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Abstract. We introduce and investigate a series of matching problems
for patterns with variables under Simon’s congruence. Our results pro-
vide a thorough picture of these problems’ computational complexity.

1 Introduction

A pattern with variables is a string α consisting of constant letters (or termi-
nals) from a finite alphabet Σ = {1, . . . , σ}, of size σ ≥ 2, and variables from
a potentially infinite set X , with Σ ∩ X = ∅. Such a pattern α is mapped by a
function h, called substitution, to a word by substituting the variables occurring
in α by arbitrary strings of constants, i.e., strings over Σ. For example, the pat-
tern α = xxababyy can be mapped to the string of constants aaaaababbb by the
substitution h defined by h(x) = aa, h(y) = b. In this framework, h(α) denotes
the word obtained by substituting every occurrence of a variable x in α by h(x)
and leaving all the constants unchanged. If a pattern α can be mapped to a
string of constants w, we say that α matches w; the problem of deciding, given
a pattern α with variables and a string of constants w, whether there exists a
substitution which maps α to w is called the (exact) matching problem, Match.

Exact Matching Problem: Match(α,w)
Input: Pattern α, |α| = m, word w, |w| = n.
Question: Is there a substitution h with h(α) = w?

Match is a heavily studied problem, which appears frequently in various areas
of theoretical computer science. Initially, this problem was considered in language
theory (e.g., pattern languages [5]) or combinatorics on words (e.g., unavoidable
patterns [52]), with connections to algorithmic learning theory (e.g., the theory
of descriptive patterns for finite sets of words [5, 16, 63]), and has by now found
interesting applications in string solving and the theory of word equations ( [51]),
stringology (e.g., generalised function matching [4]), the theory of extended reg-
ular expressions with backreferences [8, 23, 28, 29]), or database theory (mainly
in relation to document spanners [15,24,26,27,46,58,59]).
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Match is NP-complete in general [5], and a more detailed image of the pa-
rameterised complexity of the matching problem is revealed in [17–19,55,57,62]
and the references therein. A series of classes of patterns, defined by structural
restrictions, for which Match is in P were identified [13,17,55]; moreover, for most
of these classes, Match is W [1]-hard [14] with respect to the structural parame-
ters used to define the respective classes. Recently, Gawrychowski et al. [34, 35]
studied Match in an approximate setting: given a pattern α, a word w, and a
natural number ℓ, one has to decide if there exists a substitution h such that
D(h(α), w) ≤ ℓ, where D is either the Hamming [34] or the edit distance [35].
Their results offered, once more, a detailed understanding of the approached
matching problems’ complexity (in general, and for classes of patterns defined
by structural restrictions). The problems discussed in [34, 35] can be seen in a
more general setting: given a pattern α and a word w, decide if there exists a
substitution h such that h(α) is similar to w, with respect to some similarity
measure (Hamming resp. edit distance in [34, 35] or string equality for exact
Match). Thus, it seems natural to also consider various other string-equivalence
relations as similarity measures, such as (k-)abelian equivalence [41, 42] or k-
binomial equivalence [25, 50, 56]. Here, we consider an approximate variant of
Match using Simon’s congruence ∼k [65].

Matching under Simon’s Congruence: MatchSimon(α,w, k)
Input: Pattern α, |α| = m, word w, |w| = n, and number k ∈ [n].
Question: Is there a substitution h with h(α) ∼k w?

Let us recall the definition of Simon’s congruence. A string u is a subsequence
of a string v if u results from v by deleting some letters of v. Subsequences are
well studied in the area of combinatorics of words and combinatorial pattern
matching, and are well-connected to other areas of computer science (e.g., the
handbook [51] or the survey [48] and the references therein). Let Sk(v) be the
set of all subsequences of a given string v up to length k ∈ N0. Two strings v and
v′ are k-Simon congruent iff Sk(v) = Sk(v′). The problem of testing whether two
given strings are k-Simon congruent, for a given k, was introduced by Imre Simon
in his PhD thesis [64] as a similarity measure for strings, and was intensely stud-
ied in the combinatorial pattern matching community (see [11, 20, 30, 38, 66, 67]
and the references therein), before being optimally solved in [6,32]. Another in-
teresting extension of these results, discussed in [45], brings us closer to the focus
of this paper. There, the authors present an efficient solution for the following
problem: given two words w, u and a natural number k, decide whether there
exists a factor of w which is k-Simon congruent to u; this is MatchSimon with the
input pattern α = xuy for variables x, y. Thus, it seems natural to consider, in a
general setting, the problem of checking whether one can map a given pattern α
to a string which is similar to w with respect to ∼k. Moreover, there is another
way to look at this problem, which seems interesting to us: the input word w and
the number k are a succinct representation of Sk(w). So, MatchSimon(α,w, k)
asks whether or not we can assign the variables of α in such a way that we reach
a word describing the target set of subsequences of length k, as well.
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One of the congurence-classes of Σ∗ w.r.t. ∼k received a lot of attention: the
class of k-subsequence universal words, those words which contain all k-length
words as subsequences. This class was first studied in [40,60], and further inves-
tigated in [1,2,6,12,21,22,47,61] in contexts related to and motivated by formal
languages, automata theory, or combinatorics, where the notion of universality is
central (see [7,9,33,36,49,53,54] for examples in this direction). The motivation
of studying k-subsequence universal words is thoroughly discussed in [12]. Here,
we consider the following problem:

Matching a Target Universality: MatchUniv(α, k)
Input: Pattern α, |α| = m, and k ∈ N0.
Question: Is there a substitution h with ι(h(α)) = k?

In this problem, ι(w) (the universality index of w) is the largest integer ℓ
for which w is ℓ-subsequence universal. Note that MatchUniv can be formulated
in terms of MatchSimon: the answer to MatchUniv(α, k) is yes if and only if the
answer to MatchSimon(α, (1 · · ·σ)k, k) is yes and the answer to MatchSimon(α,
(1 · · ·σ)k+1, k+1) is no. However, there is an important difference: for MatchUniv
we are not explicitly given the target word w, whose set of k-length subsequences
we want to reach; instead, we are given the number k which represents the target
set more compactly (using only log k bits).

In the problems introduced above, we attempt to match (or reach), starting
with a pattern α, the set of subsequences defined by a given word w (given
explicitly or implicitly). A well-studied extension of Match is the satisfiability
problem for word equations, where we are given two patterns α and β and are
interested in finding an assignment of the variables that maps both patterns to
the same word (see, e.g., [51]). This problem is central both to combinatorics
on words and to the applied area of string solving [3, 37]. In this paper, we
extend MatchSimon to the problem of solving word equations under ∼k, defined
as follows.

Word Equations under Simon’s Congruence: WESimon(α, β, k)
Input: Patterns α, β, |α| = m, |β| = n, and k ∈ [m+ n].
Question: Is there a substitution h with h(α) ∼k h(β)?

