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Abstract. Rotor walks are cellular automata that determine determin-
istic traversals of particles in a directed multigraph using simple local
rules, yet they can generate complex behaviors. Furthermore, these tra-
jectories exhibit statistical properties similar to random walks.
In this study, we investigate a generalized version of the reachability
problem known as arrival in Path Multigraphs, which involves predict-
ing the number of particles that will reach designated target vertices. We
show that this problem is in NP and co-NP in the general case. How-
ever, we exhibit algebraic invariants for Path Multigraphs that allow us
to solve the problem efficiently, even for an exponential configuration
of particles. These invariants are based on harmonic functions and are
connected to the decomposition of integers in rational bases.

Keywords: Rotor walks · cellular automata · discrete harmonic func-
tion.

1 Introduction

The rotor routing, or rotor walk model, has been studied under different names:
eulerian walkers [15,14] and patrolling algorithm [16]. It shares many proper-
ties with a more algebraically focused model: abelian sandpiles [3,12]. General
introductions to this cellular automaton can be found in [10] and [12].

Here is how a rotor walk works: in a directed graph, each vertex v with an
outdegree of k has its outgoing arcs numbered from 1 to k. Initially, a particle is
placed on a starting vertex, and the following process is repeated. On the initial
vertex, the particle moves to the next vertex following arc 1. The same rule then
applies on subsequent vertices. However, when a vertex is revisited, the particle
changes its movement to the next arc, incrementing the number until the last
arc is used. Then, the particle restarts from arc 1 if it visits this vertex again.

This simple rule defines the rotor routing, which exhibits many interesting
properties. Particularly, if the graph is sufficiently connected, the particle will
eventually reach certain target vertices known as sinks. The time required for
such exploration can be exponential in the number of vertices. The problem of
determining, given a starting configuration (numbering) of arcs and an initial
vertex, which sink will be reached first, is known as the ARRIVAL problem. It
was defined in [4], along with a proof that the problem belongs to the complexity
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class NP ∩ co-NP. Although the problem is not known to be in P, [8] showed
that it belongs to the smaller complexity class UP ∩ co-UP. Furthermore, a
subexponential algorithm based on computing a Tarski fixed point was proposed
in [9].

Despite these general bounds, little is known about efficiently solving the
problem in specific graph classes, especially when extending it to the routing
of multiple particles. In [1], we addressed the problem in multigraphs with a
tree-like structure and provided a linear algorithm for solving it with a single
particle. However, the recursive nature of the algorithm provided limited insights
into the structure of rotor walks in the graph. We also examined the structure
of rotor walks and the so-called sandpile group in the case of a simple directed
path, where simple invariants can explain the behavior of rotor walks.

In this work, we focus specifically on a family of multigraphs that consist of
directed paths with a fixed number of arcs going left and right on each vertex,
with a sink located at both ends of the path. We present an efficient algo-
rithm for solving the ARRIVAL problem in this general context, considering a
potentially exponential number of particles and antiparticles, a concept intro-
duced in [10]. Our approach involves introducing algebraic invariants for rotor
walks and chip-firing, enabling a complete description of the interplay between
particle configurations and rotor configurations/walks. These invariants are de-
rived from harmonic functions in graphs, which are functions invariant under
chip-firing. Additionally, we introduce a related concept for rotor configurations
called arcmonic functions, inspired by [11].

An essential tool for analyzing rotor routing in Path Multigraphs is the de-
composition of integer values, which is closely associated with the AFS number
system ([7]), where numbers are decomposed into rational bases. While we draw
inspiration from these results, our approach focuses on proving precisely what is
necessary, using our own methodology.

Additionally, we derive other outcomes, such as the cardinality of the Sand-
pile Group of Path Multigraphs or its cyclic structure. These results can also
be derived from Kirchoff’s Matrix-Tree Theorem or the notion of co-eulerian
graphs [6]. Nevertheless, our results remain self-contained.

2 Mechanics and Tools for Rotor Routing in Multigraphs

2.1 Multigraphs

A directed multigraph G is a tuple G = (V,A, head, tail) where V and A are
respectively finite sets of vertices and arcs, and head and tail are maps from A
to V defining incidence between arcs and vertices. An arc with tail x and head
y is said to be from x to y. Note that multigraphs can have multiple arcs with
the same head and tail, as well as loops.

For a vertex u ∈ V , we denote by A+(u) the subset of arcs going out of u,
i.e. A+(u) = {a ∈ A | tail(a) = u} and deg+(u) = |A+(u)| is the outdegree of
u. We denote by V0 the set of vertices with positive outdegree and S0 vertices
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with zero outdegree, i.e. sinks. A directed multigraph is stopping if for every
vertex u, there is a directed path from u to a sink. In this whole paper, we
suppose that G is a stopping multigraph.

In the second part of this work, we consider the following multigraph: the
Path multigraph P x,y

n on n+2 vertices is a multigraphG = (V0∪S0, A, head, tail)
such that:

– V0 = {u1, u2, ..., un} and S0 = {u0, un+1};
– for k ∈ J1, nK, we have deg+(uk) = x+ y with x arcs from uk to uk+1 and y

arcs from uk to uk−1

– u0 and un+1 are considered as sinks with no outgoing arcs.

This graph is clearly stopping if x+ y ≥ 1. See Fig. 1 for a representation of
P 2,3
n .

u0 u1 u2 ... un un+1

y arcs

x arcs

Fig. 1: The Path Multigraph P 2,3
n .

We consider the case n ≥ 1, and 1 ≤ x < y with x, y coprime.

2.2 Rotor Structure

If u ∈ V0, a rotor order at u is an operator denoted by θu such that:

– θu : A+(u) → A+(u) ;

– for all a ∈ A+(u), the orbit {a, θu(a), θ2u(a), ..., θdeg
+(u)−1

u (a)} of a under θu
is equal to A+(u), where θku(a) is the composition of θu applied to arc a
exactly k times.

A rotor order for G is then a map θ : A → A such that the restriction θu
of θ to A+(u) is a rotor order at u for every u ∈ V0. Note that all θu as well as
θ are one to one. If C ⊆ V0, the composition of operators θu for all u ∈ C does
not depend on the order of composition since they act on disjoint sets A+(u);
we denote by θC this operator and θ−1

C is its inverse. Finally, we use the term
rotor graph to denote a stopping multigraph together with a rotor order θ.

In P x,y
n , we define a rotor order by simply considering all arcs going right

before all arcs going left, cyclically (see Fig. 2). Formally, let aki denote for
i ∈ J0, x − 1K the x arcs from uk to uk+1 and for i ∈ Jx, x + y − 1K the y arcs
from uk to uk−1; then we define

θ(aki ) = akj with j = i+ 1 mod x+ y.
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uk−1 uk uk+1
ak
x

ak
x+y−1

ak
x−1

ak
0

Fig. 2: Rotor order at a vertex uk in the Path Multigraph P x,y
n

2.3 Configurations

Definition 1. A rotor configuration of a rotor graph G is a mapping ρ from
V0 to A such that ρ(u) ∈ A+(u) for all u ∈ V0. We denote by R(G) or simply R
the set of all rotor configurations of the rotor graph G.

