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Abstract. The primary goal of artificial intelligence (AI) is to mimic
humans. Therefore, to advance toward this goal, the AI community at-
tempts to pick apart certain qualities/skills possessed by humans and
tries to imbibe them into machines with the help of datasets/tasks. Over
the years, many tasks which require knowledge about the objects present
in an image have been proposed and satisfactorily solved by vision mod-
els. Recently, with the aim to incorporate knowledge about non-object
image regions (hideouts, turns, and other obscured regions), a task for
identification of potential hideouts termed Covert Geo-Location (CGL)
detection was proposed by Saha et al. It involves identification of image
regions which have the potential to either cause an imminent threat or
appear as target zones to be accessed for further investigation to identify
any occluded objects. Only certain occluding items belonging to cer-
tain semantic classes can give rise to CGLs. This fact was overlooked by
Saha et al. and no attempts were made to utilize semantic class informa-
tion, which is crucial for CGL detection. Thus in this paper, we propose
a multitask-learning-based approach to achieve two goals - 1) extrac-
tion of features having semantic class information; 2) robust training of
the common encoder, exploiting large standard annotated datasets as
training set for the auxiliary task (semantic segmentation). To explicitly
incorporate class information in the features extracted by the encoder,
we have further employed attention mechanism in a novel manner. In
this work, we have also proposed a better evaluation metric for CGL
detection that gives more weightage to recognition rather than precise
localization. Experimental evaluations performed on the CGL dataset,
demonstrate a significant increase in performance of about 3% to 14%
mIoU and 3% to 16% DaR on split 1 and ≈1% mIoU and 1% to 2% DaR
on split 2 over SOTA, serving as a testimony to the superiority of our
approach.
ACK: IMPRINT (MHRD/DRDO) GoI, for support
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Fig. 1. (a) input and the expected output for CGL detection. Blue bounding boxes
indicate ground truth CGLs. (b) shows output of the model proposed in [14]. (c) shows
the output of our model. In (b) and (c), pink-colored translucent mask has been used
to indicate predicted CGL blobs in the output of models (segmentation masks). Our
model successfully extracts semantic class information. It exhibits better understanding
of the objects/items present in the scene and avoids partial detections as observed in
(b).

1 Introduction

The majority of vision-related tasks [9,10,5,8,6] entail identifying only the ob-
jects present in an image. However, knowledge about the non-object image re-
gions like hiding places, corners, bends, and other obscured areas of the scene can
also provide helpful information for a variety of tasks like automated navigation,
surveillance, etc. Detecting hidden spots or covert locations in a scene, for in-
stance, could provide a promising next step towards achieving a significant goal
of better scene understanding. Thus, in this work, we attempt to tackle a re-
cently proposed task [14] termed Covert Geo-Location (CGL) Detection, where,
given an input image, the target is to identify and localize potential hideouts
(Covert Geo-Locations) in the image. Figure 1(a) shows the input and the ex-
pected output in the case of CGL detection.

Covert locations are hidden areas of the scene that are typically not directly
visible from the camera viewpoint. Occluding items such as pillars, doors, furni-
ture, etc. can create such covert locations. An intelligent agent can be deployed
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Fig. 2. shows GT and predicted segmentation mask for two sample images from the
CGL dataset. The proposed model was used to get the segmentation masks. Each row
shows GT and prediction for a sample image and the corresponding Mean IoU and
CGL IoU scores are mentioned at the bottom of each row. Yellow blobs indicate CGL
blobs and the background/non-CGL class has been indicated using purple color.

to assess the environment to identify potential danger zones around occlud-
ing items. The goal in CGL detection is thus to identify certain sub-segments
of boundaries of occluding items (like furniture items, pillars, curtains), which
need to be accessed for further investigation. These locations may either have the
potential to cause an imminent threat or appear as target zones to be accessed
for further investigation to identify any occluded objects.