Besides introducing these natural problems, our paper presents a rather com-
prehensive picture of their computational complexity. We start with MatchUniv,
the most particular of them and whose input is given in the most compact way.
In Section 3 we show that MatchUniv is NP-complete, and also present a se-
ries of structurally restricted classes of patterns, for which it can be solved in
polynomial time. In Section 4, we approach MatchSimon and show that it is
also NP-complete; some other variants of this problem, both tractable and in-
tractable, are also discussed. Finally, in Section 5, we discuss WESimon and its
variants, and characterise their computational complexity. The paper ends with
a section pointing to a series of future research directions.
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2 Preliminaries

Let N = {1, 2, . . .} be the set of natural numbers. Let [n] = {1, . . . , n} and
[m : n] = [n] \ [m− 1], for m,n ∈ N,m < n. N0 denotes N ∪ {0}.

For a finite set Σ = [σ] called alphabet, Σ∗ denotes the set of all words (or
strings) over Σ, with ε denoting the empty word. For w ∈ Σ∗, |w| denotes its
length, while |w|a denotes the number of occurrences of a ∈ Σ in w. Further,
Σ≤k (resp. Σk) denotes the set of all words over Σ up to (resp. of) length k ∈ N.
Let w[i] denote the ith letter in the string w, and let alph(w) = {a | |w|a ≥ 1}
denote the set of different letters in w. To access the first occurrence of a letter
a ∈ Σ after a position i ∈ [|w|] in a word w ∈ Σ∗, define the X-ranker as a
mapping X : Σ∗ × ([|w|] ∪ {0,∞})×Σ → [|w|] ∪ {∞} with (w, i, a) 7→ min({j ∈
[i + 1 : |w|] | w[j] = a} ∪ {∞}) (cf. [68]). Notice that a lookup table for all
possible X-ranker evaluations for some given w ∈ Σ∗ can be computed in linear
time in |w|, where each item can be accessed in constant time [6, 20]. In the
special case of X(w, 0, a), we call this occurrence of a the signature letter a of w,
for all a ∈ alph(w). A permutation γ of an alphabet Σ is a string in Σσ with
alph(γ) = Σ. A string u is a subsequence of a string w if there exists a strictly
increasing integer sequence 0 < i1 < i2 < . . . < i|u| ≤ |w| with w[ij ] = u[j] for
all j ∈ [|u|]. For a given k ∈ N0, we use Sk(w) as the set of all subsequences of w
with length at most k. A subsequence u of w is called a substring of w if there
exists a position i of w such that u = w[i]w[i + 1] · · ·w[i + |u| − 1]. We write
w[i : j] for w[i]w[i + 1] · · ·w[j] for 1 ≤ i ≤ j ≤ |w|. Substrings w[1 : j] (resp.,
w[i : |w|]) are called prefixes (resp., suffixes) of w.

Two words w1, w2 ∈ Σ∗ are called Simon k-congruent (w1 ∼k w2) if Sk(w1) =
Sk(w2) [65]. A word w ∈ Σ∗ is called k-subsequence universal (or k-universal for
short) for some k ∈ N if Sk(w) = Σ≤k; this means that w ∼k (1 · · ·σ)k. The
largest k ∈ N0 such that w is k-universal is the universality index of w, denoted
by ι(w). In [38], Hébrard introduced the following unique factorisation of words.

Definition 1. The arch factorisation of a word w ∈ Σ∗ is defined by w =
arch1(w) · · · archk(w)rest(w) for some k ∈ N0 such that there exists a sequence
(ij)j≤k with i0 = 0, ij = max{X(w, ij−1, a) | a ∈ Σ} for all j ≥ 1, archj(w) =
w[ij−1 + 1 : ij ] whenever 1 ≤ ij < ∞, and rest(w) = w[ij : |w|], if ij+1 = ∞.

Clearly, the number of arches of w ∈ Σ∗ is exactly ι(w). Extending the notion
of arch factorisation, we define the arches and rest of w ∈ Σ∗ for a ∈ alph(w) (cf.
the arch jumping functions introduced in [61]) as well as the universality index
for the respective letter a. That is, we perform the arch factorisation and obtain
the universality index for the suffix of w that starts after the first occurrence of a.

Definition 2. Let w ∈ Σ∗, a ∈ alph(w), and j ∈ [ι(w)]. The arches of sig-
nature letters are defined by archa,j(w) = archj(w[X(w, 0, a) + 1 : |w|]) and
resta(w) = rest(w[X(w, 0, a) + 1 : |w|]). The universality index of a is ιa(w) =
ι(w[X(w, 0, a)+1 : |w|]). The last index with respect to w of archa,j(w) is defined

as archEnda,j(w) = X(w, 0, a) +
∑j

i=1 |archa,i(w)|.
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Now, we are interested in the smallest substrings of w that allow the com-
pletion of rests of specific prefixes of w to full arches. Hence, we define marginal
sequences, which are breadth-first orderings of σ parallel arch factorisations, each
starting after a signature letter of the word.

a b c

archc

archb

archa

M1

w =

M2M0 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M∞

Fig. 1. The marginal sequence of a word.

Definition 3. Let w ∈ Σ∗ and γ be a permutation of Σ such that X(w, 0, γ[i])
is increasing w.r.t. i ∈ [σ]. From the arches for signature letters, we define the
marginal sequence of integers of w ∈ Σ∗ inductively by M0(w) = 0, Mi(w) =
X(w, 0, γ[i]) for all i ∈ [σ], and Miσ+j(w) = archEndγ[j],i(w) for j ∈ [σ], i ∈
[ιγ[j](w)]. Let M∞(w) = |w| denote the last element of the sequence.

The sequence is called marginal because, for j ∈ [σ], w[Miσ+j−1(w) + 1 :
Miσ+j(w)] is the smallest prefix p of w[Miσ+j−1(w) + 1 : |w|] such that ιγ[j](w[1 :
Miσ+j−1(w)]p) = i. Note that the marginal sequence Mi(w) is non-decreasing.
In the following, we define a slight variation of the subsequence universality
signature s(w) introduced in [61].

Definition 4. 1. For w ∈ Σ∗, the subsequence universality signature s(w) of
w is defined as the 3-tuple (γ,K,R) with a permutation γ of alph(w), where
X(w, 0, γ[i]) > X(w, 0, γ[j]) ⇔ i > j (γ consists of the letters of alph(w) in
order of their first appearance in w) and two arrays K and R of length σ with
K[i] = ιγ[i](w) and R[i] = alph(restγ[i](w)) for all i ∈ [|alph(w)|]. For all
i ∈ [σ] \ alph(w), we have R[i] = Σ and K[i] = −∞.
2. Conversely, for a permutation γ′ of Σ, an integer array K′ and an alphabet
array R′ both of length σ, we say that the tuple (γ′,K′,R′) is a valid signature
if there exists a string w that satisfies s(w) = (γ,′ K′,R′).

Note that, for ki = ιγ[i](w), we have R[i] = alph(w[Mkiσ+i(w) + 1 : M∞(w)]),
since restγ[i](w) = w[Mkiσ+i(w) + 1 : M∞(w)].