The graph induced by ρ on G = (V,A, head, tail) is

G(ρ) = (V, ρ(V0), head, tail),

in which each vertex in V0 has outdegree one.

Definition 2. A particle configuration of a rotor graph G is a mapping σ
from V to Z. We denote by Σ(G) or simply Σ the set of all particle configurations
of the rotor graph G.

The set Σ(G) can be identified with Z
V and has a natural structure of ad-

ditive abelian group. If u ∈ V , we identify u with the element of Σ(G) with
exactly one chip on u. Thus we can write, e.g. σ+3u to denote the configuration
obtained from σ ∈ Σ by adding 3 to σ(u).

If σ(u) ≥ 0, we interpret it as a number of particles on vertex u, whereas if
σ(u) ≤ 0 it can be interpreted as antiparticles, or simply a debt of particles. The
degree of a particle configuration σ is defined by deg(σ) =

∑

u∈V σ(u).
Finally, a rotor-particle configuration is an element of R(G)× Σ(G).

2.4 Rotor Routing

Definition 3. Let G be a rotor graph, we define operators indexed by vertices
u ∈ V0 on R(G) ×Σ(G):

– move+u : R(G) ×Σ(G) → R(G) ×Σ(G) is defined by

move+u (ρ, σ) = (ρ, σ + head(ρ(u))− u);

– turn+
u : R(G)×Σ(G) → R(G)×Σ(G) is defined by turn+

u (ρ, σ) = (θu ◦ρ, σ).
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Note that θu ◦ ρ is the rotor configuration equal to ρ on all vertices except
in u where θ has updated the arc. Applying move+u to (ρ, σ) can be interpreted
as moving a particle from u to the head of arc ρ(u), whereas applying turn+

u

updates the rotor configuration at u. It is easy to see that these operators are
bijective on R(G) ×Σ(G), and we denote by move−u and turn−

u their inverses.
We now define the routing operators by routing+u = turn+

u ◦ move+u , and its
inverse is obviously routing−u = move−u ◦ turn−

u . Routing a rotor-particle config-
uration (ρ, σ) consists in applying a series of routing+ and routing− operators.
Since they act on different vertices and disjoint sets of arcs, the following result
is straightforward.

Lemma 1. The family of operators routing+u and routing−u for all u ∈ V0 com-
mute.

Since the order in which routing operators are applied does not matter, we
define a routing vector as a map from V0 to Z. We define routingr as the
operator obtained by composing all elements of the family

{(routing+u )
r(u)}u∈V0

in any order, where the exponent r(u) stands for composition of the operator
or its inverse with itself, depending on the sign of r(u). We shall use the term
routing when we apply any operator routingr as well.

We end this subsection by pointing out that the kind of routing defined here,
which we call move and turn routing, is used in [4] and [8], and is more adapted to
study the arrival problem. Another kind of routing, the turn and move routing,
used for instance in [12,10], is more widely used in the literature and is more
adapted to study the link between the sandpile group and rotor configurations.
However, it is easy to see that these two definitions of routing are conjugate
by θ, and all results obtained for one of them can be translated into the other
context.

2.5 Legal Routing and arrival

Applying routing+u to (ρ, σ) ∈ R×Σ is said to be a legal routing if σ(u) > 0.
A sequence of legal routings

(ρ0, σ0)
u0−→ (ρ1, σ1)

u1−→ · · · uk−1−−−→ (ρk, σk),

where
u−→ denotes a legal routing at vertex u ∈ V0, is maximal if for all u ∈ V0

we have σk(u) ≤ 0, i.e. no other legal routing can be applied.
The classic version of the commutativity result for rotor routing is the fol-

lowing:

Proposition 1 ([12]). For all (ρ, σ) ∈ R × Σ with σ ≥ 0, there is a unique
(ρ′, σ′) with σ′(u) = 0 for all u ∈ V0, such that all maximal legal routings from
(ρ, σ) end in (ρ′, σ′). Furthermore, all legal routings can be continued in such a
maximal legal routing.
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The previous result states that we can always route legally all particles to
the sinks, in any order by choosing every time a vertex where the routing is
legal, and we will always reach the same final configuration. Moreover, it can
be shown that the routing vectors corresponding to all maximum legal routings
are the same. For such a maximal legal routing, we shall say that (ρ, σ) is fully
routed to sinks, and write

(ρ′, σ′) = routing∞L (ρ, σ),

where the L stands for legal.

The original arrival problem consists in the following decision problem: if
(ρ, σ) ∈ R × Σ with σ ≥ 0 and deg(σ) = 1, if (ρ′, σ′) = routing∞L (ρ, σ), for a
given sink s ∈ S0, does σ′(s) = 1 ?

This problem is known to be in NP and co-NP, but the best algorithm known

to this date (see [9]) has complexity 2O(
√

|V |)) in the case of a simple graph.
We shall now generalize this problem to any number of positive and negative
particles, and remove the legality assumption.

2.6 Equivalence classes of Rotors

Definition 4. Two rotor-particle configurations (ρ, σ) and (ρ′, σ′) are said to
be equivalent, which we denote by (ρ, σ) ∼ (ρ′, σ′), if there is a routing vector r
such that

routingr(ρ, σ) = (ρ′, σ′).

It is easy to see that this defines an equivalence relation on R×Σ.

Definition 5. Two rotor configurations ρ, ρ′ are said to be equivalent, which we
denote by ρ ∼ ρ′, if there is σ ∈ Σ such that

(ρ, σ) ∼ (ρ′, σ).

In this case, the relation is true for any σ ∈ Σ, and it defines an equivalence
relation on R.

Cycle Pushes. Suppose that ρ ∈ R and let C be a directed circuit in G(ρ). The
positive cycle push of C in ρ transforms ρ into θC ◦ ρ; see Figure 3. Similarly,
if C is a directed circuit in G(θ−1 ◦ ρ), the negative cycle push transforms
ρ into θ−C ◦ ρ. A sequence of cycle pushes is a finite or infinite sequence of
rotor configurations (ρi) such that each ρi+1 is obtained from ρi by a positive
or negative cycle push.

Note that if C is a directed circuit in G(ρ), for any σ ∈ Σ, we can obtain
(θC ◦ρ, σ) by applying routingrC to (ρ, σ), and if C is a circuit in G(θ−1◦ρ), then
(θ−1

C ◦ ρ, σ) is equal to routing−rC (ρ, σ), where in both cases rC is the routing
vector consisting in routing once every vertex of C. In other words, a cycle push
is a shortcut in the routing of a particle on the circuit.
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u0

u1

u2

u0

u1

u2

Fig. 3: On the left figure, the initial rotor configuration ρ is given by full arcs
while other arcs are dashed. Applying a positive cycle push on the circuit of
G(ρ), formed by the vertices u0, u1 and u2, results in the configuration shown in
the right figure. Note that, in this example, there exists a unique rotor order.

