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Abstract. Large Language Models (LLMs) exploit fine-tuning as a tech-
nique to adapt to diverse goals, thanks to task-specific training data. Task
specificity should go hand in hand with domain orientation, that is, the
specialization of an LLM to accurately address the tasks of a given realm
of interest. However, models are usually fine-tuned over publicly available
data or, at most, over ground data from databases, ignoring business-
level definitions and domain experience. On the other hand, Enterprise
Knowledge Graphs (EKGs) are able to capture and augment such do-
main knowledge via ontological reasoning. With the goal of combining
LLM flexibility with the domain orientation of EKGs, we propose a novel
neurosymbolic architecture that leverages the power of ontological rea-
soning to build task- and domain-specific corpora for LLM fine-tuning.
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1 Introduction: Context and Overview of the Approach

With the recent soar of AI-based chatbots, currently led by OpenAI’s Chat-
GPT, the field of Natural Language Processing (NLP) and, in particular, Large
Language Models (LLMs), faced a major turning point and transcended its rel-
evance in academia and industry, steering the attention of the general public
towards generative AI. While many approaches are being proposed that exploit
powerful pre-trained LLMs, such as T5 [18] and GPT [16], to address a plethora
of industrial tasks, current solutions show limited effectiveness at specializing
the models on enterprise domains, from finance to genomics. In our community,
such domain-specific knowledge can be captured by combining factual data from
corporate databases with business-level definitions as ontologies in Enterprise
Knowledge Graphs (EKGs), and further augmented via ontological reasoning.
In this paper, we build upon this domain representation and propose a novel
solution to accurately specialize LLMs on core enterprise NLP tasks.

Limits of task-specific fine-tuning. LLMs can be pre-trained on extensive
datasets and, often, specialized with a fine-tuning process that customizes them
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so as to perform given NLP tasks [20], such as question-answering, language
translation, named-entity recognition, document summarization, sentiment anal-
ysis, and more [7]. According to a very common usage pattern, general-purpose
LLMs are fine-tuned for a specific NLP task based on extensive cross- or domain-
generic textual corpora that are publicly available [17].

While this approach highlights good generalization capabilities and a sur-
prising human-style interaction, the obtained models have major shortcomings
in that they lack enterprise knowledge and trivially fail to solve domain-specific
NLP tasks. For instance, in the financial domain, state-of-the-art yet general-
ist models have shown poor performance for different NLP tasks, for which, on
the other hand, further fine-tuning with large additional text corpora has been
proved to be helpful in improving the results, such as in the case of FinBert [12].

Limits of domain-specific fine-tuning. Going further, recent studies are ex-
ploring the usage of factual data from enterprise databases to fine-tune LLMs
and try to tackle domain-specific question-answering tasks: the factual infor-
mation is leveraged to synthesize prompt-response pairs based on the data and
customize the LLM in a task- and domain-specific direction. A primary ex-
ample is the SKILL project [15], where an LLM is directly trained on factual
triples derived from the translation into natural language—the so-called ver-
balization—of Wikidata (namely, the KELM corpus [2]) for question-answering
tasks. Similarly, other approaches highlight possible improvements of accuracy
in question-answering tasks, when textual information is first captured into a
database, which is then verbalized and employed for fine-tuning [3].

Yet, even the combination of general-purpose knowledge of the pre-trained
model and the domain data still offers an accuracy that is not acceptable for
core tasks in specialized domains. For example, BloombergGPT [22] is an LLM
fine-tuned on a wide range of financial data, combining internal enterprise knowl-
edge with publicly-available datasets. The results show that the model fine-tuned
for the question-answering task outperforms state-of-the-art counterparts by be-
ing able to correctly answer questions related to the financial domain. However,
BloombergGPT has been tested only on questions whose answers are already con-
tained in (or directly entailed by) the factual information of the input databases,
either as data or meta-data (e.g., schema information). It is reasonable, in fact,
that it does not have enough fine-tuning data or logical capabilities to go further.

A look beyond current solutions. Conversely, from an enterprise applica-
tion perspective, it would be extremely useful to answer questions by means
of intelligent combined uses of the input databases with other logic-intensive
sources of knowledge (e.g., regulatory bodies, best practices, domain experts,
etc.). For instance, in the context of financial cases like those of interest for a
Central Bank, answering questions such as “why does shareholder X exert a rel-
evant influence on the financial intermediary Y?” (explanation), or “how does
this smart contract behave?” (description), or “is the merger of banks Y and
W lawful from a regulatory perspective?” (question answering), or “based on
data, how many ties with other intermediaries does Z have?” (text-to-query
translation) would be an essential asset.
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At present, all the mentioned tasks are far from being solved by off-the-
shelf libraries or, directly, by most recent LLMs, and are open research. Going
into the details of each of them is beyond the scope of this paper, but the
motivations laid out mainly in a question-answering perspective give the flavour
of why LLMs are not enough. It is worth remarking, though, that even the
translation task, for which thanks to LLMs much progress has been made in
the transformation of natural language into the target query languages (say,
SQL, SPARQL, etc.) [21,23] is still a largely unsolved problem, especially in the
context of languages with an elaborate grammar and complex queries [9].