A central notion to this work is that of patterns with variables. From now on,
we consider two alphabets: Σ = [σ] is an alphabet of constants (or terminals),
and X a (possibly infinite) alphabet of variables, with X ∩Σ = ∅. A pattern α
is a string from (X ∪Σ)∗, i.e., a string containing both constants and variables.
For a pattern α, var(α) = alph(α) ∩ X denotes the set of variables in α, while
term(α) = alph(α) ∩Σ is the set of constants (terminals) in α.
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Definition 5. A substitution h : (X ∪ Σ)∗ → Σ∗ is a morphism that acts as
the identity on Σ and maps each variable of X to a (potentially empty) string
over Σ. That is, h(a) = a for all a ∈ Σ and h(x) ∈ Σ∗ for all x ∈ X . We say
that pattern α matches string w over Σ under a binary relation ∼ if there exists
a substitution h that satisfies h(α) ∼ w.

In the above definition, if ∼ is the string equality =, we say that the pattern α
matches the string w instead of saying that α matches w under =.

The problems addressed in this paper, introduced in Section 1, deal with
matching patterns to words under Simon’s congruence ∼k. For these problems,
the input consists of patterns, words, and a number k. In general, we assume
that each letter of Σ appears at least once, in at least one of the input patterns
or words. Therefore, for input pattern α and word w we assume that Σ =
term(α) ∪ alph(w). Hence, σ is upper bounded by the total length of the input
words and patterns. Similarly, the total number of variables occurring in the
input patterns is upper bounded by the total length of these patterns. However,
in this paper, although the number of variables is not restricted, we assume that
σ is a constant, i.e., σ ∈ O(1). Clearly, the complexity lower bounds proven
in this setting for the analysed problems are stronger while the upper bounds
are weaker than in the general case, when no restriction is placed on σ. Note,
however, that σ ∈ O(1) is not an unusual assumption, being used in, e.g., [20].

The computational model we use is the Word RAM model with memory
words of logarithmic size. This is a standard computational model in algorithm
design in which, for an input of size n, the memory consists of memory-words
consisting of Θ(log n) bits. Basic operations (including arithmetic and bitwise
Boolean operations) on memory-words take constant time, and any memory-
word can be accessed in constant time. Numbers larger than n, with ℓ bits, are
represented in Θ(ℓ/ log n) memory words, and working with them takes time
proportional to the number of memory words on which they are represented.
In all the problems, we assume that we are given a pattern α, with |α| = n,
over a constant size alphabet of constants Σ = {1, 2, . . . , σ}, with σ ∈ O(1), and
a set of variables X := {x1, . . . , xn} that can be encoded as integers between
1 and σ + n. That is, we assume that the processed patterns are sequences of
integers (called letters or symbols), each fitting in O(1) memory words. This
is a common assumption in string algorithms: the input is said to be over an
integer alphabet. For instance, the same assumption was also used for developing
efficient algorithms for Match in [16, 34]. For a more detailed general discussion
on this computational model see, e.g., [10].

3 MatchUniv

In this section, we discuss the MatchUniv problem. In this problem, we are given
a pattern α and a natural number k ≤ n, and we want to check the existence of
a substitution h with ι(h(α)) = k. Note that ι(h(α)) = k means both that h(α)
is k-universal and that it is not (k + 1)-universal. A slightly relaxed version of
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the problem, where we would only ask for h(α) to be k-universal is trivial (and,
therefore, not interesting): the answer, in that case, is always positive, as it is
enough to map one of the variables of α to (1 · · ·σ)k. The main result of this
section is that MatchUniv is NP-complete, which we will show in the following.

To show that MatchUniv(α, k) is NP-hard, we reduce 3CNFSAT (3-satisfiability
in conjunctive normal form) to MatchUniv(α, k). We provide several gadgets
allowing us to encode a 3CNFSAT-instance φ as an MatchUniv-instance (α, k).
Finally, we show that we can find a substitution h for the instance (α, k), such
that ι(h(α)) = k, if and only if φ is satisfiable. We begin by recalling 3CNFSAT.

3-Satisfiability for formulas in conjunctive normal form, 3CNFSAT.
Input: Clauses φ := {c1, c2, . . . , cm}, where cj = (y1j ∨ y2j ∨ y3j ) for 1 ≤

j ≤ m, and y1j , y
2
j , y

3
j from a finite set of boolean variables X :=

{x1, x2, . . . , xn} and their negations X̄ := {x̄1, x̄2, . . . , x̄n}.
Question: Is there an assignment for X, which satisfies all clauses of φ?

It is well-known that 3CNFSAT is NP-complete (see [31,43] for a proof). With
this result at hand, we can prove the following lower bound.

Lemma 1. MatchUniv is NP-hard.

Proof. We reduce 3CNFSAT to MatchUniv(α, k). Let us consider an instance
of 3CNFSAT: formula φ given by m clauses φ := {c1, c2, . . . cm} over n vari-
ables X := {x1, x2, . . . xn} (for simplicity in notation we define N = n + m).
We map this 3CNFSAT instance to an instance (α, k) of MatchUniv(α, k) with
k = 5n + m + 2, the alphabet Σ := {0, 1, #, $} and the variable set X :=
{z1, z2, . . . zn, u1, u2, . . . un}. More precisely, we want to show that there exists
a substitution h to replace all the variables in α with constant words, such that
ι(h(α)) = 5n + m + 2, if and only if the boolean formula φ is satisfiable. Our
construction can be performed in polynomial time and is of polynomial size with
respect to N . To present this construction, we will go through its building blocks,
the so-called gadgets.

Before we start with these gadgets, let us introduce a renaming function for
the variables ρ : X∪X̄ → X with ρ(xi) = zi and ρ(x̄i) = ui. Also, a substitution
h which maps α to a string of universality index 5n + m + 2 is called valid in
the following.

The binarisation gadgets. We use the following gadgets to make the im-
age of variables zi and ui under a valid substitution be strings over {0, 1}.
Recall that we have the alphabet Σ := {0, 1, #, $} and the set of variables
X := {z1, z2, . . . , zn, u1, u2, . . . , un}.

At first, we construct the gadget π# = (z1z2 · · · znu1u2 · · · un01 $)N
6

#, as shown
in Figure 2. We observe that for all possible substitutions h, we have two cases
for the universality of the image of this gadget. On the one hand, assume that
any of the variables is substituted under h by a string that contains a #. Then,
the universality index of the image of this gadget will be ι(h(π#)) = k′ with
k′ ≥ N6 > k, which is too big for a valid substitution. On the other hand, when
all the variables are substituted under h by strings that do not contain #, this
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gadget is mapped to a string which is exactly one arch because there is only one
# at its very end. Thus, under a valid substitution h, the images of the variables
zi and ui do not contain #. Note also that, in the arch factorisation of such a
string (h(π#), where h is a valid substitution) we have one arch and no rest.

The gadget π$ = (z1z2 · · · znu1u2 · · · un01 #)N
6

$ is constructed analogously
and can be seen in Figure 3. This enforces that under a valid substitution h, the
images of the variables zi and ui do not contain $.

In conclusion, the gadgets π# and π$ enforce that under a valid substitution
h, the image of the variables zi and ui contains only 0 and 1, i.e., they are binary
strings.

π# = ( z1z2 · · · zn u1u2 · · · un 01 $ )N
6

#

No # allowed

Fig. 2. If any of the variables is substituted by a string that contains a #, then this
gadget would add at least N6 arches, which is already greater than the target univer-
sality k = 5n+m+ 2.

