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Abstract. Deep learning models can perform well in complex medi-
cal imaging classification tasks, even when basing their conclusions on
spurious correlations (i.e. confounders), should they be prevalent in the
training dataset, rather than on the causal image markers of interest.
This would thereby limit their ability to generalize across the population.
Explainability based on counterfactual image generation can be used to
expose the confounders but does not provide a strategy to mitigate the
bias. In this work, we introduce the first end-to-end training framework
that integrates both (i) popular debiasing classifiers (e.g. distributionally
robust optimization (DRO)) to avoid latching onto the spurious corre-
lations and (ii) counterfactual image generation to unveil generalizable
imaging markers of relevance to the task. Additionally, we propose a
novel metric, Spurious Correlation Latching Score (SCLS), to quantify
the extent of the classifier reliance on the spurious correlation as exposed
by the counterfactual images. Through comprehensive experiments on
two public datasets (with the simulated and real visual artifacts), we
demonstrate that the debiasing method: (i) learns generalizable markers
across the population, and (ii) successfully ignores spurious correlations
and focuses on the underlying disease pathology.
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1 Introduction

Deep learning models have shown tremendous success in disease classification-
based on medical images, given their ability to learn complex imaging markers
across a wide population of subjects. These models can show good performance
and still be biased as they may focus on spurious correlations in the image that
are not causally related to the disease but arise due to confounding factors -
should they be common across the majority of samples in the training dataset.
As a result, the confounding predictive image markers may not generalize across
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the population. For example, a deep learning model was able to accurately de-
tect COVID-19 from chest radiographs, but rather than relying on pathological
evidence, the model latched on to spurious correlations such as medical devices
or lettering in the image [3]. As a result, these image markers did not generalize
across the population.

In order to safely deploy black-box deep learning models in real clinical appli-
cations, explainability should be integrated into the framework so as to expose
the spurious correlations on which the classifier based its conclusions. Popu-
lar post-hoc explainability strategies, such as Grad-CAM [16,6,19], SHAP [10],
LIME [11] are not designed to expose the precise predictive markers driving
a classifier. Models that integrate counterfactual image generation, along with
black-box classifers [21,2,23], permit exposing the predictive markers used by
the classifier. However, should these methods discover that the markers are in-
deed simply visual artifacts there are no strategies to mitigate the resulting
biases. Furthermore, although several debiasing methods have been successfully
implemented to account for generalizability [1,26,17,8,27], they do not integrate
explainability into the framework in order to provide reasons for improved per-
formance.

Therefore, the important question to be answered is - Can a model be trained
to disregard spurious correlations and identify generalizable predictive disease
markers?

Fig. 1: Counterfactual (CF) image indicating that the classifier latched onto spurious
correlations (medical devices) when correctly predicting that subject is sick (class:
Pleural Effusion), due to their prevalence in the training dataset for this class. (a)
Chest radiograph of a sick subject with several medical devices shown (cyan boxes),
(b) Generated (CF) image, (c) Difference heat map shows maximum change around
the medical devices, rather than indicating the correct markers for the disease.

In this paper, we propose the first end-to-end training framework for the ex-
plainability of classifier and debiasing via counterfactual image generation. We
seek to discover imaging markers that reflect underlying disease pathology and
that generalize across subgroups. Extensive experiments are performed on two
different publicly available datasets - (i) RSNA Pneumonia Detection Challenge
and (ii) CheXpert [5]. To illustrate the goal, Figure 1 shows an example from
the contrived CheXpert dataset, where most of the sick subjects have medical
device(s) (e.g. a pacemaker) in their images while most of the healthy subjects
do not. As such, there exists a spurious correlation between a confounding visual
artifact (the medical devices) and the disease. A classifier based on a standard

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/
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optimization technique, empirical risk minimization (ERM), incorrectly indi-
cates the medical device as a disease marker, as depicted by the counterfactual
(CF). In this work, we propose replacing ERM with a popular debiasing method,
Group-DRO (distributional robust optimization). This permits the classifier to
focus on the pathological image markers of the disease rather than on spuri-
ous correlation(s). Additionally, we show that Group-DRO ignores the visual
artifact when making its decision, and generalizes across subgroups without the
spurious correlation. Since standard metrics to evaluate counterfactuals do not
indicate the region where the classifier focuses, we also propose a novel met-
ric, the Spurious Correlation Latching Score (SCLS), to measure the degree to
which the classifier latches onto spurious correlations. Our experiments indicate
an improvement (in terms of differences in classifier outputs) of 0.68 and 0.54
in the SCLS using the Group-DRO classifier over the ERM for each of the two
datasets.

