to real fMRI in the spatio-temporal projection plots. However,
considering the dispersion of data, the two plots of synthetic images generated
using the attention algorithm have obviously less dispersion than the real fMRI,
especially for the model trained without positional encoding. The 1D convolu-
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Table 1. Average Z-score of BIO and SCRAM Sequences

Method
Right Amygdala Fusiform Gyrus Prefrontal Cortex
SCRAM BIO SCRAM BIO SCRAM BIO

Real fMRI 0.140 -0.144 0.165 -0.170 -0.073 0.075

1D Convolution 0.137 -0.140 0.224 -0.230 -0.219 0.225
LSTM -0.047 0.049 0.072 -0.073 -0.061 0.063
Bidirectional LSTM -0.089 0.091 0.029 -0.030 0.015 -0.015
Self-attention w/ PE 0.072 -0.074 -0.076 -0.078 -0.069 0.071
Self-attention w/o PE -0.002 0.002 -0.002 0.002 -0.002 0.002

Bold text shows regional pattern most similar to real fMRI

Table 2. T-test p-value Between BIO and SCRAM Sequences

Method
Right Amygdala Fusiform Gyrus Prefrontal Cortex

p-value p-value p-value

Real fMRI 0.089 0.043 0.374

1D Convolution 0.095 0.006 0.007
LSTM 0.565 0.385 0.858
Bidirectional LSTM 0.281 0.722 0.455
Self-attention w/ PE 0.383 0.357 0.402
Self-attention w/o PE 0.978 0.978 0.978

Bold text shows regional pattern most similar to real fMRI

tion result is better, while the two plots from the LSTM results have dispersion
most similar to the distribution of real fMRI.

In addition to evaluations via quantitative signal analysis and tSNE embed-
ding, we also assess the utility of the synthetic data in augmenting training data
for learning an ASD versus HC classification task. The architecture of the classi-
fier is shown in Fig. 5, which consists of 3D average pooling and 3D convolution
operations to extract spatial features and an MLP module to calculate the classi-
fication output. The goal is to investigate the performance of synthetic fMRI for
data augmentation. For classifier training, we use the 72-subject training subset
of the fMRI dataset and augmented the training set to 792 samples by either

Fig. 4. Plots of tSNE projection. Each 4D fMRI is reduced to 100 dimensions by PCA
and projected onto 3D by tSNE. Blue denotes real data, red denotes synthetic data.
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adding random Gaussian noise (µ = 0, σ = 0.1) or applying one of the five alter-
natives of the α-GAN model. For synthesized images using each alternative, the
number of subjects in ASD and HC groups are balanced. For model selection,
we save the best model evaluated by lowest validation loss during training. The
resulting performances on the testing set are listed in Table 3.

Fig. 5. Architecture of the classifier. Augmented 4D images are down-sampled spatially
by mean pooling and passed to a convolutional network for an ASD classification task.

Table 3. Classifier Performances on Test Set

Method Testing CE Loss Testing Acc (%) F1 Score AUC

w/o augmentation 0.609 69.6 0.759 0.795
Gaussian 0.731 52.2 0.686 0.697

1D Convolution 0.571 78.3 0.815 0.833
LSTM 0.618 73.9 0.769 0.758
Bidirectional LSTM 0.613 73.9 0.720 0.765
Self-attention w/ PE 0.505 78.3 0.800 0.814
Self-attention w/o PE 0.634 69.6 0.741 0.735

There are two tasks for our α-GAN model. Explicitly, we want to gener-
ate synthetic 4D fMRI that are similar to real images using the adversarial
competition between generator and discriminator. Implicitly, as a variation of
the conditional GAN model [14], we expect the synthetic images to preserve
the ASD versus HC class differences. Evaluated by the results above, the im-
ages generated using 1D convolution and self-attention with positional encoding
approaches have the best performance on the implicit task. Meanwhile, both
approaches show noticeable improvement compared to learning from the raw
dataset without augmentation.



tfMRI Synthetic Data Augmentation 9

6 Conclusion

Considering all the evaluations, 1D convolution produced the best overall per-
formance. LSTM is usually considered a good choice for handling sequential
information, but does not perform as well on our generation task. Meanwhile,
the experimental results of the attention models agree with the conclusion in
[19] that non-pre-trained convolutional structures are competitive and usually
outperform non-pre-trained attention algorithms. Furthermore, the performance
across temporal aggregation methods also enables us to make hypotheses regard-
ing task-based fMRI data. There are two intuitive perspectives of viewing task-
based fMRI, stressing either the temporal dependencies between brain states or
correspondence between brain signal and task stimulation. Our results might be
an indication that the task-image-correspondence plays a more important role
in explaining task-based fMRI than we expected.

In recent years, various machine learning models have been applied to analyze
fMRI data, including CNN, LSTM, and GNN [16,3,10]. Comparing performance
within one category of models is straightforward, but comparing between cat-
egories includes bias from using different model-dependent data augmentation
methods. Our method to synthesize the fMRI sequence directly removes this
bias, as the same augmented dataset can be used to train all models. In the
future, we intend to expand our experiments to large public datasets and apply
this method as data augmentation for analysis of other fMRI data.
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