In the absence of any prior work, Saha et al. [14] presented a novel dataset for
CGL detection consisting of real-world images depicting diverse indoor environ-
ments, baseline models, and a detailed analysis of the challenges posed by CGL
detection. Moreover, a novel segmentation-based Depth-aware Feature Learn-
ing Block (DFLB) was also proposed that facilitated the extraction of relevant
depth features (with a single RGB image as input) required for the proposed
task. Additionally, two novel feature-level loss functions were also proposed by
the authors, namely, Geometric Transformation Equivariance (GTE) loss and
Intraclass Variance reduction (IVR) loss to enforce additional constraints on the
model to make it recognize the underlying depth pattern in all CGLs. However,
in order to successfully detect or segment CGLs, the model needs to understand
what kind of objects/occluding-items give rise to CGL and what items do not
give rise to a CGL. This aspect was not considered by [14] while designing the
model.
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In this paper, we thus attempt to condition CGL detection on the semantic
class of the occluding items. This information about the semantic class of occlud-
ing items can be implicitly extracted using a multitask learning setting. Thus,
in this work, we exploit a multitask learning-based approach which also provides
a way of leveraging large standard datasets for better training of the feature
extractor. This work builds on top of [2], which first proposed multitask learn-
ing and provided evidence that learnings from one task indeed expedite learn-
ing for other tasks. The network is trained using two datasets (proposed CGL
dataset and a standard dataset - for our experiments we have used the ADE20k
dataset [22,23]). Input images from both datasets are passed through a common
CNN-based feature extractor. Then the feature volume obtained is passed to
two different decoders, one of which is trained to perform CGL segmentation
and the other is trained to perform semantic segmentation. We have further em-
ployed multi-head self/cross-attention-based decoders for explicit propagation of
semantic class information to the CGL segmentation decoder. Figure 1(b) shows
the output of the model proposed in [14] and figure 1(c) shows the output of
the proposed model. Evidently, the proposed model manifests better semantic
understanding and outperforms other models.

The height and width of CGL cannot be defined precisely (in most cases) in
the ground truth and thus the annotations inherently contain some uncertainty
even though certain protocols were followed by Saha et al. [14] during annota-
tion process. Thus, detection of all CGLs is more crucial than detecting CGLs
of the same height and width (dimensions) as those in GT. So, ideally, we want
an evaluation metric that can give more weightage to recognition than precise
localization in the performance score. Mean IoU (which was also used by [14]
for performance comparison of CGL detection models) is a standard evaluation
metric for evaluating segmentation models, but it performs per-pixel evaluation
by considering all corresponding image coordinate positions in GT and the out-
put of the model (evident from figure 2), which is not desired for the evaluation
of a CGL detection model. To tackle this problem, we have proposed a novel
dimension (height and width) agnostic evaluation metric for CGL detection in
this paper. More details about the proposed metric are included in section 4.1.

Experimental evaluations, performed using CGL Dataset, demonstrate a sig-
nificant increase in performance (improvement is observed in all three metrics
- Mean IoU, CGL IoU, and the proposed DaR metric) over the existing seg-
mentation models (when adapted and trained from scratch for CGL Detection),
serving as a testimony to the superiority of our proposed approach. Several il-
lustrations have been provided to prove the efficacy and the superiority of the
proposed evaluation metric (DaR) over the existing metric.

Our key contributions can be summarized as follows:

– We propose a multitask-learning-based strategy for extracting features with
semantic information and robust training of the common feature extractor
(using large standard annotated datasets as the training set for an auxiliary
task, semantic segmentation in our case.)
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– To explicitly incorporate object information in the features extracted by the
common encoder, a multi-head attention mechanism has been utilized in a
novel manner.

– We have also proposed a better evaluation metric for CGL detection which
prioritizes the identification of CGLs over accurate localization.

– Our method beats the model proposed in [14] on both train/test splits of
the CGL detection dataset. On split 1, we achieve a performance improve-
ment of 3% to 14% mIoU and 3% to 16% DaR and on split 2, performance
improvement is ≈1% mIoU and 1% to 2% DaR.

2 Related Work

CGL detection requires context-aware detection and understanding of the com-
plex 3D spatial relationships between edges of occluding items and their sur-
roundings. Depth information is thus very crucial for the detection of CGLs.
For this reason, authors of [14] developed an approach that can effectively ex-
tract RGB-based features as well as relevant depth features, using only a single
RGB image as input. A novel DL-based technique was proposed which used an
auxiliary decoder block, named Depth-aware Feature Learning Block (DFLB),
to steer the common feature extractor towards extraction of necessary depth
features (along with other RGB-based features). Additionally, as the proposed
dataset (1.5K CGL annotated images) was relatively small, they also leveraged
two novel self-supervised feature-level loss functions namely, Geometric Trans-
formation Equivariance (GTE) loss and Intraclass Variance reduction (IVR) loss
to enforce additional constraints on the model to make it recognize key aspects
of CGLs which are helpful for their detection.