2 Methodology

We propose an end-to-end training strategy to explain the output of a classi-
fier. Here, we are considering a scenario where majority of the training data
encompasses a spurious correlation with the target label. However, there is also
a minority subgroup in the dataset that does not have any spurious correlation
with the target label i.e., if the classifier was to rely onto the spurious correlation
then the performance on these minority subgroups will be poor. Also, the term
‘majority’ and ‘minority’ is based on the number of samples in these groups. An
overview of our approach is shown in Figure 2.

2.1 Classifier Explainability and Debiasing Via Counterfactual
Image Generation

Disease Classification Binary (e.g. "sick" or "healthy") classification of the
images is performed using either a standard classifier (ERM [24]), or a classifier
that mitigates biases across sub-groups (Group-DRO [18]). The ERM classifier
(fERM ) is expected to be affected by the spurious correlation present in the
training dataset, as it minimizes the loss over the entire training dataset and
latching onto spurious correlation is a shortcut to minimize the loss. Thus, it
would not generalize across the minority subgroups of the dataset [12,20]. On
the contrary, the DRO classifier (fDRO) is not expected to learn the spurious
correlation as it considers the majority and minority subgroups separately when
optimizing the loss. Thus, it would generalize well across all subgroups.

Generative model for synthesizing counterfactuals We develop an ex-
plainability framework that integrates counterfactual image generation together
with a classifier during training. We adapted Cycle-GAN [25] as the generative
model for counterfactual image generation, chosen for its strong performance
across a variety of domains [13,25]. A pre-trained, frozen binary classifier (fERM
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Fig. 2: Training procedure overview: The black-box classifier can be fERM or fDRO and
provides supervision to maintain the correct target class, yt. Two U-Net generators,
GSH and GHS , are employed to synthesize counterfactual images, namely xScf and xHcf

.
The discriminator DH and DS compares the counterfactual images with the domain
of healthy H and sick S subjects respectively. Note, training a cycle-GAN requires
simultaneous use of two input images from the two distributions.

or fDRO) provides supervision to the generator. The proposed architecture and
optimization objectives (see Figure 2) are designed to generate counterfactual
images that adhere to the following common constraints [14,15,7]: (i)Identity
preservation: The counterfactual images resemble the input images with min-
imal change; (ii) Classifier consistency : Counterfactual images belong to the
target class; (iii)Cycle consistency : When counterfactual images are fed through
the opposing generator, the output reverts to the original image (see Figure 2).

During inference, based on the classifier’s decision (i.e., fERM or fDRO) for
the input image, we generate counterfactual images and analyze the difference
heatmap between the factual (input) and counterfactual (synthesized) images.
This interpretable heat map indicates the image markers that contribute the
most to changing the classifier’s decision.

2.2 Metrics for Evaluating Counterfactuals: Accounting for
Spurious Correlations

Standard counterfactual evaluation metrics are structured so as to ensure that
the generated images (a) preserve the subject identity and thus penalize gen-
erated counterfactual images that are significantly different from the factual
(original) images and (b) result in a maximal change in the class label (e.g. from
healthy to sick). Identity preservation is typically measured by structural sim-
ilarity index (SSIM) [4] and Actionability [15,14], defined as E

[
∥x− xcf∥L1

]
between factual (x) and counterfactual (xcf ) images. Here, a higher value for
SSIM and a lower value for Actionability would indicate better counterfactuals.
The counterfactual prediction gain (CPG) [15], defined as |f(x)− f(xcf )|, indi-
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cates the degree of change in the classifier’s decision such that a higher value of
CPG indicates better counterfactuals.