π$ = ( z1z2 · · · zn u1u2 · · · un 01 # )N
6

$

No $ allowed

Fig. 3. If any of the variables is substituted by a string that contains a $, then this
gadget would add at least N6 arches, which is already greater than the target univer-
sality k = 5n+m+ 2.

The Boolean gadgets. We use the following gadgets to force the image
of each zi and ui to be either in 0∗ or 1∗. Intuitively, mapping a variable zi
(respectively, ui) to a string of the form 0+ corresponds to mapping xi (respec-
tively, x̄i) to the Boolean value false (respectively, true). Similarly, mapping one
of these string-variables to a string from 1+ means mapping the corresponding
boolean variable to true. For a beginning, these gadgets just have to enforce
that the image of any string-variable does not contain both 0 and 1. We con-
struct the gadget πz

i (respectively πu
i) for every string-variable zi (respectively,

ui), according to Figure 4. More precisely, for all i ∈ [n], we define two gadgets

πz
i = (zi $ #)N

6

1001 $ # and πu
i = (ui $ #)N

6

1001 $ #.
We now analyse the possible images of πz

i = (zi $ #)N
6

1001 $ # under various
substitutions h. There are three ways in which zi can be mapped to a string
by h. Firstly, if the image of zi contains both 0 and 1, then for the universality
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index of the image of πz
i under the respective substitution is ι(h(πz

i)) ≥ N6 > k;
such a substitution cannot be valid. Secondly, if the image of zi is a string
from 0∗, then the universality of this gadget is exactly ι(h(πz

i)) = 2 as shown
in Figure 5. As a third option, if the image of zi is a string from 1∗, then the
universality of this gadget is exactly ι(h(πz

i)) = 2 as shown in Figure 6. As for
the binarisation gadgets, in the arch factorisation of a string h(πz

i), where h is a
valid substitution, we have exactly two arches (and no rest). A similar analysis

can be performed for the gadgets πu
i = (ui $ #)N

6

1001 $ #. In conclusion, the
gadgets πz

i and πu
i enforce that under a valid substitution h, the image of the

variables zi and ui contains either only 0s or only 1s (or is empty).

πz
i = ( zi $ # )N

6
1 0 01 $ #

No 0 and 1 together allowed

Fig. 4. If any of the variables in the gadget πz
i (analogous for πu

i) is substituted by a
string that contains both a 0 and a 1, then this gadget would add N6 arches, which is
already greater than the target universality k = 5n+m+ 2.

πz
i = ( zi $ # )N

6
1 0 01 $ #

arch if zi ∈ 0+

Fig. 5. If any of the variables πz
i (analogous for πu

i) consits of only 0’s, this gadget
would add 2 arches per variable.

πz
i = ( zi $ # )N

6
1 0 01 $ #

arch if zi ∈ 1∗

Fig. 6. If any of the variables πz
i (analogous for πu

i) consits of only 1’s, this gadget
would add 2 arches per variable.

The complementation gadgets. The role of these gadgets is to enforce
the property that zi and ui are not both in 0+ or not both in 1+, for all i ∈ [n].
We construct the gadget ξi = $ ziui #, for every i ∈ [n], according to Figure 7.
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Let us now analyse the image of these gadgets under a valid substitution (π#
and π$ are mapped to exactly one arch each, and πz

i and πu
i are mapped to

exactly two arches each). In this case, we observe that ξi is mapped to exactly
one complete arch ending on the rightmost symbol # if and only if the image of
one of the variables zi and ui has at least one 0 and the image of the other one
has at least one 1. Further, let us consider the concatenation of two consecutive
such gadgets ξiξi+1 and assume that both zi and ui are mapped to strings over
the same letter or at least one of them is mapped to the empty word. In that
case, the first arch must close to the right of the $ letter in ξi+1, hence ξiξi+1

could not contain two arches. Thus, the concatenation of the gadgets ξ1 · · · ξn
is mapped to a string which has exactly n arches if and only if each gadget ξi
is mapped to exactly one arch, which holds if and only if the image of one of
the variables zi and ui has at least one 0 and the image of the other one has at
least one 1. When assembling together all the gadgets, we will ensure that, in a
valid substitution, this property holds: zi and ui are mapped to repetitions of
different letters.

ξi = $ zi ui #

Fig. 7. In order for ξi to contribute an arch, one of zi and ui has to be replaced by
only 1’s while the other must consist of only 0’s.

The clause gadgets. Let cj = (y1j ∨ y2j ∨ y3j ) be a clause, with y1j , y
2
j , y

3
j ∈

X ∪ X̄. We construct the gadget δj for every clause cj as $ 0ρ(y1j)ρ(y
2
j)ρ(y

3
j) #,

as shown in Figure 8. Now, by all of the properties discussed for the previous
gadgets, we can analyse the possible number of arches contained in the image
of this gadget under a valid substitution. Firstly, note that if at least one of the
variables ρ(y1j), ρ(y

2
j), ρ(y

3
j) is mapped to a string containing at least one 1, then

this gadget will contain exactly one arch ending on its rightmost symbol #. Now
consider the concatenation of two consecutive such gadgets δjδj+1, and assume
that all the variables in δj are substituted by only 0s. In this case, the first arch
must end to the right of the $ symbol in δj+1, hence the string to which δjδj+1

is mapped could not contain two arches. The same argument holds if we look
at the concatenation of the last complementation gadget and the first clause
gadget, e.g. ξnδ1.

Thus, the concatenation of the gadgets δ1 · · · δm is mapped to a string which
has exactly m arches if and only if each gadget δi is mapped to exactly one
arch. This holds if and only if at least one of the string-variables occurring in
δi is mapped to a string of 1s. When assembling together all the gadgets, we
will ensure that at least one of the variables occurring in each gadget δi, for all
i ∈ [m], is mapped to a string of 1s in a valid substitution.
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δj = $ 0 ρ(y1j) ρ(y2j) ρ(y3j) #

Fig. 8. In order for δj to contribute an arch, at least one of ρ(y1j), ρ(y
2
j) and ρ(y3j) has

to be replaced by only 1’s.

Final Assemblage. We finish the construction of the pattern α by concate-
nating all the gadgets. That is, α = π#π$π

z
1π

u
1π

z
2π

u
2 · · ·πz

nπ
u
nξ1ξ2 · · · ξnδ1δ2 · · · δm,

as shown in Figure 9.

α = π# π$ πz
1π

u
1π

z
2π

u
2 · · ·πz

nπ
u
n ξ1ξ2 · · · ξn δ1δ2 · · · δm

1 1 4n n m

Fig. 9. The concatenation of all gadgets and their respective amount of arches we
expect, if we can find a substitution h with ι(h(α)) = 5n+m+ 2.

The correctness of the reduction. We show that there exists a substi-
tution h of the string variables of α with ι(h(α)) = 5n + m + 2 (i.e., a valid
substitution) if and only if we can find an assignment for all Boolean-variables
occurring in φ that satisfy all clauses cj ∈ φ.