In this paper, we have used multitask learning and attention mechanism in a
novel manner to design a model for CGL detection that considers the semantic
class of the items present in the scene to perform the task at hand. In the
subsequent subsections (2.1, 2.2, 2.3), we briefly present some technical details
about these concepts.

2.1 Multi-Task Learning (MTL)

Majority of the time, handling a single task at a time is what we are most
concerned with in Machine Learning (ML) scenarios. Using data to accomplish
a specific task or to maximize/minimize one metric or objective function at a
time is how an ML challenge or task is often framed. This technique eventu-
ally reaches a performance limit because of the quantity of the datasets or the
model’s capacity to extract meaningful representations from them. On the other
hand, Multi-Task Learning (MTL) is a machine learning strategy that aims to
learn many tasks concurrently while simultaneously minimizing multiple loss
terms. In MTL, a single model is expected to learn to perform all of the tasks
simultaneously rather than training separate models for each task. The model
uses all of the available data from the various datasets (for various tasks) to
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learn generalized representations for the data. The simplest approach is to min-
imize a linear combination of the loss functions of the individual tasks. Each
task will have its individual loss function. So in most multi-task learning-based
models [20,4,21,11,12,13], each loss function is simply given its own weight and
the sum of these weighted losses is minimized.

min
θ

T∑
i=1

wiLi(θ,Di)

where, θ represents parameters of the entire model, wi represents weight
assigned to the loss component for ith task, Li(θ,Di) represents the loss for the
ith task, and Di represents the dataset used for the ith task.

In our work, we have used a feature learning-based MTL approach. Caruana
et al. [2] proposed one of the earliest models for multi-task learning. The output
layer has ”m” output units (one for each task), while the input layer receives
training instances from all of the tasks. Here, the hidden layer’s output can be
treated as the common feature representation learned for the ”m” tasks. The
distinction between MTL networks and multi-layer feedforward neural networks
used for single-task learning is in the output layer, where MTL networks have
”m” nodes as opposed to just one output unit as in the case of single-task
learning.

2.2 Multi-head Attention

Attention has been used in a variety of applications in computer vision, includ-
ing image classification, image segmentation, and image captioning. Spatial and
feature-based attention (channel-wise attention) are two types of attention-based
processes. In case of spatial attention [1,19,17], different weights are assigned to
different spatial locations in spatial attention, but these weights are maintained
throughout all feature channels at all spatial locations. [18] has proposed one of
the most essential image captioning systems based on spatial attention. A CNN
is used as an encoder in their model, which extracts a number of feature vectors
(or annotation vectors), each of which corresponds to a distinct region of the
picture, allowing the decoder to focus on specific image sections. In comparison,
channel-wise attention permits individual feature maps (channels) to be assigned
their own weight/attention values. As an example, the encoder-decoder frame-
work of [3] applied to perform image captioning incorporates spatial as well as
channel-wise attention in the same CNN.

Attention can be generalized and considered as the weighted sum of the
values based on the query and the associated keys, given a set of key-value pairs
(K, V) and a query (q). The query ”attends” to the values by choosing which
keys to focus on.

Multi-head attention uses an attention mechanism several times in parallel
with different attention heads having a different set of learnable parameters.
The attention outputs from all the attention heads are then concatenated and
linearly transformed into the desired dimension. Intuitively, multiple attention
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heads allow for attending to feature vectors within a feature volume differently
(calculating attention scores with different criteria). For example, in the case of
image data, a few attention heads could model global spatial context and a few
others could model local spatial context. Multi-head attention is given as:

M Att = [H1, H2, ...,Hh]Wo (1)

where,
Hi = SPDA(QWQ

i ,KW
K
i , V W

V
i ) (2)

and Scaled dot-product attention (SPDA) is an attention mechanism where the
outputs of dot products are scaled down by

√
dk as follows,

SPDA(QWQ
i ,KW

K
i , V W

V
i ) = softmax(

QWQ
i (KWK

i )T√
dk

)VWV
i (3)

WQ,WK ,WV ,W0 are all learnable parameter matrices and dk is dimension-
ality of feature vectors.

