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Abstract. We study two-player multi-weighted reachability games played
on a finite directed graph, where an agent, called P1, has several quanti-
tative reachability objectives that he wants to optimize against an antag-
onistic environment, called P2. In this setting, we ask what cost profiles
P1 can ensure regardless of the opponent’s behavior. Cost profiles are
compared thanks to: (i) a lexicographic order that ensures the unicity
of an upper value and (ii) a componentwise order for which we con-
sider the Pareto frontier. We synthesize (i) lexico-optimal strategies and
(ii) Pareto-optimal strategies. The strategies are obtained thanks to a
fixpoint algorithm which also computes the upper value in polynomial
time and the Pareto frontier in exponential time. Finally, the constrained
existence problem is proved in PTime for the lexicographic order and
PSpace-complete for the componentwise order.

Keywords: two-player games on graphs; multi-weighted reachability
games; Pareto-optimal strategies; lexico-optimal strategies

1 Introduction

Two-player zero-sum games played on graphs are commonly used in the endeavor
to synthesize systems that are correct by construction. In the two-player zero-
sum setting the system wants to achieve a given objective whatever the behavior
of the environment. This situation is modeled by a two-player game in which P1

(resp. P2) represents the system (resp. the environment). Each vertex of the
graph is owned by one player and they take turn by moving a token from vertex
to vertex by following the graph edges. This behavior leads to an infinite sequence
of vertices called a play. The choice of a player’s next move is dictated by its
strategy. In a quantitative setting, edges are equipped with a weight function and
a cost function assigns a cost to each play. This cost depends on the weights of the
edges along the play. With this quantitative perspective, P1 wants to minimize
the cost function. We say that P1 can ensure a cost of x if there exists a strategy
of P1 such that, whatever the strategy followed by P2, the corresponding cost
is less than or equal to x. An interesting question is thus to determine what are
the costs that can be ensured by P1. In this document, these costs are called

⋆ Thomas Brihaye – Partly supported by the F.R.S.- FNRS under grant n°T.0027.21.
Aline Goeminne – F.R.S.-FNRS postdoctoral researcher.

http://arxiv.org/abs/2308.09625v1


2 T. Brihaye and A. Goeminne

the ensured values. Other frequently studied questions are: Given a threshold x,
does there exist a strategy of P1 that ensures a cost less than or equal to x? Is
it possible to synthesize such a strategy, or even better, if it exists, a strategy
that ensures the best ensured value, i.e., an optimal strategy?

A well-known studied quantitative objective is the one of quantitative reach-
ability objective. A player who wants to achieve such an objective has a subset of
vertices, called target set, that he wants to reach as quickly as possible. In terms
of edge weights, that means that he wants to minimize the cumulative weights
until a vertex of the target set is reached. In this setting it is proved that the
best ensured value is computed in polynomial time and that optimal strategies
exist and do not require memory [8].

Considering systems with only one cost to minimize may seem too restric-
tive. Indeed, P1 may want to optimize different quantities while reaching his
objective. Moreover, optimizing these different quantities may lead to antago-
nistic behaviors, for instance when a vehicle wants to reach his destination while
minimizing both the delay and the energy consumption. This is the reason why
in this paper, we study two-player multi-weighted reachability games, where P1

aims at reaching a target while minimizing several costs. In this setting each edge
of the graph is labeled by a d-tuple of d natural numbers, one per quantity to
minimize. Given a sequence of vertices in the game graph, the cost profile of P1

corresponds to the sum of the weights of the edges, component by component,
until a given target set is reached. We consider the multi-dimension counterpart
of the previous studied problems: we wonder what cost profiles are ensured by
P1. Thus P1 needs to arbitrate the trade-off induced by the multi-dimension
setting. In order to do so, we consider two alternatives: the cost profiles can be
compared either via (i) a lexicographic order that ranks the objectives a priori
and leads to a unique minimal ensured value; or via (ii) a componentwise order.
In this second situation, P1 takes his decision a posteriori while choosing an
element of the Pareto frontier (the set of minimal ensured values, which is not
necessarily a singleton).