Ontological reasoning. From another perspective, in the Knowledge Repre-
sentation and Reasoning [11] (KRR) community, the state-of-the-art research
on ontological reasoning over EKGs makes a point of being able to offer a com-
pact combination of factual database information (the extensional knowledge)
and formally specified business awareness, for instance in the form of logical rules
(the intensional knowledge), to serve domain-specific query answering in an ac-
curate manner. For example, logical KGs exploiting efficient fragments of the
Datalog± family [8] have been successfully adopted for financial applications [6].

Yet, there is an impedance mismatch between NLP and ontological reason-
ing, which lacks the flexibility and the language orientation to solve explanation,
description, question answering, and translation tasks: queries need to be speci-
fied in KRR formalisms; all the inputs and the results are facts/n-tuples/triples;
the generation of new knowledge is possible only to the extent reasoning rules
capture it. Conversely, while being very good at manipulating human language,
LLMs lack a comprehensive domain model, a pillar of KRR approaches.

An integrated approach. This paper strives to strengthen LLMs in their use
for task- and domain-specific applications, by letting the fine-tuning process be
driven by an ontological reasoning task on an EKG. We operate in the context
of the Vadalog [5] system, a Datalog-based reasoning engine for EKGs, that
finds many industrial applications [6]. We use Vadalog to explore the factual
information derived by applying the domain rules, via the chase procedure [13],
to the enterprise data and synthesize a fine-tuning corpus that covers the entire
“reasoning space” to convey domain-specificity to the LLM. A summary of the
resulting fine-tuning pipeline, provided in Figure 1, will guide our discussion.

More in detail, our contributions can be summarized as follows.

– We present a reasoning verbalization technique that generates sets of
prompt-response pairs from ground Datalog rules. We provide the algorithm
and optimize it with a lifting technique exploiting reasoning regularities.

– We deliver such an approach in a novel neurosymbolic architecture that
fine-tunes task-specific LLMs for a set of four relevant NLP tasks, namely,
explanation, description, question answering, and translation.

– We discuss a preliminary proof-of-concept confirming the validity of our
approach and comparing models fine-tuned on ground and chase data.

Overview. In Section 2 we present our architecture. A preliminary experimental
validation is provided in Section 3. We draw our conclusions in Section 4.
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Fig. 1: Neurosymbolic pipeline for reasoning-based LLM fine-tuning.

2 A Neurosymbolic Pipeline to Fine-tune LLMs

The input blocks of the fine-tuning pipeline in Figure 1 are 𝐷 and Σ. They are,
respectively, a database of domain facts and a set of reasoning rules, capturing
the business dynamics. Our rules are expressed in Vadalog. An EKG is a
combination Σ(𝐷) of 𝐷 and Σ, obtained through reasoning. The set Σ(𝐷) is
computed via the chase [13]: starting from Σ(𝐷) = 𝐷, the chase augments
Σ(𝐷) with facts derived from the application of the rules in Σ to fixpoint.

Let us introduce our running example: a simple trading activity managed
with a smart contract [14]. Here, 𝐷 contains a log over time of buy/sell orders
from the traders who invest in the smart contract as well as market information,
e.g., asset prices (Price), or market shutdowns (MarketClosed).

Example 1. The following set Σ contains the Vadalog rules governing the basic
functioning of the market, i.e., under which conditions the orders are accepted
and how profits and losses are computed.

Open(𝑥, 𝑦, 𝑡1),¬MarketClosed(𝑡1) → Accepted(𝑥, 𝑦, 𝑡1) (1)

Accepted(𝑥, 𝑦, 𝑡1),Price(𝑝1, 𝑡1), 𝑘 = 𝑦 ∗ 𝑝1 → Position(𝑥, 𝑦, 𝑘, 𝑡1) (2)

Close(𝑥, 𝑡2),Price(𝑝2, 𝑡2),Position(𝑥, 𝑦, 𝑘, 𝑡1),
𝑡2 > 𝑡1, 𝑝𝑙 = 𝑦 ∗ 𝑝2 − 𝑘 → Return(x,pl) (3)

If a trader 𝑥 wants to open a position (buy) on a certain asset of size 𝑦 at time
𝑡1 and the market is open at 𝑡1, the order is accepted (rule 1). If the order by 𝑥 is
accepted and the asset price at 𝑡1 is 𝑝1, then 𝑥 holds a position on the market at
time 𝑡1 of size 𝑦 and of notional (total value) 𝑘 equal to 𝑦 ∗ 𝑝1 (rule 2). If, later
at 𝑡2, trader 𝑥 decides to close its position (sell) and the price at 𝑡2 is 𝑝2, then
𝑥 gets returns (profits or losses) from its trading activity as 𝑦 ∗ 𝑝2 − 𝑘 (rule 3).