Note that scaled dot-product attention (SPDA) is the most commonly used
mechanism to compute attention scores, although in principle it can be replaced
by any other type of attention mechanism like multiplicative attention, additive
attention, etc.

2.3 Multi-head Self-attention/Cross-attention

The only difference between cross-attention and self-attention lies in the inputs to
the two mechanisms. Two different embedding sequences of the same dimension
are combined asymmetrically by cross-attention. Self-attention input, on the
other hand, consists of just one embedding sequence. In the case of image data,
feature volume extracted by the feature extractor is treated as a sequence of
feature vectors. In cross-attention, one of the sequences serves as a query, while
the other acts the key and value. In self-attention, the same sequence acts as all
three components (query, key, value).

3 Proposed Approach

By concentrating on a single task, we can typically attain satisfactory results,
but the model still misses out on information that could help it perform better
on the metric we care about. Training the model simultaneously on multiple re-
lated tasks helps prevent this as the model gets to derive knowledge from multiple
training signals coming from the various tasks being used for training. Also, we
can improve the generalization of the model on our initial task by sharing repre-
sentations between similar tasks. This method is known as Multi-Task Learning
(MTL), and we have utilized it in this work.

Furthermore, in order to successfully detect or segment CGLs, the model
needs to understand what kind of objects/occluding items give rise to CGL and
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Fig. 3. Proposed architecture. Multi-task learning setting has been exploited with
multi-head self-attention and cross-attention-based decoders to condition CGL seg-
mentation on semantic class information.

what items cannot give rise to a CGL. This information about the semantic
class of occluding items can again be implicitly extracted using a multitask
learning setting. The images from CGL dataset can also be then passed through a
semantic segmentation decoder to get semantic class information. This semantic
class information can be then used by the CGL segmentation branch yielding
better performance.

Thus, to extract features having semantic class information and to exploit
larger standard datasets for robust training of the common feature extractor,
we have proposed a multitask learning-based architecture. Overall architecture
is shown in figure 3. One of the decoder branches (Fusion Decoder) is trained to
perform CGL segmentation (using CGL dataset for supervision) and the other
decoder branch (Attention Decoder) is trained to perform semantic segmentation
and is trained using the ADE20k dataset [22,23]. The attention decoder can also
generalize and segment the input image from the CGL dataset and thus can
provide additional semantic class information, which can further aid the fusion
decoder in performing CGL segmentation.

The output of deeper layers of the decoder contains class-specific activation
maps. These activation maps can be exploited for better propagation of seman-
tic class information. We have employed multi-layered multi-head attention to
achieve the same. Specifically, we propose to use multi-head self-attention layers
to obtain better and more global features in the Attention Decoder (AD) and
we propose to use multi-head cross-attention between encoder feature maps and
the self-attended feature volume generated by AD in the Fusion Decoder (FD).

3.1 Notations

Following Saha et al., we attempt to solve CGL detection as a segmentation
task. The target in segmentation is to assign a class label to every pixel of the
input image. Formally defined, given an RGB input image I ∈ R3 × H × W , the
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goal is to generate a classification map of the same size with the values in the
map ranging from 0 to K-1, where K represents the number of classes in the
dataset used. The number of classes (K) is 2 (CGL and non-CGL/background)
in the case of CGL segmentation and 150 in the case of semantic segmentation
(since there are 150 classes in the ADE20k dataset). Input image pairs (one
from CGL dataset ICGL and one from ADE20k dataset ISS) are first passed
through the common encoder to get encoder feature maps denoted by FCGLe

and FSSe respectively, where FCGLe and FSSe ∈ Rd × H/d′ × W/d′ . These encoder
feature maps are passed to corresponding decoders (FCGLe to attention and FSSe
to fusion decoder) that generate label maps OSS and OCGL respectively. where,
OSS ∈ R150 × H/4 × W/4, and OCGL ∈ R2 × H/4 × W/4. We denote the ground
truth segmentation masks for attention decoder and fusion decoder by GTSS

and GTCGL respectively, where GTSS and GTCGL ∈ RH/4 × W/4 are binary
maps. The output volumes denoted as OSSAD and FSSs , are obtained when encoder
feature maps for an image in CGL dataset are passed through the attention
decoder.