Theorem 1. Given two rotor configurations ρ and ρ′, ρ ∼ ρ′ if and only if ρ′

can be obtained from ρ by a sequence of cycle pushes.

Proof. Suppose that ρ′ can be obtained from ρ by a sequence of cycle pushes.
Since cycle push operations can as well be obtained by routing operators, we
have that for any σ ∈ Σ, (ρ, σ) ∼ (ρ′, σ), and consequently ρ ∼ ρ′.

Conversely, assume that, for a given σ ∈ Σ, there is a routing vector r from
(ρ, σ) to (ρ′, σ). We show that ρ′ can be obtained by cycle pushes from ρ, by
induction on the L1-norm of r, i.e. |r|1 =

∑

u∈V0
|r(u)|.

If |r|1 = 0, then ρ = ρ′. Otherwise, consider the partition of V in sets P ,
N , and Z corresponding to vertices u such that r(u) is positive, negative and
null respectively. Assuming P is nonempty (we can interchange the roles of P
and N if needed), we observe that the degree of σ on P , i.e.

∑

u∈P σ(u), cannot
increase through positive routing on P . Similarly, negative routing on N cannot
increase the degree of σ on P . However, after performing all the routings in r,
we end up with the same particle configuration σ, which implies the degree on
P remains unchanged. Consequently, all positive move operations within P have
exclusively been performed on arcs with head in P .

In particular, ρ(P ) contains a directed circuit C. By applying a cycle push
on circuit C, we obtain (θC ◦ ρ, σ). Since a routing vector from (θC ◦ ρ, σ) to
(ρ′, σ′) is r − rC , with |r − rC |1 < |r|1, we can apply induction to continue the
sequence of cycle pushes. ⊓⊔

Whenever rotor configurations are equivalent, they eventually route parti-
cles identically since positive and negative cycle push correspond to adding or
removing closed circuits in trajectories. In particular, it is easy to see that it is
always possible to route any (ρ, σ) to a (ρ′, σ′) such that σ′(u) = 0 for all u ∈ V0.
Let us denote by routing∞(ρ, σ) the nonempty set of these configurations.

Theorem 2. Let (ρ1, σ1) ∈ routing∞(ρ, σ). Then (ρ2, σ2) ∈ routing∞(ρ, σ) if
and only if ρ1 ∼ ρ2 and σ1 = σ2.

Proof. First, if ρ1 ∼ ρ2 and σ1 = σ2, by definition

(ρ, σ) ∼ (ρ1, σ1) ∼ (ρ2, σ1) = (ρ2, σ2),
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and σ2(u) = 0 for all u ∈ V0, so that (ρ2, σ2) ∈ routing∞(ρ, σ).
Conversely, suppose first that |S0| = 1. Since deg(σ1) = deg(σ2), one has

σ1 = σ2, and by consequence ρ1 ∼ ρ2.
If |S0| > 1, consider the rotor graph G′ obtained from G by merging all

sinks into a unique sink s. Let r be a routing vector from (ρ1, σ1) to (ρ2, σ2) in
G. The same routing vector will also lead from (ρ1, σ

′
1) to (ρ2, σ

′
2) in G′, where

σ′
1(u) = 0 for all u ∈ V0 and σ′

1(s) =
∑

s′∈S0
σ1(s

′) (and σ′
2 defined accordingly).

We deduce from the case |S0| = 1 that σ′
1 = σ′

2, and, by Theorem 1, that r
corresponds to a sequence of cycle pushes in G′ and hence also in G. Since cycle
push operations do not modify particle configurations, we have σ1 = σ2.

Corollary 1. If σ ≥ 0, then if (ρ′, σ′) = routing∞L (ρ, σ) and (ρ1, σ1) ∈ routing∞(ρ, σ),
we have σ1 = σ′ and ρ′ ∼ ρ1.

The generalized arrival problem is: given any (σ, ρ), compute σ1 for any
(ρ1, σ1) ∈ routing∞(ρ, σ).

Corollary 1 shows that this problem contains the original arrival problem.
On the other hand, the decision version of generalized arrival belongs to NP
and co-NP, a certificate being a routing vector r; one may compute efficiently
the configuration routingr(ρ, σ) and check that we obtain 0 particles on V0.

Acyclic configurations We say that ρ ∈ R is acyclic if G(ρ) contains no
directed cycles. It amounts to saying that the set of arcs ρ(V0) forms in G a
directed forest, rooted in the sinks of G.

Proposition 2 ([10]). Each equivalence class of rotor configurations contains
exactly one acyclic configuration.

We can deduce from this result that the number of equivalence classes of
rotor configurations is the number of rooted forests in G. By Kirchoff’s Matrix-
Tree Theorem [13], this is exactly the determinant of the Laplacian matrix of G
where we remove lines and columns corresponding to sinks; it also follows that
this is the cardinal of the Sandpile Group of G (see [12] and 2.8).

2.7 Equivalence classes of particles

Definition 6. Two particle configurations σ, σ′ are said to be equivalent, which
we denote by σ ∼ σ′, if there is ρ ∈ R such that

(ρ, σ) ∼ (ρ, σ′).

In this case, the relation is true for any ρ ∈ R, and it defines an equivalence
relation on Σ.

Define the Laplacian operator∆ as the linear operator from Z
V0 to Σ, defined

for u ∈ V0 by

∆(u) =
∑

a∈A+(u)

(head(a)− tail(a))
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The vector ∆(u), when added to a particle configuration σ, corresponds to trans-
ferring a total of deg+(u) particles from u to every outneighbour of u. The
transformation from σ to σ +∆(u) is called firing σ at u. This firing is legal if
σ(u) ≥ deg+(u).

A firing vector is simply an element of r ∈ Z
V0 , and we can fire simultane-

ously vertices according to this vector by

σ +∆(r) = σ +
∑

u∈V0

r(u)∆(u).

Proposition 3. For any two particle configurations σ, σ′ we have σ ∼ σ′ if and
only if there exists a firing vector r with

σ′ = σ +∆(r).

Proof. Let r be a routing vector from (ρ, σ) to (ρ, σ′). It follows that for all
u ∈ V0 we have θr(u)(ρ(u)) = ρ(u), so that r(u) must be a multiple of deg+(u)
and we can write r(u) = r′(u) · deg+(u) with r′(u) ∈ Z. From this follows that

σ = σ +∆(r′).

Conversely, firing σ at u corresponds to deg+(u) routings at u, which leaves the
rotor configuration unchanged. ⊓⊔

By analogy with maximal legal routings, define a maximal legal firing as a
sequence of legal firings from σ to another particle configuration σ′ such that
finally σ′ is stable, meaning that σ′(u) < deg+(u) for all u ∈ V0, i.e. no more
legal firing are possible.