Let us first show that if there is a satisfying assignment for Boolean-variables
of φ which makes the formula true, then there exists a substitution h of the
string-variables of α such that ι(h(α)) = 5n +m + 2. In this case, we can give
a canonical substitution h with h(ρ(xi)) = 1 and h(ρ(x̄i)) = 0 if xi is assigned
true, and h(ρ(xi)) = 0 and h(ρ(x̄i)) = 1 if xi is assigned false. We can easily
verify, by the definition of the gadgets, that under this substitution we have
ι(h(α)) = 5n+m+ 2. Indeed, in the images of each gadget π#, π$, π

z
i , ξi and δi

we have exactly one arch, ending on the last symbol of the respective strings,
while in the image of each gadget πz

i under this substitution there will be exactly
two arches, again ending on their last positions.

Conversely, we want to show that if we have a substitution h of the string-
variables such that ι(h(α)) = 5n+m+2, then there must be a satisfying assign-
ment of the Boolean-variables for φ. The general idea is the following. We assume
that we have a substitution of the string variables and compute the arch factori-
sation greedily and look at the properties enforced by the individual gadgets, as
discussed above. Assume first, towards a contradiction, that the image of some
variable zi contains both 0 and 1 or that it contains # or $. Then, as explained,
the number of arches of the image of π#π$π

z
1π

u
1π

z
2π

u
2 · · ·πz

nπ
u
n will blow up to a

value greater than 5n + m + 2, a contradiction. The same reasoning holds for
the variables ui. Therefore, each variable zi is mapped to a string from 0∗ ∪ 1∗,
and the same holds for the variables ui. It follows that h(π#π$π

z
1π

u
1π

z
2π

u
2 · · ·πz

nπ
u
n)
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contributes exactly 4n+ 2 arches to the arch factorisation of h(α), and the last
arch of this factorisation (when identified greedily, from left to right) ends on
the last letter of πu

n (which is a # symbol). By this last property, we are guaran-
teed that we can look at the suffix h(ξ1ξ2 · · · ξnδ1δ2 · · · δm) of our pattern’s image
under h separately, as no arch from the prefix h(π#π$π

z
1π

u
1π

z
2π

u
2 · · ·πz

nπ
u
n) extends

in it. More precisely, this allows us to consider the subproblem of analysing h
under the assumption that ι(h(ξ1ξ2 · · · ξnδ1δ2 · · · δm)) = m + n, and, moreover,
each string variable is mapped to strings from 0∗ ∪ 1∗. In this subproblem, we
have n +m $ symbols in the pattern and we can not introduce new $ symbols
in the image of the string-variables. Therefore, every $ symbol needs to be in
exactly one arch. Now, as discussed when introducing the complementation and
clause gadgets, we have to have the following properties, as otherwise we would
have at least two $ symbols in the same arch and would only get to k′ < m+ n
arches overall. Firstly, one of each h(ρ(xi)) and h(ρ(x̄i)) has to consist only of 0s
while the other consists only of 1s, and both of them should have length at least
1. Secondly, at least one of each ρ(y1j), ρ(y

2
j) and ρ(y3j) has to be substituted by

a string from 1+.
Given these properties, we can construct a satisfying assignment of the

Boolean-variables from φ by setting a variable to be true if and only if their
corresponding string-variable is mapped to a string from 1∗. As h(ρ(xi)) and
h(ρ(x̄i)) are mapped to strings over distinct alphabets, we get that xi and x̄i

will be assigned distinct truth values. Moreover, at least one of each ρ(y1j), ρ(y
2
j)

and ρ(y3j) has to be substituted by a string from 1+, so at least one variable per
clause is assigned to true. Therefore, this assignment makes φ true.

This concludes our proof, and shows that MatchUniv(α, k) is NP-hard. ⊓⊔

In the following we show that MatchUniv(α, k) is in NP. One natural approach
is to guess the images of the variables occurring in the input pattern α under
a substitution h and check whether or not ι(h(α)) is indeed k. However, it is
difficult to bound the size of the images of the variables of α under h in terms of
the size of α and log k (the size of our input), since the strings we look for may
be exponentially long. For example, consider the pattern α = X1: the length of
the shortest k-universal string is kσ [6], which is already exponential in log k.
Therefore, we consider guessing only the subsequence universality signatures for
the image of each variable under the substitution. We show that it is sufficient to
guess |var(α)| subsequence universality signatures, one for each variable, instead
of the actual images of the variables under a substitution h using the following
proposition by Schnoebelen and Veron [61].

Proposition 1 ([61]). For u, v ∈ Σ∗, we can compute s(uv), given the subse-
quence universality signatures s(u) = (γu,Ku,Ru) and s(v) = (γv,Kv,Rv) of
each string, in time polynomial in |alph(uv)| and log t, where t is the maximum
element of Ku and Kv.

Once we have guessed the subsequence universality signatures of all variables
in var(α) under substitution h, we can compute ι(h(α)) in the following way.
We first compute the subsequence universality signature of the maximal prefix
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of α that does not contain any variables. We then incrementally compute the
subsequence universality signature of prefixes of the image of α. Let α = α1α2,
where we already have s(h(α1)) from induction. If α2[1] is a variable, we compute
s(h(α1α2[1])) from s(h(α1)) and the guessed subsequence universality signature
for variable α2[1], using Proposition 1. Otherwise, we take the maximal prefix w
of α2 that does not consist of any variables. We first compute s(w) and then
compute s(h(α1w)) using Proposition 1. Once we have s(h(α)) = (γ,K,R), we
compute ι(h(α)) = K[σ] + 1. Note that the whole process can be done in a
polynomial number of steps in |α|, log k, and σ due to Proposition 1, provided
that the signatures are of polynomial size.

Thus, we now measure the encoding size of a subsequence universality sig-
nature and, as such, the overall size of the certificate for MatchUniv that we
guess. We can use σ! bits to encode a permutation γ of a subset of Σ. An integer
between 1 and σ − 1 requires log σ bits. Naively, R requires (2σ)σ bits because
there can be 2σ choices for each item. Finally, in the framework of our problem,
note that K[1]−K[|γ|] ≤ 1 by Schnoebelen and Veron [61], and that the values
of K[i] are non-increasing in i. Therefore, we can encode K as a tuple (l, k′)
where k′ = max{K[i] | 1 ≤ i ≤ |γ|} ≤ k and l = |{i ∈ [|γ|] | K[i] = k′}|. This
encoding scheme requires at most log σ + log k bits. Summing up, the overall
space required to encode a certificate that consists of |var(α)| subsequence uni-
versality signatures takes at most (1 + σ! + (2σ)σ + log σ + log k)|var(α)| bits.
This is polynomial in the size of the input and the number of variables, because
we assume a constant-sized alphabet, i.e. σ ∈ O(1).

It remains to design a deterministic polynomial algorithm that tests the va-
lidity of the guessed subsequence universality signature. Assume that we have
guessed the 3-tuple (γ,K,R). We claim that there are only constantly many
strings we need to check to decide whether or not (γ,K,R) is a valid subse-
quence universality signature - allowing us a brute-force approach. Lemma 2
allows us to “pump down” strings with universality index greater than (2σ)σ,
which is a constant.