Contributions. Our contributions are threefold. First, in Section 3.1, given
a two-player multi-weighted reachability game, independently of the order con-
sidered, we provide a fixpoint algorithm, which computes the minimal cost pro-
files that can be ensured by P1. In Section 3.2, we study the time complexity of
this algorithm, depending on the order considered. When considering the lexi-
cographic order (resp. componentwise order), the algorithm runs in polynomial
time (resp. exponential time). Moreover, if the number of dimensions is fixed,
the computation of the Pareto frontier can be done in pseudo-polynomial time
(polynomial if the weights of the game graph are encoded in unary). As a sec-
ond contribution, in Section 3.3, based on the fixpoint algorithm, we synthesize
the optimal strategies (one per order considered). In particular, we show that
positional strategies suffice when considering the lexicographic order, although
memory is needed in the componentwise case. Finally, in Section 4, we focus on
the natural decision problem associated with our model: the constrained exis-
tence problem. Given a two-player multi-weighted reachability game and a cost
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profile x, the answer to the constrained existence problem is positive when there
exists a strategy of P1 that ensures x. In the lexicographic case, we show that
the problem belongs to PTime; although it turns to be PSpace-complete in the
componentwise case.

Detailed proofs of our results are provided in Appendix A and Appendix B.
Related work Up to our knowledge, and quite surprisingly, two-player

multi-weighted reachability games, as defined in this paper, were not studied
before. Nevertheless, a one-player variant known as multi-constrained routing is
known to be NP-complete and exact and approximate algorithms are, for ex-
ample, provided in [10]. The time complexity of their exact algorithm matches
our results since it runs in exponential time and they indicate that it is pseudo-
polynomial if d = 2. The one-player setting is also studied in timed automata [9].

If we focus on two-player settings, another closely related model to multi-
weighted reachability games is the one studied in [6]. The authors consider two-
player generalized (qualitative) reachability games. In this setting P1 wants to
reach several target sets in any order but does not take into account the cost
of achieving that purpose. They prove that deciding the winner in such a game
is PSpace-complete. Moreover, they discuss the fact that winning strategies
need memory. The memory is used in order to remember which target sets have
already been reached. In our setting, we assume that there is only one target
set but that the cost to reach it depends on the dimension. Memory is needed
because we have to take into consideration the partial sum of weights up to now
in order to make the proper choices in the future to ensure the required cost
profile. Notice that if we would like to study the case where each dimension has
its own target set, both types of memory would be needed.

If we consider other objectives than reachability, we can mention different
works on multi-dimentional energy andmean-payoff objectives [7,2,4]. Moreover,
in [1], they prove that the Pareto frontier in a multi-dimensional mean-payoff
game is definable as a finite union of convex sets obtained from linear inequations.
The authors also provide a ΣP

2 algorithm to decide if this set intersects a convex
set defined by linear inequations.

Lexicographic preferences are used in stochastic games with lexicographic
(qualitative) reachability-safety objectives [3]. The authors prove that lexico-
optimal strategies exist but require finite-memory in order to know on which
dimensions the corresponding objective is satisfied or not. They also provide an
algorithm to compute the best ensured value and compute lexico-optimal strate-
gies thanks to different computations of optimal strategies in single-dimensional
games. Finally, they show that deciding if the best ensured value is greater than
or equal to a tuple x is PSpace-hard and in NExpTime ∩ co-NExpTime.

2 Preliminaries

2.1 Two-Player Multi-Weighted Reachability Games

Weighted Arena We consider games that are played on an (weighted) arena
by two players: P1 and P2. An arena Ad is a tuple (V1, V2, E,w) where (i)
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(V = V1 ∪ V2, E) is a graph such that vertices Vi for i ∈ {1, 2} are owned by
Pi and V1 ∩ V2 = ∅ and (ii) w : E −→ N

d is a weight function which assigns d
natural numbers to each edge of the graph. The variable d is called the number
of dimensions. For all 1 ≤ i ≤ d, we denote by wi, with wi : E −→ N, the
projection of w on the ith component, i.e., for all e ∈ E, if w(e) = (n1, . . . , nd)
then, wi(e) = ni. We define W as the largest weight that can appear in the
values of the weight function, i.e., W = max{wi(e) | 1 ≤ i ≤ d and e ∈ E}.