Proposition 4 ([2]). If G is stopping, for all particle configurations σ there is
a unique configuration σ′ such that every maximal sequence of legal firings leads
to σ′, and every sequence of legal firings can be continued in such a maximal
sequence (in particular, all legal sequences are finite).

This stable configuration σ′ is the stabilization of σ and denoted σ◦.

2.8 Sandpile Group

We point out that the equivalence relation on particles defined in the previous
section is not equivalent to the construction of the so-called Sandpile Group. In
the case of a stopping rotor graph, the Sandpile Group is obtained from parti-
cle configurations equivalence classes by furthermore identifying configurations
which have the same value on V0. More precisely, define a relation ∼S by

σ ∼S σ
′ ⇔ ∃σ1, σ ∼ σ1 and ∀u ∈ V0, σ

′(u) = σ1(u).

It is equivalent to requiring the existence of a firing vector r such that

∀u ∈ V0, σ
′(u) = (σ +∆(r))(u).
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Proposition 5 ([12]).

– The quotient of Σ by ∼S has an additive structure inherited from Σ, and it
is a finite abelian group called the Sandpile Group and denoted by SP (G);

– the order of SP (G) is equal to the number of acyclic rotor configurations in
G.

3 Main Results for Path Multigraphs

In this part, we summarize our results, and the rest of the paper will introduce
the tools used to prove them. From now on, we consider only graphs of the family
P x,y
n , and the letter G denotes such a graph.

3.1 The case x = y = 1

First, let us recall the results obtained about Path Graphs P 1,1
n in [1] in order

to understand how they compare to the case P x,y
n when 0 < x < y are coprime.

Technically, these results were stated only for nonnegative particle configurations
but they still hold in the general case.

In the case x = y = 1, define for any particle configuration σ

h(σ) =
n+1
∑

i=0

i · σ(ui)

and for any rotor configuration ρ, define g(ρ) as

g(ρ) = |i : head(ρ(ui)) = ui−1|,

i.e. g(ρ) is the number of arcs in G(ρ) pointing to the left.
The next result completely solves generalized arrival in P 1,1

n for any
number of particles and antiparticles.

Theorem 3. In the case x = y = 1, for all (ρ, σ) ∈ R × Σ, the number of
particles on sink un+1 in any configuration of routing∞(ρ, σ) is equal to the
unique m ∈ Z such that

0 ≤ g(ρ)− h(σ) +m(n+ 1) ≤ n,

i.e.

m = ⌈h(σ)− g(ρ)

n+ 1
⌉.

Together with this result, we can describe the structure of the Sandpile Group
of P 1,1

n and its action on rotor configurations. Define h̄ and ḡ as h and g modulo
n+ 1.

Theorem 4. (i) The Sandpile Group SP (P 1,1
n ) is cyclic of order n+ 1;
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(ii) the map h̄ : Σ → Z/(n+1)Z quotients by ∼S into an isomorphism between
SP (P 1,1

n ) and Z/(n+ 1)Z;
(iii) the map ḡ : R → Z/(n + 1)Z quotients into a bijection between rotor

equivalence classes and Z/(n+ 1)Z;
(iv) the action of the sandpile group on rotor equivalence classes can be under-

stood in the following way: let (ρ, σ) be a rotor-particle configuration and
(ρ′, σ′) ∈ routing∞(ρ, σ). Then ρ′ is in class

ḡ(ρ′) = ḡ(ρ)− h̄(σ).

As an example, consider the case P 1,1
3 , which is depicted on Fig. 4, with the

particle configuration σ equal to (−8, 5, 10,−5, 12) from left to right and ρ as
depicted. We see that ρ has 2 arcs going left so that g(ρ) = 2, while we have

h(σ) = −8 · 0 + 5 · 1 + 10 · 2− 5 · 3 + 12 · 4 = 58.

From Thm. 3, we deduce the final configuration σ′ of the full routing of (ρ, σ)
countsm = 14 particles ending on the right sink u4 and −8+5+10−5+12−14 =
0 particles on u0.

From Thm. 4, we deduce that any final rotor configuration ρ′ in the routing
will be such that ḡ(ρ′) = 2− 58 = 0 mod 4, so that all its arcs will point right,
hence ρ′ is the acyclic configuration of this class.

−8 5 10 −5 12

Fig. 4: Rotor routing a particle configuration in P 1,1
3 . The particle configuration

is written in squares in vertices and the initial rotor configuration is given by
full arcs while other arcs are dashed. Note that there is a unique rotor order in
this graph.

3.2 Case 0 < x < y coprime

We now state our results in the case this paper is concerned about. Compare
this with Theorem 3. In both theorems, we use

F =

n
∑

i=0

xn−iyi.

Theorem 5. Suppose that 0 < x < y are coprime and consider the rotor multi-
graph P x,y

n .

(i) There exists a linear function

h : Σ → Z
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and a function
g : R → Z

such that, for all (ρ, σ) ∈ R × Σ, the number of particles on sink un+1 in
any configuration of routing∞(ρ, σ) is equal to m if and only if

g(ρ)− h(σ) +mF ∈ g(R);

(ii) the set g(R) is a finite set of nonnegative integers, and membership in g(R)
can be tested in linear time; moreover the unique integer m satisfying the
previous condition can be found in time O(n log x), and it satisfies

m− ⌈h(σ)− g(ρ)

F
⌉ ∈ J0, x− 1K.

(iii) More generally, if (ρ, σ) and (ρ′, σ′) are rotor-particle configurations, then
(ρ, σ) ∼ (ρ′, σ′) if and only if

g(ρ)− h(σ) = g(ρ′)− h(σ′) and deg(σ) = deg(σ′).

Note that, in the case x = 1, we have

m = ⌈h(σ)− g(ρ)

F
⌉

as in the case x = y = 1 and no further algorithm is needed.
This is now the version of Theorem 4 in our present case. We define h̄ and ḡ

as equal respectively to h and g modulo F .

Theorem 6. Suppose that 0 < x < y are coprime and consider the rotor multi-
graph P x,y

n .

(i) The Sandpile Group of P x,y
n is cyclic of order F ;

(ii) The map h̄ : Σ → Z/FZ quotients by ∼S into an isomorphism between
SP (P x,y

n ) and Z/FZ;
(iii) The map ḡ quotients by ∼ into a bijection between rotor equivalence classes

and Z/FZ;
(iv) The action of the sandpile group on rotor equivalence classes can be under-

stood in the following way: let (ρ, σ) be a rotor-particle configuration and
(ρ′, σ′) ∈ routing∞(ρ, σ). Then ρ′ is in class

ḡ(ρ′) = ḡ(ρ)− h̄(σ).