3.2 Attention Decoder

CGL detection requires information about the local spatial context. Contextual
information can be extracted either by widening the receptive field and/or by
using attention mechanism. We have used multi-head self-attention to model
global contextual information.
The encoder feature maps are passed through a series of decoder layers. Deeper
layers of the decoder have class-specific activation maps but they are prone to
become heavily dataset-specific. We want our model to generalize well on images
having occluding items not seen during training. So we exploit the output of an
intermediate decoder layer (say Ci) to strike a balance between the effective
extraction of semantic class information and features that can be generalized.
We represent the feature map of the intermediate decoder layer Ci as FAD. The
intermediate feature map FAD is then passed through multi-head self-attention
layers (as shown in figure 4) to obtain Fs. The output of the final layer of the
decoder is the final classification output (OAD). This decoder is used to perform
semantic segmentation and it has been trained using the ADE20k dataset [22,23]
for our experiments. Any other semantic segmentation dataset or in fact any
other vision dataset could also have been used with the final layer modified
according to the annotations in the dataset.

3.3 Fusion Decoder

The fusion decoder (overall architecture shown in figure 5) is used to effectively
fuse semantic class information contained in (Fs) with the encoder feature maps
(Fe). This can be done by using attention mechanism with encoder feature map
Fe as the query (q) and the self-attended decoder feature maps (Fs) as key (k)
and value (v).
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v

Fs

FAD OAD

Attention Decoder Layers Multihead Attention Layers

Fig. 4. Attention Decoder. The red box encloses the attention decoder. It takes
feature volume (Fe) extracted by the feature extractor as input and outputs a self-
attended version of the feature volume (Fs) and per-pixel semantic classification (OAD)
as output. It employs multi-layered multi-head self-attention to obtain Fs from FAD,
which is the output of an intermediate layer in the attention decoder. q,k, and v
represent the query, key, and value components respectively.

Fe

q

k

v
Fs

Fs

OFD

FFD

Fc

Multihead Attention LayersFusion Decoder Layers

Fig. 5. Fusion Decoder. The red box encloses the fusion decoder. It takes encoder
feature map (Fe) and self-attended decoder feature volume (Fs) from attention decoder
as input and outputs CGL segmentation mask (OFD). It employs multi-layered multi-
head cross-attention with Fe as query and Fs as key and value, and then fuses the
cross-attended feature volume Fc with Fe.

Multi-layered multi-head cross-attention is used to obtain feature map Fc
having semantic class information. This is then fused with the output of an
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intermediate layer of fusion decoder using element-wise addition operation. The
fused feature map is then finally passed through another series of decoder layers
to obtain the final CGL segmentation output OFD. This decoder is supposed
to perform CGL segmentation and it is supervised using our proposed CGL
dataset.

3.4 Loss functions

The proposed model is trained using the following loss function,

L = α ∗ LCGL + β ∗ LSS (4)

where, α, β are hyperparameters. Hyperparameter tuning was performed using
the K-fold cross-validation technique. Equations 5 and 6 represent LCGL and LSS

loss terms respectively.

LCGL = LCE (OCGL
FD

, GTCGL) (5)

LSS = LCE (OSS
AD
, GTSS) (6)

where, LCE is standard cross-entropy loss. GTSS and GTCGL represent the
ground truth segmentation masks for the attention decoder and the fusion de-
coder respectively. OCGLFD represents the output of the fusion decoder for an
image from the CGL dataset and OSSAD represents the output of the attention
decoder from an image from ADE20k [22,23].

4 Results and Experiments

We have used the ADE20k dataset [22,23] along with the CGL detection dataset
[14] for training our model. We evaluate our models for CGL segmentation using
the proposed dataset. The CGL detection dataset contains 1500 DSLR captured
real-world CGL-centric images of dimensions 1080 × 1920 (H × W). Saha et
al. proposed two train/test splits: split 1 and split 2. Split 1 divides images of
the dataset such that, if the test partition contains images depicting environ-
ments/scenes such as offices, lobbies, etc., the training partition images depict
different types of scenes such as classrooms, houses, etc. This ensures that the
input scenes are unknown at test time. On the other hand, split 2 allows some
overlap between train/test partition in terms of scenes depicted in the images,
specifically, a few images (≈17%) of the test partition scenes are also incor-
porated in the training partition. We evaluate our models on both train/test
splits.