Each time we consider a tuple x ∈ Xd for some set X , we write it in bold
and we denote the ith component of this tuple by xi. Moreover, we abbreviate
the tuples (0, . . . , 0) and (∞, . . . ,∞) by 0 and ∞ respectively.

Plays and Histories A play (resp. history) in Ad is an infinite (resp. finite)
sequence of vertices consistent with the structure of the associated arena Ad,
i.e., if ρ = ρ0ρ1 . . . is a play then, for all n ∈ N, ρn ∈ V and (ρn, ρn+1) ∈ E. A
history may be formally defined in the same way. The set of plays (resp. histories)
are denoted by PlaysAd

(resp. HistAd
). When the underlying arena is clear from

the context we only write Plays (resp. Hist). We also denote by Hist1 the set
of histories which end in a vertex owned by P1, i.e., Hist1 = {h = h0h1 . . . hn |
h ∈ Hist and hn ∈ V1}. For a given vertex v ∈ V , the sets Plays(v), Hist(v),
Hist1(v) denote the sets of plays or histories starting in v. Finally, for a history
h = h0 . . . hn, the vertex hn is denoted by Last(h) and |h| = n is the length of h.

Multi-Weighted Reachability Games We consider multi-weighted reacha-
bility games such that P1 has a target set that he wants to reach from a given
initial vertex. Moreover, crossing edges on the arena implies the increasing of
the d cumulated costs for P1. While in 1-weighted reachability game P1 aims at
reaching his target set as soon as possible (minimizing his cost), in the general
d-weighted case he wants to find a trade-off between the different components.

More formally, F ⊆ V which is a subset of vertices that P1 wants to reach

is called the target set of P1. The cost function Cost : Plays −→ N
d
of P1

provides, given a play ρ, the cost of P1 to reach his target set F along ρ.3 This
cost corresponds to the sum of the weight of the edges, component by component,
until he reaches F or is equal to ∞ for all components if it is never the case. For
all 1 ≤ i ≤ d, we denote by Costi : Plays −→ N, the projection of Cost on the
ith component. Formally, for all ρ = ρ0ρ1 . . . ∈ Plays:

Costi(ρ) =

{

∑ℓ−1
n=0 wi(ρn, ρn+1) if ℓ is the least index such that ρℓ ∈ F

∞ otherwise

and Cost(ρ) = (Cost1(ρ), . . . ,Costd(ρ)) is called a cost profile.

If h = h0 . . . hℓ is a history, Cost(h) =
∑ℓ−1

n=0 w(hn, hn+1) is the accumulated
costs, component by component, along the history. We assume thatCost(v) = 0,
for all v ∈ V .

3 Where the following notation is used: N = N∪{∞}
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Definition 1 (Multi-weighted reachability game). Given a target set F ⊆
V , the tuple Gd = (Ad,F,Cost) is called a d-weighted reachability game, or more
generally a multi-weighted reachability game.

In a d-weighted reachability game Gd = (Ad,F,Cost), an initial vertex v0 ∈
V is often fixed and the game (Gd, v0) is called an initialized multi-weighted
reachability game. A play (resp. history) of (Gd, v0) is a play (resp. history) of
Ad starting in v0.

In the rest of this document, for the sake of readability we write (initialized)
game instead of (initialized) d-weighted reachability game.

v0

v1

v2

v3

v4

v5

(4, 2)

(2, 4)

v6

v7

v8

v9

v10

(4, 2)

(2, 4)

Fig. 1. Example of the arena A2 of a game G2. The target set is F = {v9} and the
weight function is given by the label of the edges. Edges without label have a weight of
(1, 1). The dotted rectangle is a restriction of the arena specifically used in Example 2.

Example 1. We consider as a running example the game G2 such that its arena
A2 = (V1, V2, E,w) is depicted in Figure 1. In this example the set of vertices
of P1 (resp. P2) are depicted by rounded (resp. rectangular) vertices and the
vertices that are part of the target set are doubly circled/framed. The weight
function w labels the corresponding edges. We follow those conventions all along
this document. Here, V1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9}, V2 = {v0, v10}, F =
{v9} and, for example, w(v0, v2) = (2, 4). For all edges without label, we assume
that the weight is (1, 1), e.g., w(v3, v4) = (1, 1). Do not pay attention to the
dotted rectangle for the moment.