While such metrics are required to measure the validity of the generated
counterfactuals, they do not assess whether the classifier latched onto spurious
correlations. For example, consider an image of a sick subject in the presence of
a spurious correlation. If the disease classifier, fERM , latched onto the spurious
correlation when identifying the subject as sick, the corresponding counterfac-
tual image (i.e., depicting a healthy subject) would show changes in the area
of the spurious correlation. In this case, all three evaluation metrics mentioned
above would determine that this is a valid counterfactual image, based on high
SSIM and low Actionability (shows minimal changes made compared to the fac-
tual image) and high CPG (due to the classifier decision changing from sick to
healthy). However, the counterfactual image shows changes in the area of the
spurious correlation rather than depicting the correct predictive image markers
for the disease as desired.

In order to indicate that the classifier is correct but for the wrong reasons,
we introduce a novel metric called Spurious Correlation Latching Score (SCLS)
defined as follows:

SCLS = |d(x)− d(xcf )|. (1)

Here, d(·) is a separate classifier, trained to identify the presence of spurious
correlation in the image. In cases where the counterfactual image makes changes
in an area of spurious correlation, SCLS will be high, as the d(·) will show a
maximum change in its prediction between factual and counterfactual images. On
the other hand, if the counterfactual image does not make changes in the area of
the spurious correlation then SCLS will have a low value. As such, this evaluation
strategy will validate how well the counterfactuals can help to determine that
the classifier latched onto spurious correlations.

3 Experiments and Results

3.1 Dataset and Implementation Details

We perform experiments on two publicly available datasets. The absence of
ground truth makes the validation of counterfactual images particularly challeng-
ing. Therefore, to directly evaluate the quality of the generated counterfactual
images in the presence of spurious correlations, we modify a publicly available
dataset (RSNA Pneumonia Detection Challenge) by adding a synthetic artifact
to the majority of the sick images (90%). The majority of the sick and few of
the healthy subjects have an artifact in the image, whereas the majority of the
healthy and a few sick subjects do not have this artifact. The spurious corre-
lation (artifact) is a black dot of radius 9 pixels at the center of the image.
Thus, there are a total of four subgroups (majorityS , majorityH , minorityS
and minorityH) in the dataset with varying number of images: majorityS and
majorityH are majority subgroups (sick with artifact and healthy without ar-
tifact), while minorityS and minorityH are minority subgroups (sick without

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/
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Fig. 3: Datasets 1 and 2 group division: The majority of the sick subjects [majorityS ]
and the minority of healthy subjects [minorityH ] have visual artifacts (shown in cyan
boxes). The majority of healthy subjects [majorityH ] and the minority of sick subjects
[minorityS ] do not have visual artifacts. Top row: Simulated artifacts (black dots);
Bottom row: Real artifacts (medical devices).

artifact and healthy with artifact). Henceforth, this dataset will be referred to
as Dataset 1.

Disease Image size Classifier
# samples

[majorityS, minorityS,
minorityH , majorityH ]

Dataset 1 Pneumonia 512 x 512 AlexNet [13] 5413, 1526, 883, 7968

Dataset 2 Pleural
Effusion 224 x 224 Resnet-50 [22]

(pre-trained) 2600, 260, 350, 3456

Table 1: Implementation details for the two datasets

We also show experiments on a subset of a publicly available dataset (CheX-
pert [5]) with medical devices (visual artifacts), spuriously correlated with the
disease. Specifically, we extract the subset of images that have labels “healthy”
or “pleural effusion” (subjects with the presence of other diseases are removed
from the dataset). This dataset will be referred to as Dataset 2. More details
about both datasets are provided in Table 1. Note that both the datasets are
divided into training/validation/testing with 70/10/20 random split. Example
images for both datasets and all four subgroups are shown in Figure 3.

3.2 Results

Classifier Evaluation For both datasets (Figure 4), the DRO-based classifier
(fDRO) performs better for the minority subgroups (minorityS and minorityH);
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Fig. 4: Performance of ERM (fERM ) and DRO (fDRO) based classifier on a held out test
set across all subgroups for both datasets. Notice that DRO has improved performance
on minority subgroup [minorityS and minorityH ] showing improved generalizability
across all subgroups.