We use Adam optimizer and a similar training scheme to train all models.
We report mean IoU, and CGL IoU (IoU for CGL class) for comparison of
models. To provide a fair and informative study, we also report performance on
the proposed Dimension agnostic Recall (DaR) metric.
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4.1 Proposed Evaluation Metric

Figure 6 shows the flowchart of the process used to obtain the score for the
proposed metric named ”Dimension-agnostic Recall” (DaR). At first, we obtain
two relative complements, specifically, ”y−GT” and ”GT −y”. Where ”y−GT”
represents false positives, ”GT−y” represents false negatives, and ”−” represents
element-wise subtraction operation. Subsequently, to overlook minor mismatch
in the dimensions of predicted CGLs, we make use of a symmetric Gaussian blur
kernel with two parameters (σ, Th), where σ represents the standard deviation
of the Gaussian kernel and Th is a threshold. We have empirically set σ to 3.0
and Th to 0.999.
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Fig. 6. The process used for computing the proposed Dimension-agnostic Recall (DaR)
metric score. For the purpose of illustration, the whole process has been shown with the
help of an example. The prediction (y) and the corresponding GT have been shown
for a sample image from our CGL dataset. Yellow blobs indicate CGLs and purple
regions indicate background/non-CGL regions. The white blobs in y’ indicate regions
of disagreement between prediction (y) and ground truth.

Finally, the output masks obtained after applying Gaussian blur are fused
using element-wise OR operation to obtain y’. Then the output of the OR op-
eration (y’) is used along with the GT to compute the final score as follows:

DaR = 1− Number of 1’s in y’

Number of 1’s in GT

Figure 2 shows two sample GTs and model predictions and corresponding
metric scores (Mean IoU, CGL IoU). We can see that even though the prediction
is very close to GT, IoU scores are low (scores should have been very close to 1),
as in IoU score computation, matching is done at each and every coordinate in
the prediction with the corresponding coordinate in the GT. Pixel level matching
is not appropriate for CGL detection as the height and width of CGLs may not
always be precisely defined. The proposed evaluation metric (DaR) overcomes
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Fig. 7. Different rows show GT and prediction for two different samples and the cor-
responding Mean IoU, CGL IoU, and DaR scores are mentioned at the bottom of each
row. Yellow blobs indicate CGL blobs and the background/non-CGL class has been
indicated using purple color. Red bounding boxes enclose regions where there is a dif-
ference between the two masks. This figure provides evidence of the fact that DaR
scores are more apt for the evaluation of CGL segmentation models.

this challenge and it correctly ignores minor deviations in height and width of
predicted CGLs as compared to GT CGLs. As a result, the DaR score for the
two samples justifiably increases to more than 99%. Specifically, the DaR score
for the sample shown in the first row is 99.38% and that for the sample in the
second row is 99.69%.

Figures 7 & 8 also show GT and the model prediction for a couple of image
samples from CGL dataset. The output of the model matches with the GT in
the sample shown in the first row, whereas the model has partially or completely
missed (completely missed in figure 7 and partially missed in figure 8) one CGL
in the second scene (shown in the second row), indicated by overlaying red-
colored bounding box over the two masks. However, the mean IoU and CGL
IoU scores are higher for the predictions shown in the second row making them
inapt for evaluation of CGL segmentation models. Our proposed model fairly
evaluates the two predictions and correctly assigns a higher score to the model
for the output shown in the first row.
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Fig. 8. Yellow blobs indicate CGL blobs and the background/non-CGL class has been
indicated using purple color. Red bounding boxes enclose regions where there is a
difference between the two masks. DaR correctly gives more weightage to recognition
than precise localization and thus provides more truthful scores to model outputs.

4.2 Qualitative Results

Figure 9 shows qualitative results for the DFLB-based model proposed in [14]
and the proposed method, on split 1 of the CGL dataset. DFLB-based model
lacking semantic information fails to comprehend the spatial coverage of occlud-
ing items in the image and thus detects CGLs only partially (error in the spatial
extent of detections) in most cases. Mere utilization of multitask learning with
semantic segmentation as the auxiliary task alleviates the problem only slightly
and we still see a lot of partial detections. However, when attention mechanism
is employed as proposed in this paper, the problem of partial detection reduces
significantly as evident from all the examples shown in figure 9.
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Fig. 9. Qualitative results on split 1 of CGL dataset. Image regions classified as CGL
by the models have been indicated by overlaying translucent pink-colored blobs over
the image. The last two rows show the output of the model proposed in this paper
[with HRNetv2 as the encoder]. The third row shows the output of the model proposed
in [14] with the same encoder.