Lemma 2. The tuple (γ,K1,R) is a valid subsequence universality signature iff
there exists w ∈ Σ∗ with ι(w) ≤ (2σ)σ, s(w) = (γ,K2,R), and K1[t] − K2[t] =
c ∈ N0 for all t ∈ [|γ|].

Proof. Only if part. Let s(w) = (γ,K2,R) with ι(w) ≥ 1. Then, we have
s(γcw) = (γ,K1,R) where K1[t] = K2[t] + c for all t ∈ [σ] and all c ∈ N0.

If part. Let u be a string with s(u) = (γ,K1,R). If ι(u) ≤ (2σ)σ, the
statement is already true. Otherwise, we have ι(u) > (2σ)σ. Consider two inte-
gers i and j (i < j), which are multiples of σ. Assume that alph(u[Mi+l(u) + 1 :
Mi+l+1(u)]) = alph(u[Mj+l(u) + 1 : Mj+l+1(u)]) for l ∈ [σ − 1] ∪ {0}. Note that
the endpoints of the arches after Mj+σ(u) depend exactly on the set of charac-
ters alph(w[Mj+l(u)+1 : Mj+l+1(u)]) from l = 0 to σ−1, and the suffix u[Mj+σ(u)].
Therefore, we can remove u[Mi+σ(u)+1 : Mj+σ(u)] without altering γ or R. This
argument is illustrated in Figure 10.

Now, let K2 be the array of integers obtained by subtracting j−i
σ from all

values in K1. Then, s(u[1 : Mi+σ(u)]u[Mj+σ(u) + 1 : |u|]) = (γ,K2,R). Since
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Mi

u′ =

Mi+2Mi+σMi+1 Mi+4 Mi+5 Mi+2σ

archc

archb

archa

Mi

u =

Mi+2Mi+σMi+1 Mj Mj+2 Mj+σMj+4 Mj+5Mj+1

σ = 3

Mj+2σ

archc

archb

archa

same alph

Fig. 10. We can safely remove the substring u[Mi+σ(u) + 1 : Mj+σ(u)]
to obtain u′ with the same γ and R, and all K values are lower by j−i

σ
.

there can be näıvely 2σ choices of alph(u[Mi+l(u) + 1 : Mi+l+1(u)]) for each
l ∈ [σ−1]∪{0}, any string with ι(u) > (2σ)σ is guaranteed to have integers i and
j that satisfy the above conditions by the pigeonhole principle. Therefore, we will
reach a string w with ι(w) ≤ (2σ)σ and s(w) = (γ,K2,R), where K1[t]−K2[t] = c
for some non-negative constant c and all t ∈ [σ] if we repeatedly apply the same
argument to remove arches. ⊓⊔

Lemma 2 limits the search space for the candidate string corresponding
to a tuple (γ,K,R) by mapping valid subsequence universality signatures to
subsequence universality signatures for strings with universality index at most
(2σ)σ. Therefore, we need to investigate those strings where there are up to
σ · (1 + (2σ)σ) + 1 terms in its marginal sequence. The following lemma bounds
the length of the substring between two consecutive marginal sequence terms in
such a string. The conclusion of this line of thought follows then, in Corollary 1.

Lemma 3. For a given string w, let w = uvx where v = w[Mi(w)+1 : Mi+1(w)] ̸=
ε, and u = w[1 : Mi(w)], and x = w[Mi+1(w)+1 : |w|] for some integer i ≥ 1. For
a permutation v′ of alph(v) that ends with v[|v|], we have s(uvx) = s(uv′x).

Proof. Since v is between two consecutive marginal sequence terms, all arches
for any signature letter in uvx must end at a position no more than |u| or at a
position no less than |uv| Arches that end at a position no more than |u| in uvx
will end at the same positions in uv′x because they only depend on u. Suppose
that an arch for signature letter a starts at a position no more than |u| and ends
at a position no less than |uv| in uvx. Let i be the minimum non-negative integer
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that allows alph(resta(u)vx[1 : i]) = Σ. If i ≥ 1, we have alph(resta(u)v) ̸= Σ.
Since alph(resta(u)v) = alph(resta(u)v

′), the minimum integer i′ that allows
alph(resta(u)v

′x[1 : i′]) = Σ is equal to i. On the other hand, if i = 0, then
we have alph(resta(u)v) = Σ and alph(resta(u)v[1 : |v| − 1]) ̸= Σ. Since we
have v′[|v′|] = v[|v|] and alph(v′[1 : |v′|−1]) = alph(v[1 : |v|−1]), the arch ends
exactly at |uv′| in uv′x. The number of arches that continues afterwards and the
corresponding letters in the rest are thus equal for uvx and uv′x. Finally, even
if v is in the rest of the arch factorization for a signature letter a, we still have
alph(resta(uvx)) = alph(resta(uv

′x)) because alph(v) = alph(v′). ⊓⊔

Corollary 1. The tuple (γ,K,R) is a valid subsequence universality signature
if and only if there exists a string w of length at most σ · (σ · (1 + (2σ)σ) + 1)
and a constant c ∈ N0 that satisfies s(w) = (γ,K − c,R).

We can now show the following result.

Lemma 4. MatchUniv(α, k) is in NP.

Proof. Follows from Proposition 1 and Corollary 1. Firstly, for a guessed se-
quence of universality signatures (γx,Kx,Rx), for x ∈ var(α), we check their
validity. For that, we enumerate all strings of length up to the constant σ · (σ ·
(1 + (2σ)σ) + 1) over Σ and see if there exist strings wx such that s(wx) =
(γx,Kx − cx,Rx) for some constant cx ≤ k. Since σ is constant, this takes poly-
nomial time. We then use Proposition 1 to check if the guessed signatures lead
to an assignment h of the variables such that ι(h(α)) = k, as already explained.
Since we have a polynomial size bound on the certificate and a deterministic ver-
ifier that runs in polynomial time, we obtain that MatchUniv(α, k) is in NP. ⊓⊔

Based on Lemmas 1 and 4, the following theorem follows.

Theorem 1. MatchUniv is NP-complete.

Further, we describe two classes of patterns, defined by structural restrictions
on the input patterns, for which MatchUniv can be solved in polynomial time.

Proposition 2. a) MatchUniv(α, k) is in P when there exists a variable that
occurs only once in α. As such, MatchUniv(α, k) is in P for the heavily studied
class of regular patterns (see, e.g., [17] and the references therein), where each
variable occurs only once. b) MatchUniv(α, k) is in P when |var(α)| is constant.