As an example, we consider the Path Multigraph P 2,3
3 . The graph is de-

picted on Fig. 5, together with harmonic values (values of h, inside vertices) and
arcmonic values (values of g, on arcs).

Consider for instance the particle configuration σ = (−8, 5, 13,−5, 12) from
left to right such that

h(σ) = −8× 0 + 5× 8 + 13× 20− 5× 38 + 12× 65 = 890,
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and the rotor configuration ρ = (a11, a
2
1, a

3
1) such that g(ρ) = 12 + 18 + 27 = 57.

We have F = 65, and g(R) = {0, 8, 12, 16, 18, 20, 24, 26, 27, 28, 30, 32, 34, 35, 36,
38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64,
66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 78, 79, 80, 82, 84, 86, 87, 88, 90, 94, 96, 98, 102, 106,
114}.

The only value v in g(R) equal to g(ρ) − h(σ) = −833 mod 65 is 12 =
−833+13∗65. Since deg(σ) = 17, in the end of the routing there are 13 particles
on sink u4 and 4 particles on sink u0. The final rotor configuration ρ′ satisfies

ḡ(ρ′) = ḡ(ρ)− h̄(σ) = −833 mod 65 = 12 mod 65

so g(ρ′) = 12 by looking in g(R).

0 8 20 38 6524

16

8

0

12

36

24

12

0

18

54

36

18

0

27

Fig. 5: Harmonic and arcmonic values on P 2,3
3 . The values of h and g are given

respectively in vertices and on arcs.

4 Harmonic and Arcmonic Functions in the Path

In the rest of the paper, we fix n > 0 and coprime integers x, y such that
0 < x < y, and consider the Path Multigraph P x,y

n as defined in Subsection 2.1.
First, let us define the linear function h : Σ → Z, which will serve as an in-

variant for the firing operation and enable the characterization of particle equiv-
alence classes. Initially, we define h on vertices and then extend it by linearity
to Σ.

Lemma 2. The linear function h : Σ → Z defined by h(u0) = 0 and

h(uk) =

k−1
∑

i=0

xn−iyi

for k ∈ J1, n+ 1K is harmonic on G, i.e. for any u ∈ V0 we have

h(∆(u)) = 0.
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Proof. For k ∈ J1, nK:

y(h(uk)− h(uk−1)) = y(xn−k+1yk−1) = xn−k+1yk

and

x(h(uk+1)− h(uk)) = x(xn−kyk) = xn−k+1yk.

Hence,

y(h(uk)− h(uk−1)) = x(h(uk+1)− h(uk))

⇔ (x+ y)h(uk)− yh(uk−1)− xh(uk+1) = 0

⇔ h(∆(uk)) = 0.

⊓⊔

Corollary 2. For any particle configurations σ, σ′, if σ ∼ σ′ then h(σ) = h(σ′).

It turns out that h(uk) is the number of acyclic configurations in P x,y
n that

contain a directed path from uk to un+1. In particular, h(un+1) is the number of
rooted forests, which is also the number of particle equivalence classes and rotor
equivalence classes [12].

In the rest of the document, we denote by F this value, i.e.

F =

n
∑

i=0

xn−iyi.

We now define a similar function for rotor configurations, designed to be
invariant on equivalence classes of rotors configurations. We introduce the term
arcmonic for these functions that correspond to harmonic functions but on arcs.

Proposition 6. The linear function g : ZA → Z, defined by

g(akj ) =

j−1
∑

i=0

(h(head(aki ))− h(uk))

for all k ∈ J1, nK and j ∈ J0, x + y − 1K (in particular, g(ak0) = 0) is arcmonic,
i.e. it satisfies for all directed circuits C in G(ρ), g(C) = g(θ(C)), where C is
identified with the sum of arcs

∑

a∈C a.

Proof. If j ∈ J0, x+ y − 2K then

g(θ(akj ))− g(akj ) = g(akj+1)− g(akj )

=

j
∑

i=0

(h(head(aki ))− h(uk))−
j−1
∑

i=0

(h(head(aki ))− h(uk))

= h(head(akj ))− h(uk)
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If j = x+y−1, then we use the fact that h is harmonic so that
∑j

i=0(h(head(aki ))−
h(uk)) = 0,

g(θ(akj ))− g(akj ) = g(ak0)− g(akj )

=

j
∑

i=0

(h(head(aki ))− h(uk))−
j−1
∑

i=0

(h(head(aki ))− h(uk))

= h(head(akj ))− h(uk).

Then, for any directed circuit C:

g(θ(C)) − g(C) =
∑

a∈C

(h(head(a)) − h(tail(a)))

= 0.

⊓⊔

By identifying a rotor configuration ρ with the formal sum of its arcs, we can
define

g(ρ) =
∑

u∈V0

g(ρ(v)).

Corollary 3. If ρ, ρ′ are rotor configurations such that ρ ∼ ρ′, then g(ρ) =
g(ρ′).

The exact values of g are given by:

Proposition 7. For j ∈ J0, x+ y − 1K and k ∈ J1, nK,

g(akj ) =

{

jdk if j ∈ J0, xK

(x+ y − j)dk−1 if j ∈ Jx+ 1, x+ y − 1K

where, for every k ≥ 0, dk = xn−kyk.

Remark that, for every k ∈ J0, nK:

dk = h(uk+1)− h(uk).

See Fig. 5 for an example of harmonic and arcmonic values on P 2,3
3 . In this

example, d0 = 8, d1 = 12, d2 = 18, d3 = 27, and d4 = 81
2 .

Proposition 8. If (ρ, σ) and (ρ′, σ′) are rotor-particle configurations, then if
(ρ, σ) ∼ (ρ′, σ′) we have

g(ρ)− h(σ) = g(ρ′)− h(σ′).
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Proof. Without loss of generality, assume that (ρ′, σ′) = routing+u (ρ, σ) for some
u ∈ V0. Recall that, by definition of routing operators, σ′ = σ + head(ρ(u))− u,
hence by the linearity of h we obtain:

h(σ′)− h(σ) = h(head(ρ(u)))− h(u).

We use the fact that g(ρ′)− g(ρ) = (h(head(ρ(u)))− h(u)) (see the proof of
Prop. 6). This yields:

g(ρ′)− h(σ′)− (g(ρ)− h(σ)) = (g(ρ′)− g(ρ)) + (h(σ) − h(σ′))

= (h(head(ρ(u)))− h(u)) + (h(σ)− h(σ′))

= 0.

⊓⊔

4.1 Stable decomposition of arcmonic values

In the light of Prop. 8, it becomes important to characterize which integers are
of the form g(ρ) for some ρ ∈ R. If ρ ∈ R, by Proposition 7, g(ρ) can be
decomposed as a sum

g(ρ) =

n
∑

k=0

ckdk,

with ck ∈ J0, x+ y − 1K for all k ∈ J1, nK; recall that dk = xn−kyk.
This decomposition is not unique since all equivalent rotor configurations

share the same value. We shall show that to each equivalence class we can assign
a special form of decomposition, named stable decomposition thereafter.