4.3 Quantitative Results

As evident from tables 1 & 2, the proposed CGL detection model outperforms the
baseline and SOTA ([14]) model on CGL detection dataset [14]. Our proposed
method effectively extracts and utilizes semantic class information to outperform
other models on both train/test splits (irrespective of the encoder/decoder used).
On split 1, we achieve a performance improvement of 3% to 14% mIoU and 3%
to 16% DaR over SOTA and on split 2, performance improvement is ≈1% mIoU
and 1% to 2% DaR. For details about baseline models refer [14].



16 S. Binoy et al.

Table 1. Performance comparison of existing models with our proposed models on
CGL detection. All models have been trained and tested using split 1. The first row
in each section of the table reports the performance of the baseline model (i.e. when
the proposed modules and the semantic head are not used) and the rest of the rows
report performance of models specifically designed to perform CGL detection with the
encoder and decoder architectures having the same base architecture as the ones in the
baseline model. [*] indicates model was proposed in [14] and [�] indicates model has
been proposed in this paper.

Model mIoU CGL IoU DaR

MobileNetv2 + C1 [15] 51.24 15.03 41.48
MobileNetv2 + C1 [*] 54.19 20.62 44.78

MobileNetv2 + C1 (w/o attn) [�] 45.62 04.83 33.72
MobileNetv2 + C1 (w/ attn) [�] 57.38 26.21 47.17

HRNetv2 + C1 [16] 55.31 23.36 44.16
HRNetv2 + C1 [*] 57.76 27.64 51.73

HRNetv2 + C1 (w/o attn) [�] 66.27 42.25 59.61
HRNetv2 + C1 (w attn) [�] 67.55 44.74 61.23

ResNet + PPMDeepsup [7] 55.23 22.50 48.05
ResNet + PPMDeepsup [*] 56.21 23.55 52.30

ResNet + PPMDeepsup (w/o attn) [�] 56.86 24.02 53.25
ResNet + PPMDeepsup (w attn) [�] 70.46 49.58 68.26

Table 2. Performance comparison of existing models with our proposed models on
CGL detection. This table provides evaluation scores for models on trained and tested
using split 2. [*] indicates model proposed in [14] and [�] indicates model proposed in
this paper.

Model mIoU CGL IoU DaR

MobileNetv2 + C1 [15] 76.72 60.42 76.84
MobileNetv2 + C1 + DFLB [*] 78.46 63.40 80.32

MobileNetv2 + C1 + AD [�] 66.57 43.42 60.04
MobileNetv2 + C1 + AD + FD [�] 78.47 63.42 80.51

HRNetv2 + C1 [16] 81.95 69.75 85.35
HRNetv2 + C1 + DFLB [*] 83.55 72.38 87.64

HRNetv2 + C1 + AD [�] 83.76 73.53 87.95
HRNetv2 + C1 + AD + FD [�] 84.08 74.12 89.01

ResNet + PPMDeepsup [7] 80.60 67.30 83.27
ResNet + PPMDeepsup + DFLB [*] 83.21 71.98 87.27

ResNet + PPMDeepsup + AD [�] 83.62 72.45 87.77
ResNet + PPMDeepsup + AD + FD

[�]
83.98 73.19 88.84
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5 Conclusion

This paper introduces a novel approach that can facilitate effective extraction
and utilization of semantic class information, through the use of multi-task learn-
ing combined with self/cross-attention mechanism. The proposed method addi-
tionally helps to overcome the problem of unavailability of a large dataset for
the training of deep CNN models. Semantic segmentation (task of the attention
decoder) is used as the auxiliary task (along with the target task of CGL segmen-
tation). Attention mechanism is used to propagate semantic class information to
the fusion decoder which is trained to perform CGL segmentation. Consequently,
we discuss the shortcomings of the standard IoU score and propose a better eval-
uation metric, named Dimension-agnostic Recall (DaR) for CGL detection. DaR
gives more weightage to recognition than precise localization by ignoring minor
differences in the height and width of predicted CGLs with respect to the ground
truth CGL instances.
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