Proof. a) Let x be the variable that occurs only once in α. Then, we can uniquely
rewrite α = α1xα2. We will successively define three substitutions h1, h2, h3, all
of which map variables that are not x to the empty string, i.e., h1(x

′) = h2(x
′) =

h3(x
′) = ε for all x′ ∈ X \ {x}. Now, let h1(x) = ε as well. We claim that

k ≥ ι(h1(α)) if and only if MatchUniv(α, k) is true. For any substitution h, we
have ι(h1(α)) ≤ ι(h(α)) because h1(α) ⪯ h(α). Therefore, the problem is false if
k < ι(h1(α)). Moreover, if k = ι(h1(α)), the problem is true by definition. Now,
assume k > ι(h1(α)) and let h2(x) be a permutation of Σ \rest(h2(α1)). Then,
ι(h2(α)) = ι(h2(α1)) + 1 + ι(h2(α2)), because rest(h2(α1x)) = ε. Note that
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we either have ι(h2(α)) = ι(h1(α)) or ι(h1(α)) + 1. Finally, for an integer i =
k − ι(h2(α)), let h3(x) = h2(x)γ

i where γ is a permutation of Σ. We now
have ι(h3(α)) = ι(h3(α1)h2(x)) + i + ι(h3(α2)) = i + ι(h2(α)). Thus, for any
k ≥ ι(h1(α)), there exists a substitution h such that k = ι(h(α)). We therefore
compute ι(h1(α)), the universality index of the image, and then return true if
and only if ι(h1(α)) ≤ k, which can be done in polynomial time. ⊓⊔

b) The subsequence universality signature s(h(xi)) of the image of some vari-
able xi ∈ var(α) under substitution h consists of three items, a permutation γi
of a subset of Σ, an array Ki of σ integers, and an array Ri of σ subsets of
Σ. Recall from the size estimation of such a universality signature that Ki can
be represented with two integers li and ki, where Ki[j] = ki for all j ∈ [li] and
Ki[j] = ki − 1 for all j ∈ [li + 1 : |γi|]. Note that there are

∑σ
j=0 j! choices for

γ, at most σ choices for li, and (2σ)σ choices for R. Therefore, if we treat ki as
a variable whose value should be determined, we can enumerate for all possible
assignments of γi, li, and Ri for all i ∈ [|var(α)|] in constant time under the
assumption that σ and |var(α)| are constant.

Now, for a fixed set of γis, lis, and Ris, we find the minimum value k′i of ki
that validates (γi,Ki,Ri) as a subsequence universality signature by enumerating
all strings up to length σ · (σ · (1 + (2σ)σ) + 1) using Corollary 1. If no such k′i
exists, we move on to the next set of γis, lis, and Ris. Since Lemma 2 allows
us to add an arbitrary number of arches while not altering γi and Ri, we first
assume that the number of additional arches is zero and compute how many
more arches we need for h(α) to reach a universality index of k. We compute
this number by counting the number of arches through an arch factorization
on α. Specifically, for each rewriting α1xiα2, we compute the minimal j ∈ [|γ|]
that allows alph(rest(h(α1)))∪ alph(γ[1 : j]) = Σ. If no such j exists, then we
simply compute alph(rest(h(α1xi))) = alph(rest(h(α1))) ∪ alph(γ) without
incrementing the number of arches. Then, if j ≤ li, we add k′i arches to the
total arch count. If j > li, we add k′i − 1 arches instead. Finally, we continue the
arch factorization process with alph(rest(h(α1xi))) = Ri[j]. This way, we can
compute the minimum number of arches the image of α can have for a fixed set
of γis, lis, and Ris.

Let d be the total number of additional arches we need for the image of
α to reach a universality index of k. Note that an additional arch for each
variable xi will contribute to |α|xi more arches in the image of α. However, if
the subsequence universality signature features γi with alph(γi) ̸= Σ, then we
cannot add any more arches for each variable. Let I = {i ∈ [|var(α)|] | |γi| = σ}.
Now, the problem boils down to finding how many additional arches we need
for the image of each variable xi with i ∈ I while making the universality index
of the image of α exactly k. Let di be the number of additional arches for each
occurrence of variable xi with i ∈ I. We can solve for dis the following system
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of linear inequalities: ∑
i∈I

|α|xi
di ≤ d,∑

i∈I

−|α|xidi ≤ −d,

− di ≤ 0 ∀i ∈ I

Note that the first two inequalities imply
∑|var(α)|

i=1 |α|xidi = d and the last
|var(α)| inequalities enforce positive values for each di. If there is an integer
solution for the system, then we can assign di more arches for the image of xi,
and the universality index of the image of α will be exactly k. Because |var(α)|
is a constant, this system can be solved in time polynomial in logH, where H is
the maximum between k and the greatest coefficient of a variable in the above
system (in absolute value) [39]. ⊓⊔

4 MatchSimon

Further, we discuss the MatchSimon problem. In the case of MatchSimon, we
are given a pattern α, a word w, and a natural number k ≤ n, and we want
to check the existence of a substitution h with h(α) ∼k w. The first result is
immediate: MatchSimon is NP-hard, because MatchSimon(α,w, |w|) is equivalent
to Match(α,w), and Match is NP-complete.

Lemma 5. MatchSimon is NP-hard.

Proof. We note that MatchSimon(α,w, |w|) is equivalent to the NP-complete
Match(α,w). ⊓⊔

To understand why this results followed much easier than the corresponding
lower bound for MatchUniv, we note that in MatchSimon we only ask for h(α) ∼k

w and allow for h(α) ∼k+1 w, while in MatchUniv h(α) has to be k-universal but
not (k + 1)-universal. So, in a sense, MatchSimon is not strict, while MatchUniv
is strict. So, we can naturally consider the following problem.

Matching under Strict Simon’s Congruence: MatchStrictSimon(α,w, k)
Input: Pattern α, |α| = m, word w, |w| = n, and k ∈ [n].
Question: Is there a substitution h with h(α) ∼k w and h(α) ̸∼k+1 w?

Adapting the reduction from Lemma 1, we can show that MatchStrictSimon
is NP-hard.

Lemma 6. MatchStrictSimon is NP-hard.

Proof. We refer to the notations from Lemma 1. We use the same reduction
from 3CNFSAT and note that α can either be mapped to a string h(α) with
ι(h(α)) ≤ 5n + m + 2 (with equality only if the input instance of 3CNFSAT is
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satisfiability) or to a string h(α) with ι(h(α)) ≤ (n + m)6. Therefore, consider
the instance of MatchStrictSimon with input the pattern α constructed in the
reduction, w = (10 $ #)5n+m+3, and k = 5n + m + 2. Clearly, there exists a
substitution h with h(α) ∼k w and h(α) ̸∼k+1 w if and only if there exists a
substitution h with ι(h(α)) = k. Such a substitution exists if and only if the
given instance of 3CNFSAT is satisfiable. ⊓⊔

We can also show an NP-upper bound: it is enough to consider as candidates
for the images of the variables under the substitution h only strings of length
O((k + 1)σ); longer strings can be replaced with shorter, ∼k-congruent ones,
which have the same impact on the sets Sk(h(α)). The following holds.

Theorem 2. MatchSimon and MatchStrictSimon are NP-complete.

Proof. By Lemmas 5 and 6, it is enough to show that both problems are in NP.
We make some observations first. Note that Sk(w1w2) = Σ≤k∩Sk(w1)Sk(w2).

Thus, for a pattern α and two substitutions h1 and h2 where h1(x) ∼k h2(x) for
all variables x ∈ X , we have w ∼k h1(α) if and only if w ∼k h2(α). Moreover,
Kim et al. [44] showed that, for a given string w, the length of the shortest string
in the set {u ∈ Σ∗ | u ∼k w} is at most

(
k+σ
σ

)
≤ kσ.