Theorem 7. Every integer v ≥ 0 has unique decomposition of the form

v =

n
∑

k=0

ckdk + cn+1dn+1

with ck ∈ J0, y − 1K for k ∈ J0, nK and cn+1 ∈ xZ.

Note that dn+1 = yn+1

x
. A special case is the case x = 1 where if v < yn+1,

the stable decomposition of v coincides with the decomposition of v in base y
up to the n-th element.

Proof. We establish the uniqueness of this stable decomposition. The existence
relies on the lemmas presented subsequently.

Suppose that v admits two stable decompositions c1 = (c10, . . . , c
1
n+1) and

c2 = (c20, . . . , c
2
n+1). Recall that, for i ∈ {1, 2}, cin+1 ∈ xZ. Then:

n
∑

k=0

c1kdk + c1n+1dn+1 =

n
∑

k=0

c2kdk + c2n+1dn+1 mod y
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which amounts to
c10d0 = c20d0 mod y.

Since d0 = xn and y are coprime, and 0 ≤ c10, c
2
0 ≤ y − 1, we obtain c10 = c20.

Now, consider v′ =
v−c10x

n

y
, then, for i ∈ {1, 2},

v′ =
n−1
∑

k=0

cik+1x
n−1−kyk + cin+1

yn

x

and one can apply the same reasoning iteratively on v′ to show that c11 = c21,
c12 = c22, etc. And finally that c1 = c2. ⊓⊔

To prove the existence of the stable decomposition, we rely on another device
named Engel Machine [5].

The Engel Machine Ex,y
n is the Multigraph defined on the set {u0, u1, · · · ,

un}∪{un+1, s}, where every vertex ui for i ∈ J0, nK has x arcs going to ui+1 and
y − x arcs going to s. Since we assumed y > x, then y − x > 0. Vertices s and
un+1 are sinks. We say that a particle configuration σ in Ex,y

n is nonnegative
if σ(ui) ≥ 0 for i ∈ J0, nK (whereas sinks may have a negative value). See Fig. 6
for an example.

u0 u1 u2 ... un un+1

s

y − x arcs

x arcs

y − x arcs

Fig. 6: The Engel Machine E2,3
n .

We define a function hE on the vertices of this graph that will turn out to
be harmonic on Ex,y

n . This function is defined by

hE(s) = 0 and hE(uk) = dk for k in J0, n+ 1K

and extend it to particle configurations by linearity.
We shall be mainly concerned with the hE value of particle configurations in

the Engel Machine. In order to keep notation simple, and since hE(s) = 0, the
value of configurations on s never matters and we identify particle configurations
in c ∈ Σ(Ex,y

n ) with words c ∈ Z
n+2. In particular, for any v ≥ 0, the notation

c[v] denotes the word corresponding to the stable decomposition of v, as well as
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a (stable) particle configuration (we can suppose that its value on s is always 0).
Note that hE(c[v]) = v by construction. Conversely, remark that any nonnegative
stable configuration c with hE(c) = v gives the unique stable decomposition of
v.

Lemma 3. The function hE is harmonic on Ex,y
n .

Proof. Consider the particle configuration c′ obtained from c by firing vertex uk,
k ∈ J0, nK. Then:

hE(c
′)− hE(c) = −ydk + xdk+1 = 0.

⊓⊔
In order to compute a stable decomposition for v, one simply has to find any

configuration c with hE(c) = v and then stabilize c. The proof of the next lemma
provides a method for computing such a configuration c. Together with Lemma
3, this completes the proof of Theorem 7.

Lemma 4. For any v ≥ 0, there exists a nonnegative configuration c in Ex,y
n

with hE(c) = v.

Proof. Since xn+1 and yn+1 are coprime, by Bezout’s theorem there are integers
α, β such that

αxn+1 + βyn+1 = 1

and we can choose α ≥ 0. It follows that

(αxv)xn+1 + (βxv)yn+1 = xv

and
(αxv)d0 + (βxv)dn+1 = v.

⊓⊔

4.2 Recognizing decompositions of arcmonic values

In this subsection, we characterize stable decompositions corresponding to an
arcmonic value.

Theorem 8. For any v ∈ Z, we have v ∈ g(R) if and only if the regular expres-
sion

ed = J0, y − 1K∗ · 0 · J1, xK∗ · 0
matches c[v].

The proof is split in several lemmas. We define the regular expressions

ea = J1, yK∗ · 0 · J0, x− 1K∗ · 0,
and

ed = J0, y − 1K∗ · 0 · J1, xK∗ · 0.
Let La and Ld be the languages described by ea and ed respectively, and let Ln

a

and Ln
d be the subsets of words of length n+ 2.
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Lemma 5. There is a bijective function ψ between the set of acyclic rotor con-
figurations of P x,y

n , and Ln
a , such that for any acyclic rotor configuration ρ, we

have
g(ρ) = hE(ψ(ρ)).

Proof. Let ρ be an acyclic configuration of P x,y
n . For such a configuration, there

is some k ∈ J1, nK such that

– for i < k, ρ(ui) = aij with j ∈ Jx, x + y − 1K and g(aij) = ci−1di−1 with
ci−1 ∈ J1, yK,

– for i ≥ k, ρ(ui) = aij with j ∈ J0, x− 1K and g(aij) = cidi with ci ∈ J0, x− 1K.

If we define ck−1 = 0 and cn+1 = 0, the configuration c = (c0, c1, . . . , cn, cn+1)
satisfies hE(c) = g(ρ) and is matched by ea; we define ψ(ρ) = c.

Conversely, for any configuration c matched by ea it is easy to see that there
is a unique acyclic configuration ρ with ψ(ρ) = c; if k − 1 is the position of first
0 of c, we can construct ρ as above. ⊓⊔
Lemma 6. If c ∈ La, let φ(c) be the stable decomposition of c. Then φ defines
a bijective map between Ln

a and Ln
d that preserves hE.

Proof. By definition, if c ∈ Ln
a , then φ(c) = c◦ is the stabilization of c. By

Lemma 3, hE is harmonic, hence hE(c) = hE(φ(c)).
We introduce a sequential transducer T , depicted on Fig. 7, which computes

the stabilization of certain configurations. The notation Ja, bK|Ja+ k, b+ kK rep-
resents the substitution of any integer i in Ja, bK by the integer i + k. This
transducer takes as input any word in J0, yK∗ and produces a word in J0, y− 1K∗

with the same length. In particular, when given a nonnegative configuration c of
Ex,y

n , satisfying c(u) ≤ y for all u ∈ V0 and c(un+1) = 0, the transducer outputs
stabilized configuration φ(c) (recall that we do not record what happens on sink
s), stabilizing c from vertex u0 to un in ascending order. Hence it computes φ
for configurations in J0, yK∗ · 0.

a b

J0, y − 1K|J0, y − 1K
y|0

Jy − x, yK|J0, xK

J0, y − x− 1K|Jx, y − 1K

Fig. 7: Transducer that computes φ(c), the stabilization of a particle configu-
ration c, for any c ∈ J0, yK∗ · 0. Notation Ja, bK|Ja + k, b + kK stands for the
substitution of any integer i in Ja, bK by i+ k.