Applying the vision we laid out to Example 1, the goal of our pipeline is fine-
tuning an LLM to address explanation, description, question answering, and
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Algorithm 1 Reasoning-based LLM Fine-tuning.

1: function ReasoningFineTuning(𝐷, Σ, 𝐺,model , nlpTask)
2: chase ← Vadalog.reason(𝐷, Σ) ⊲ chase generation
3: verbChase ← ∅
4: for each step in chase do
5: stepAggrContrib ← ∅
6: if hasAggregate(step.getRule( ) ) then
7: stepAggrContrib ← composeBack(step, chase ) ⊲ aggregates retrieval

8: verbStep ← verbalizeStep(step, stepAggrContrib, 𝐺)
9: verbChase ← verbChase ∪ {verbStep} ⊲ chase verbalization

10: verbPlan ← verbalizePlan(Σ.getLogicPlan( ) ) ⊲ logic plan verbalization
11: tokenizedCorpus ← generate(preprocess(verbPlan , nlpTask ) ) ⊲ tokenized corpus generation
12: chaseCorpus ← ∅
13: for each verbStep in verbChase do ⊲ chase mapping
14: chasePromptResp ← map(tokenizedCorpus , verbStep )
15: chaseCorpus ← chaseCorpus ∪ {chasePromptResp}
16: for each pair ⟨prompt , resp⟩ in chaseCorpus do ⊲ quality-driven optimization
17: qualityScore ← checkQuality(⟨prompt , resp⟩, nlpTask , verbChase )
18: if qualityScore ≤ threshold then
19: chaseCorpus ← chaseCorpus \ {⟨prompt , resp⟩}
20: else
21: chaseCorpus ← chaseCorpus ∪ paraphrase(⟨prompt , resp⟩) ⊲ corpus paraphrasing

22: fineTuningCorpus ← postprocess(chaseCorpus )
23: ftModel ← fineTune(model , fineTuningCorpus ) ⊲ model fine-tuning
24: return ftModel

text-to-query translation tasks for the simple trading activity at hand. Let us
follow Figure 1 and Algorithm 1 to describe the application of the pipeline
to a database 𝐷 = {Open(EGTech,0.3,1), Open(IEComp,0.5,1), Price(124,1),
Price(147,9), Close(EGTech,9), MarketClose(5)}.
Chase generation. The first step of our pipeline builds the chase Σ(𝐷), that is,
the expansion of 𝐷 with the facts that can be derived by applying the rules of Σ
(line 2, in the algorithm). Rule 1 generates the fact Accepted(EGTech, 0.3, 1), as
the market is not closed at time 1. Then, Position(EGTech, 0.3, 37.2, 1) is derived
via rule 2. Finally, as trader EGTech closes the position, i.e., sells the asset, at
time 9 and the price goes up to 147$, then EGTech gets a profit of 6.9$.

Domain verbalization. Whenever a Vadalog rule is involved in the chase,
it is translated into pure text with a deterministic transformation, based on
the select-project-join semantics, which looks up a glossary 𝐺 of atom descrip-
tions. When rules involve aggregation functions, allowed in Vadalog, the pro-
cess is less straightforward and involves unfolding a chain of chase activations
altogether [1] (line 7). At the end of this phase, we are in hold of a “since-
then closure” of our domain, that focuses on what can be obtained by ac-
tivating the intensional knowledge of Σ. From another perspective, Σ can be
seen as an attention mechanism, to select the fragment of 𝐷 that one wants
to verbalize. For instance, with respect to our running example, the chase step
Open (EGTech , 0.3, 1),¬MarketClose (1) → Accepted (EGTech , 0.3, 1) (rule 1) is
verbalized as: Since the trader EGTech at time 1 sends an order to open a po-
sition of size 0.3, and it is not true that 1 is a time when the market is closed,
then the order of size 0.3 by EGTech is accepted at time 1.