Based on these observations, we can now give NP-algorithms for both prob-
lems. We note that these problems reduce to the normal pattern matching prob-
lem when k ≥ |w|. For MatchSimon, if k ≥ |w|, we answer MatchSimon(α,w, k)
positively if and only if α matches w. For MatchStrictSimon, if k ≥ |w|, we al-
ways answer MatchStrictSimon(α,w, k) negatively. Indeed, if there exists h such
that h(α) ∼k w, then h(α) ∼|w| w. It follows that h(α) = w and h(α) ∼k+1 w,
as well; the answer to MatchStrictSimon(α,w, k) should therefore be no.

Hence, from now on, we can assume that k < |w|. Let us consider first
the problem MatchStrictSimon. From the observations we have made at the
beginning of this proof, and taking into account that we need to consider strings
congruent under ∼k+1, we can conclude that there exists a substitution h such
that h(α) ∼k w and h(α) ̸∼k+1 w if and only if there exists such a substitution
h where the length of the image of each variable is (k + 1)σ.

Since k is at most |w| and σ is a constant, we only need to test certificates of
polynomial length which encode the substitution. The verifier can then simply
substitute the variables in the pattern, which will yield a string of length at
most (k + 1)σ|α|. Now, we can compute the largest ℓ for which h(α) ∼ℓ w in
O(|h(α)| + |w|) = O((|w| + 1)σ|α| + |w|) time [32], which is polynomial in the
size of the input, under the assumption that σ is constant. If ℓ = k, then we
answer the respective instance positively. Therefore, the problem is in NP.

A similar argument holds for MatchSimon (but, in that case, it is enough
to look for substitutions where the image of the variables is at most kσ, as we
only deal with ∼k). On the other hand, note that the same argument cannot be
applied to MatchUniv, because there is no bound on the size of k. This makes
the size of the certificate, kσ, exponentially large in log k, which is the size of
the encoding for a binary representation of k. ⊓⊔
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Finally, note that MatchSimon and MatchStrictSimon are in P when the
input pattern is regular.

Proposition 3. If α is a regular pattern, then both problems MatchSimon(α,w, k)
and MatchStrictSimon(α,w, k) are in P.

Proof. We consider the problem MatchSimon(α,w, k). We assume that α is a
regular pattern α = w0x1w1 · · ·xℓwℓ, where, for i ∈ [ℓ], xi is a variable and, for
i ∈ [ℓ] ∪ {0}, wi is a string of constants. The language L(α) of all words which
can be obtained by replacing the variables of α by constant strings is regular,
and we can construct in polynomial time a non-deterministic finite automaton
Nα accepting it (it is the automaton accepting the language described by the
regular expression w0Σ

∗w1 · · ·Σ∗wℓ). Now, using the results of [44], we can
construct in polynomial time (when the size of the input alphabet σ is constant) a
deterministic finite automatonDw,k accepting the words which are ∼k equivalent
to w. Now, we simply check if there is a word accepted by both these automata
(Nα and Dw,k), which can be done in polynomial time. We return the answer
to this check as the answer to MatchSimon(α,w, k).

Further, we consider the problem MatchStrictSimon(α,w, k). Just as before,
we construct the NFA Nα and the DFA Dw,k. Moreover, we construct the DFA
Dw,k+1 and its complementD′

w,k+1 (which accepts the words which are not ∼k+1

equivalent to w). Now, we see if there is a word accepted by Nα and Dw,k and
D′

w,k+1. Clearly, all steps can be done in polynomial time. We return the answer
to this check as the answer to the problem MatchStrictSimon(α,w, k). ⊓⊔

5 WESimon

In this section, we address the WESimon problem, where we are given two patterns
α and β, and a natural number k ≤ n, and we want to check the existence of a
substitution h with h(α) ∼k h(β). The first result is immediate: this problem is
NP-hard because MatchSimon, which is a particular case of WESimon, is NP-hard.

To show that the problem is in NP, we need a more detailed analysis. If
k ≤ |α| + |β|, the same proof as for the NP-membership of MatchSimon works:
it is enough to look for substitutions of the variables with the image of each
variable having length at most kσ, and this is polynomial in the size of the
input. If k > |α| + |β|, and β = w contains no variable, then this is an input
for MatchSimon with k greater than the length of the input word w, and we
have seen previously how this can be decided. Finally, if both α and β contain
variables, then the problem is trivial, irrespective of k: the answer to any input
is positive, as we simply have to map all variables to (1 · · ·σ)k and obtain two
∼k-congruent words. Therefore, we have the following result.

Theorem 3. WESimon is NP-complete.

To avoid the trivial cases arising in the above analysis for WESimon, we can
also consider a stricter variant of this problem:
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Word Equations under Strict Simon’s Congruence: WEStrictSimon(α, β, k)
Input: Patterns α, β, |α| = m, β = n, and k ∈ [m+ n].
Question: Is there a substitution h with h(α) ∼k h(β) and h(α) ̸∼k+1 h(β)?

Differently from WESimon, we can show that this problem is NP-hard, even
in the case when both sides of the pattern contain variables.

Lemma 7. WEStrictSimon is NP-hard, even if both patterns contain variables.

Proof. We refer to the notations from Lemma 1. We use the same reduction from
3CNFSAT and note that α can either be mapped to a string h(α) with ι(h(α)) ≤
5n+m+ 2 (with equality only if the input instance of 3CNFSAT is satisfiability)
or to a string h(α) with ι(h(α)) ≤ (n + m)6. Therefore, consider the instance
of WEStrictSimon with input the pattern α constructed in the reduction, the
second pattern β = (10 $ #)5n+m+3x, where x is a fresh string-variable, and
k = 5n + m + 2. Clearly, there exists a substitution h with h(α) ∼k h(β) and
h(α) ̸∼k+1 h(β) if and only if there exists a substitution h with ι(h(α)) = k. Such
a substitution exists if and only if the given instance of 3CNFSAT is satisfiable. ⊓⊔

Regarding the membership in NP: if k is upper bounded by a polynomial func-
tion in |α|+ |β| (or, alternatively, if k is given in unary representation), then the
fact that WEStrictSimon is in NP follows as in the case of MatchStrictSimon.
The case when k is not upper bounded by a polynomial in |α| + |β| remains
open. We can show the following theorem.

Theorem 4. WEStrictSimon is NP-complete, for k ≤ |α|+ |β|.

6 Conclusions

In this paper, we have considered the problem of matching patterns with vari-
ables under Simon’s congruence. More precisely, we have considered three main
problems MatchUniv, MatchSimon, and WESimon and we have given a rather
comprehensive image of their computational complexity. These problems are
NP-complete, in general, but have interesting particular cases which are in P. In-
terestingly, our NP or P algorithms work in (non-deterministic) polynomial time
only in the case of constant input alphabet (their complexity being, in fact, ex-
ponential in the size σ of the input alphabet). It seems very interesting to charac-
terize the parameterised complexity of these problems w.r.t. the parameter σ. In
the light of Proposition 2, another interesting parameter to be considered in such
a parameterised complexity analysis would be the number of variables. We con-
jecture that the problems are W [1]-hard with respect to both these parameters.
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