Consider now the automaton Aa depicted on Fig. 8, which recognizes the
language La.
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A B C

J1, yK

0

J0, x− 1K

0

Fig. 8: Automaton Aa recognizing La

From T and Aa, we build the transducer T (Aa) depicted on Fig. 9 which
is the product of T and A. Given a configuration c in J0, yK∗ · Z, the product
transducer accepts it if and only if c ∈ La, and in such case outputs φ(c).

Aa Ba Ca

Ab

J1, y − 1K|J1, y − 1K

0|0

y|0

Jy − x, yK|J0, xK

J1, y − x− 1K|Jx+ 1, y − 1K
0|x

J0, x− 1K|J0, x− 1K

0|0

Fig. 9: The product T (Aa) of transducer T and automaton Aa

From T (Aa), if we look at the output of every transition as an input, we get
an automaton which recognizes exactly φ(La). This automaton is depicted on
Fig. 10, and its determinization on Fig. 11

It is now easy to check that the automaton for φ(La) depicted on Fig. 11
recognizes exactly Ld, since this automaton is minimal. Moreover, as φ preserves
the length of words, we deduce that φ(Ln

a ) = Ln
d . Additionally both languages

Ln
a and Ln

d have the same size, namely F . It follows that φ is a bijective map
between Ln

a and Ln
d . ⊓⊔

Proof (of Theorem 8).

The value v belongs to g(R) if and only if there is an acyclic configuration
ρ such that v = hE(ψ(ρ)) = hE(φ(ψ(ρ))) = hE(c[v]) , (Lemma 5), hence if and
only if c[v] ∈ Ln

d (Lemma 6). ⊓⊔
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Aa Ba Ca

Ab

J1, y − 1K

0

0

J0, xK

Jx+ 1, y − 1K
x

J0, x− 1K

0

Fig. 10: The nondeterministic automaton obtained for φ(La)

Aa Ab,Ba Ab,Ba,Ca

J1, y − 1K

0

J1, xK

0

Jx+ 1, y − 1K J1, xK

Jx+ 1, y − 1K

0

Fig. 11: Determinization of the automaton from Fig. 10. This automaton is min-
imal.
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The uniqueness of the stable decomposition together with the previous result
implies:

Proposition 9. For ρ, ρ′ ∈ R, we have ρ ∼ ρ′ if and only if g(ρ) = g(ρ′).

Proof. The forward direction was proved as Corollary 3.
Conversely, by the same corollary we can suppose that ρ and ρ′ are acyclic

and satisfy g(ρ) = g(ρ′). It follows by Lemma 5 that g(ρ) = hE(ψ(ρ)) and
g(ρ′) = hE(ψ(ρ

′)); then

hE(φ(ψ(ρ))) = hE(φ(ψ(ρ
′))).

By uniqueness of the stable decomposition, it follows that φ(ψ(ρ)) = φ(ψ(ρ′)),
and since φ and ψ are bijective, that ρ = ρ′. ⊓⊔

Lemma 7. For any value v ≥ 0, the value of c[v + kF ](un+1) is nondecreasing
with k.

Proof. Let c1, c2 be two nonnegative configurations in Ex,y
n , define c = (c1+c2)

◦.
Then by considering the stabilization mechanism, we have

c(un+1) ≥ c1(un+1) + c2(un+1)

from which the result follows. ⊓⊔

Lemma 8. Let v be an integer. Then:

(i) If c[v](un+1) < 0, then v − F /∈ g(R).
(ii) If c[v](un+1) ≥ 0, then v + F /∈ g(R).

Proof. Notice that c[F ] = (1, 1, . . . , 1, 0).
(i): if v is such that c[v](un+1) < 0, then by Lemma 7 c[v − F ](un+1) < 0.

Hence it is not matched by the regular expression ed of Theorem 8.
(ii): by the same argument, if c[v](un+1) > 0, then c[v + F ](un+1) > 0 and

v + F /∈ g(R).
Consider now v such that c[v](un+1) = 0. Then c[v] corresponds to a word

of length n + 2 in the language L = J0, y − 1K∗ · 0. Let us consider c1 such
that c1(ui) = c(ui) + 1 for all i ∈ J0, nK and c1(un+1) = 0, so that hE(c1) =
hE(c[v + F ]). Now, we aim to demonstrate that the regular expression ed in
Theorem 8 does not match the stable decomposition of v + F computed from
c1. We do this by relying on the construction of an automaton that recognizes
the set of possible stable decompositions of c1 for all possible c.

Recall the notation:

ed = J0, y − 1K∗ · 0 · J1, xK∗ · 0,

Ld is the language described by ed, and Ln
d is the subset of words of length n+2.

Moreover φ(c) is the stable decomposition of c for any c ∈ J0, yK∗ · 0, while φ is
computed by the transducer T described in Figure 7.
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A B

J1, yK

0

Fig. 12: Automaton A1 recognizing L1.

The set of possible configurations c1 when c varies in the set of stable con-
figurations with c(un+1) = 0, is exactly described by the regular expression
J1, yK∗ ·0, corresponding to a language L1, which is recognized by the automaton
A1 depicted on Fig. 12.

Following the steps of the proof of Lemma 6, and since words in L1 are also
matched by J0, yK∗ ·0, we construct the product transducer T (A1) which outputs
φ(c) if and only if c ∈ L1. See Fig. 13.

Aa Ba

Ab

J1, y − 1K|J1, y − 1K

0|0

y|0

Jy − x, yK|J0, xK

J1, y − x− 1K|Jx + 1, y − 1K
0|x

Fig. 13: The product T (A1) of transducer T and automaton A1.

Finally, the following non-deterministic automaton Aφ
1 recognizes φ(L1) as

shown on Fig. 14.

It suffices to show that this automaton does not recognize any word in Ld

or, equivalently, that φ(L1) ∩ Ld = ∅. To that end, we introduce the automaton
Ad that recognizes Ld on Fig. 15.

By taking the product of automatas Ad and Aφ
1 , we obtain an automaton

that recognizes φ(L1)∩Ld, as shown on Fig. 16. This automaton does not contain
any accepting state which proves that φ(L1) ∩ Ld = ∅.

⊓⊔
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Aa Ba

Ab

J1, y − 1K

0

0

J0, xK

Jx+ 1, y − 1K
x

Fig. 14: The non-deterministic Aφ
1 automaton that recognizes φ(L1).