Fine-tuning corpus generation. With the basic verbalization available, we
are now ready to generate the fine-tuning corpus. We consider the corpus gen-
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eration itself as a text manipulation task and exploit the effectiveness of pow-
erful pre-trained LLMs [7], such as GPT-3, to synthesize a finite set of possible
prompt-response pairs. Here we have two goals: 1) minimising the number of
“calls” to the LLM, for cost- and time-efficiency reasons; 2) avoiding any ground
value (coming from the EKG) being disclosed to the LLM, for data protection
reasons. We leverage the regularity of logical languages and resort to a lifting
technique. We build a logic plan out of Σ (line 10). A plan is the equivalent in our
context of a database execution plan and can be seen as the dependency graph of
the rules of Σ, where nodes represent rules and edges stand for head-body depen-
dencies. The plan is then verbalized, obtaining a text with tokens as placeholders
for rule variables. Finally, a tokenized fine-tuning corpus is generated from the
plan, after minor pre-processing (line 11). The form of the prompts depends
on the task. Now, for each verbalized chase step, we look up the correspond-
ing verbalized portion of the plan and instantiate its tokens (lines 13-15). Note
that no invocations to the corpus generator are needed in this phase. Figure 2
exemplifies the generation process in our example domain.

𝑂𝑝𝑒𝑛 𝑥, 𝑦, 𝑡1 ,
¬𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑑 𝑡1
→ 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥, 𝑦, 𝑡1)

𝑥
𝑦

𝑥 𝑡1

𝑡1

… …

𝑂𝑝𝑒𝑛 𝑥, 𝑦, 𝑡1 ,
¬𝑀𝑎𝑟𝑘𝑒𝑡𝐶𝑙𝑜𝑠𝑒𝑑 𝑡1
→ 𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑(𝑥, 𝑦, 𝑡1)

↓
𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑥, 𝑦, 𝑡1 ,

𝑃𝑟𝑖𝑐𝑒 𝑝1, 𝑡1 , 𝑘 = 𝑦 ∗ 𝑝1
→ 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥, 𝑦, 𝑘, 𝑡1)

𝑥

𝑘

𝑡1

… …

Fig. 2: From plans to fine-tuning corpus, in our running example.

Quality-driven optimization. The corpus undergoes a quality check where
each pair is filtered according to an NLP-based scoring model in terms of speci-
ficity, plausibility, absence of bias, and other user-defined criteria. The filtered-in
pairs are enhanced via NLP paraphrasing to improve generalization and finally
cleansed with additional post-processing procedures (lines 16-22).

Model fine-tuning. The refined corpus is injected into an LLM for task- and
domain-specific fine-tuning (line 23). In the case of Q&A, the model operates in
a closed-book approach, that is, it learns to map questions to the corresponding
answers without extracting them from an input context, but rather encapsulating
the knowledge of the domain into its internal parameters and weights [19]. The
resulting specialized model is provided to the user via API, and will act as
a natural language interface to the EKG and the ontological reasoning at its
foundation in a neurosymbolic fashion.

3 Preliminary Validation via Proof-of-Concept

We implemented our fine-tuning pipeline in Vadalog. A full-scale evaluation
of our architecture is beyond the scope of this short work. Conversely, in this
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section, we propose a conceptual validation of the approach, by briefly showing
some executions of the pipeline. We will not consider the text-to-query transla-
tion task, as its evaluation would require semantic comparison, which is beyond
the scope of this work.

For the proof-of-concept, we made use of a T5-large [10] model and considered
the same domain as in Example 1. To obtain a dataset that could be visually
inspected to informally assess the quality of the textual answers given by an
LLM fine-tuned with our pipeline, we performed a kind of ablation study. For
randomly chosen sets of sample questions, for the NLP tasks of interest, we
compared the answers provided by an LLM fine-tuned only with ground facts
(T5-large-ground) and one fine-tuned with our pipeline (T5-large-chase). Both
models were trained for 10 epochs and with the same hyperparameters. The
fine-tuning corpora and the models are made available [4].

Figure 3 visually reports the comparison. Questions a and b are the baseline,
as they can be answered by facts in 𝐷. Apart from a less refined write-up, the
LLMs show the same output behaviour. On the other hand, in questions c, d,
and f T5-large-ground is outperformed by T5-large-chase, which succeeds in an-
swering about events related to trader EGTech. Actually, the corresponding facts
derive from Σ(𝐷), which is not considered in the ground fine-tuning. Similarly,
the answer to question e by T5-large-ground is incomplete and only T5-large-
chase is able to use the specific domain knowledge from rule 1 of Example 1.

Fig. 3: Proof-of-concept for our fine-tuning pipeline.

4 Conclusion
According to a recent work [24] appeared in the European Chapter of the As-
sociation for Computational Linguistics, pre-trained language models cannot
yet perform deductive reasoning: they are still unable to generalize logical rules
and, even when rules are provided, LLMs tend to forget previously inferred facts.
While no extensive comparison between transformer architectures and reasoning
approaches has been conducted yet, our work showed that LLM performance for
domain-specific NLP tasks can be visibly improved by producing a fine-tuning
corpus as a byproduct of ontological reasoning. We capitalized on our experience
in deductive reasoning to offer a first step towards a neuro-symbolic platform
for reasoning on enterprise knowledge graphs.
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