indicating that it can better generalize to sub-populations that do not have the
same visual artifact as the majority subgroups. Both classifiers perform similarly
for the majority subgroups (majorityS and majorityH).
Qualitative Counterfactual Evaluation Pneumonia in chest radiograph man-
ifests as increased brightness in some regions of the lungs. In dataset 1, when ex-
amining the majority subgroup of sick subjects, the ERM-based classifier latches
onto the spurious correlation, as seen by the difference maps. On the other hand,
a DRO-based classifier focuses on the pathology of the disease, indicated by
darker intensity regions over the lungs, as shown in Figure 5. The behavior of
fERM is also evident in the minority subgroup, where the counterfactual for a
healthy subject exhibits an enlarged artifact, wrongly suggesting that the visual
artifact serves as a disease marker. Pleural effusion is characterized by the round-
ing of the costophrenic angle, augmented lung opacity, and reduced clarity of the
diaphragm and lung fissures [9]. For the majority subgroup of sick subjects in
Dataset 2, the counterfactual images based on ERM remove the medical device
rather than focusing on the disease. In addition, for healthy subjects from the
minority subgroup, maximum changes are observed around the medical device.
On the other hand, for the majority subgroup, the DRO-based counterfactuals
show changes around the expected areas while preserving the medical device.
Quantitative Counterfactual Evaluation In Table 2, counterfactual images
generated by ERM and DRO show similar scores according to standard metrics:
SSIM, Actionability and CPG. As these metrics are not designed to quantify
whether the generated counterfactuals are affected by spurious correlations (see
Section 2.2), the quality of the counterfactuals is now examined based on the pro-
posed SCLS metric. The AUC of the classifier, d, trained to detect the presence
of artifacts is 1.0 and 0.82 for Dataset 1 and Dataset 2, respectively. As indicated
by the last row of Table 2, the ERM-based classifier shows a high value (poor
performance) for SCLS for both datasets. On the other hand, the DRO-based
classifier has a low value (good performance) for SCLS for both datasets. These
results corroborate the finding made by visual comparison of the counterfactual
images generated by the ERM and DRO classifiers. Overall, both qualitative
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Fig. 5: Qualitative comparison of counterfactual (CF) images generated with ERM and
DRO classifiers for both majority (top row) and minority (bottom row) subgroups.
The ERM-based CFs show significant changes in the areas of spurious correlation (cyan
boxes), whereas the DRO-based CFs show almost no changes in the same areas. In con-
trast, significant changes can be seen in the expected area of disease pathology (magenta
boxes) in DRO-based CFs, while the ERM-based CFs show little to no changes in these
areas.

and quantitative evaluations indicate that an ERM-optimized classifier latches
on to the spurious correlation prevalent in the dataset, while a DRO-optimized
classifier can be trained to successfully ignore the spurious correlation.

4 Conclusion

Safe deployment of black-box models requires explainability to disclose when the
classifier is basing its predictions on spurious correlations and is therefore not
generalizable. In this paper, we presented the first integrated end-to-end train-
ing strategy for generating unbiased counterfactual images, capitalizing on a
DRO classifier to enhance generalization. Our experiments based on two datasets
demonstrate that, unlike standard ERM classifiers which are susceptible to latch-
ing onto spurious correlations, the unbiased DRO classifier performs significantly
better for minority subgroups in terms of- (a) the classifier performance and (b)
the novel SCLS metric, which quantifies the degree to which the classifier latches
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Dataset 1 Dataset 2
ERM DRO ERM DRO

Actionability ↓ 7.68 ± 0.01 7.86 ± 0.01 4.93 ± 0.01 5.68 ± 0.04
SSIM ↑ 98.03 ± 0.00 98.44 ± 0.01 98.21 ± 0.01 98.36 ± 0.01
CPG ↑ 0.91 ± 0.04 0.96 ±0.03 0.88 ± 0.07 0.89 ± 0.04
SCLS ↓ 0.80 ± 0.08 0.12± 0.07 0.76 ± 0.09 0.22± 0.06

Table 2: Quantitative results to compare counterfactual images generated for both
datasets. A low SCLS value implies that the model (fDRO in this case) did not latch
onto the spurious correlation.

on to the spurious correlation as depicted by the generated counterfactual im-
ages.

Current datasets typically do not provide the ground truth predictive mark-
ers of interest. Future work will require localizing the predictive markers (e.g.
with bounding boxes) and determining the degree of overlap with the discov-
ered markers. Further, we intend to explore the power of alternative debiasing
techniques and their potential contribution to discovering generalizable image
markers.
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