α β γ

J1, y − 1K
0

J1, xK
0

Jx+ 1, y − 1K J1, xK

Jx+ 1, y − 1K

0

Fig. 15: Automaton Ad that recognizes Ld.
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Aa, α

Ba, β

Ab, β Ab, γ

J1, y − 1K

0

0

J1, xK

Jx+ 1, y − 1K

x

0

0

Jx+ 1, y − 1K

x

J1, xK

Fig. 16: The product of automata Ad and Aφ
1 that recognizes φ(L1)∩Ld; it does

not contain any final state.

The next Lemma is key to proving our main results and helps in improving
the complexity of our algorithm.

Lemma 9. For every 0 ≤ v ≤ F −1, there is a unique k ∈ N such that v+kF ∈
g(R), which is the smallest integer k with c[v + kF ](un+1) ≥ 0.

Proof. The uniqueness is a consequence of Lemma 8 and the monotony of c[v+
kF ](un+1) with k. As stated in Proposition 9, the function g uniquely identifies
rotor classes. Hence, the existence of k such that v + kF ∈ g(R) follows from
the observation that the number of rotor classes is precisely F . In other words,
the function g mod F establishes a bijective correspondence between the set of
rotor classes and Z/FZ. ⊓⊔

As an example, consider P 2,3
3 as depicted in Fig. 5, and value v = 1. Next

table shows the stable decomposition of v + kF , with F = 65, for k ∈ J0, 3K.
The unique value in g(R) is 66 whose stable decomposition is matched by the
regular expression of Theorem 8.

k stable decomposition of 1 + 65k

0 (2, 1, 0, 2,−2)
1 (0, 1, 0, 2, 0)
2 (1, 2, 1, 0, 2)
3 (2, 0, 1, 0, 4)

5 Proofs of Theorem 5 and 6

Proof of Theorem 5
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(i): If (ρ′, σ′) ∈ routing∞(ρ, σ), then by Proposition 8 we have

g(ρ)− h(σ) = g(ρ′)− h(σ′)

g(ρ)− h(σ) + h(σ′) = g(ρ′).

Since σ′ is zero, except on u0 and un+1 where the value of h is respectively 0
and F , we get

g(ρ)− h(σ) +mF ∈ g(R)

where m = σ′(un+1).

Conversely, suppose that there is another m1 such that

g(ρ)− h(σ) +m1F = g(ρ1).

for some ρ1. Then

m1F − g(ρ1) = mF − g(ρ′)

hence

g(ρ1) = g(ρ′) mod F.

By Lemma 9, it follows that g(ρ1) = g(ρ′) hence m1 = m.

(ii): Recall that

F =
n
∑

k=0

dk.

Since the maximal arcmonic value of an arc in A+(uk) is ydk−1 = xdk for
k ∈ J1, nK, we obtain that the maximal value in g(R) is

∑n
k=1 xdk which is

strictly lower than xF . Then:

0 ≤ g(ρ)− h(σ) +mF < xF

⇔h(σ)− g(ρ) ≤ mF < xF + h(σ)− g(ρ)

⇔⌈h(σ)− g(ρ)

F
⌉ ≤ m < x+ ⌈h(σ)− g(ρ)

F
⌉

⇔0 ≤ m− ⌈h(σ) − g(ρ)

F
⌉ ≤ x− 1

If we are given (ρ, σ) and m and want to decide if there are m particles on
sink un+1 when fully routing (ρ, σ), we can either check:

– if c[g(ρ)−h(σ)+mF ] is matched by the regular expression ed, which involves
first computing the stable decomposition;

– if c[g(ρ)− h(σ) +mF ](un+1) = 0 and c[g(ρ)− h(σ) + (m− 1)F )](un+1) < 0,
which involves computing two stable decompositions.



Generalized ARRIVAL Problem for Rotor Walks in Path Multigraphs 27

Assuming that elementary arithmetic operations are O(1), we can compute
g(ρ)− h(σ) +mF in time O(n), using Prop. 7 for g. Then, computing a stable
decomposition also has computational complexity O(n). We can successively
fire all vertices from u0 to un, which can be done by computing a quotient and
remainder modulo x+ y.

If we are given (ρ, σ) and we want to compute m, we can proceed by bissec-
tion, using Lemma 9 to find the minimalm for which c[g(ρ)−h(σ)+mF ](un+1) =
0. The overall complexity of this method is O(n log(x)) since m belongs to an
interval of length x.

(iii): The forward direction is Prop. 8.

Conversely, suppose that g(ρ) − h(σ) = g(ρ′) − h(σ′). Let m and m′ be
the number of particles on sink un+1 when we fully route (ρ, σ) and (ρ′, σ′)
respectively to sinks; we denote respectively the final configurations of these
routings by (ρ1, σ1) and (ρ′1, σ

′
1). By Prop. 8,

g(ρ)− h(σ) = g(ρ′)− h(σ′) = g(ρ1)−mF = g(ρ′1)−m′F,

from which we deduce by Lemma 9 that ρ1 ∼ ρ′1 and m = m′, so that σ1 = σ′
1

(since deg(σ1) = deg(σ′
1)). All in all, we have that

(ρ, σ) ∼ (ρ1, σ1) ∼ (ρ′1, σ1) ∼ (ρ′, σ′).

Proof of Theorem 6

(i) and (ii): Suppose that h̄(σ̄1) = h̄(σ̄2). Up to adding particles to σ̄2 on
un+1 and on u0 we obtain σ2 such that h(σ̄1) = h(σ2) and deg(σ̄1) = deg(σ2)
respectively. We write σ1 = σ̄1.

Consider now any ρ ∈ R . We have

h(σ1)− g(ρ) = h(σ2)− g(ρ),

so

(ρ, σ1) ∼ (ρ, σ2)

by (iii) of Theorem 5, and σ̄1 ∼S σ̄2.

Conversely, if σ̄1 ∼S σ̄2, we clearly have h̄(σ̄1) = h̄(σ̄2).

Since h̄(u1) = xn mod F and xn is coprime with F , we see that the par-
ticle configuration with just one particle on u1 generates all possible values in
Z/FZ. It follows, by the first isomorphism theorem, that SP (P x,y

n ) is cyclic and
isomorphic to Z/FZ.

(iii): follows directly from Lemma 9.
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Open problems and future works In this paper, we addressed the general-
ized version of the arrival problem in the Path Multigraph P x,y

n . Moreover, we
investigated the Sandpile Group structure and its action on rotor configurations
when x and y are coprime. However, when x and y are not coprime, we observed
that the characterization of classes by harmonic and arcmonic functions becomes
inadequate, necessitating the inclusion of more comprehensive algebraic invari-
ants. We are currently working on a project that presents a theory of arcmonic
and harmonic functions applicable to general graphs, which will be submitted
soon to publication.

Moreover, it is worth considering other scenarios, such as variations in x
and y across different vertices or changes in the rotor order. These cases pose
interesting questions that require further investigation. We regard them as open
problems that warrant additional research.
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