Let us now study the cost profiles of two different plays. First, the play ρ =
v0v1v4v6v

ω
9 has a cost profile of Cost(ρ) = (4, 2)+(1, 1)+(4, 2)+(1, 1) = (10, 6)

since ρ visits F in v9. Moreover, Cost1(ρ) = 10 and Cost2(ρ) = 6. Second, the
play ρ′ = v0v3(v5v8)

ω has a cost profile of (∞,∞) since it does not reach F.

Strategies A strategy of player i, i ∈ {1, 2}, provides the next action of Pi.
Formally, a strategy of Pi from a vertex v is a function σi : Histi(v) −→ V

such that for all h ∈ Histi(v), (Last(h), σi(h)) ∈ E. We denote by Σv
i the set of

strategies of Pi from v ∈ V . Notice that in an initialized game (Gd, v0), if we do
not specify something else, we assume that the strategies are defined from v0.

Moreover, given two strategies σ1 of P1 and σ2 of P2, there is only one play
which is consistent with (σ1, σ2) from v0. This play is called the outcome of
(σ1, σ2) from v0 and is denoted by 〈σ1, σ2〉v0 .
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We differentiate two classes of strategies: positional strategies and finite-
memory strategies. A positional strategy σi only depends on the last vertex of
the history, i.e., for all h, h′ ∈ Histi, if Last(h) = Last(h′) then, σi(h) = σi(h

′).
It is finite-memory if it can be encoded by a finite-state machine.

Partial Orders Given two cost profiles x and y in N
d
, P1 should be able to

decide which one is the most beneficial to him. In order to do so, we consider
two partial orders in the rest of this document: the componentwise order and
the lexicographic order.

We recall some related definitions. A partial order on X is a binary relation
. ⊆ X ×X which is reflexive, antisymmetric and transitive. The strict partial
order < associated with it is given by x < y if and only if x . y and x 6= y,
for all x, y ∈ X . A partial order is called a total order if and only if for all
x, y ∈ X , x . y or y . x. Given a set X ′ ⊆ X , the set of minimal elements of
X ′ with respect to . is given by minimal(X ′) = {x ∈ X ′ | if y ∈ X ′ and y .
x, then x = y}. Moreover, the upward closure of X ′ with respect to . is the
set ↑ X ′ = {x ∈ X | ∃y ∈ X ′ st. y . x}. A set X ′ is said upward closed if
↑ X ′ = X ′.

In what follows we consider two partial orders on N
d
. The lexicographic order,

denoted by ≤L, is defined as follows: for all x,y ∈ N
d
, x≤L y if and only if either

(i) xi = yi for all i ∈ {1, . . . , d} or (ii) there exists i ∈ {1, . . . , d} such that xi < yi
and for all k < i, xk = yk. The componentwise order, denoted by ≤C, is defined

as: for all x,y ∈ N
d
, x≤C y if and only if for all i ∈ {1, . . . , d}, xi ≤ yi. Although

the lexicographic order is a total order, the componentwise order is not.

2.2 Studied Problems

We are now able to introduce the different problems that are studied in this
paper: the ensured values problem and the constrained existence problem.

Ensured Values Given a game Gd and a vertex v, we define the ensured values
from v as the cost profiles that P1 can ensure from v whatever the behavior of P2.
We denote the set of ensured values from v by Ensure.(v), i.e., Ensure.(v) =

{x ∈ N
d
| ∃σ1 ∈ Σv

1 st. ∀σ2 ∈ Σv
2 ,Cost(〈σ1, σ2〉v) . x}. Moreover, we say that

a strategy σ1 of P1 from v ensures the cost profile x ∈ N
d
if for all strategies σ2

of P2 from v, we have that Cost(〈σ1, σ2〉v) . x.

We denote by minimal(Ensure.(v)) the set of minimal elements of Ensure.(v)
with respect to .. If . is the lexicographic order, the set of minimal elements
of Ensure≤L

(v) with respect to ≤L is a singleton, as ≤L is a total order, and is
called the upper value from v. We denote it by Val(v). On the other hand, if .
is the componentwise order, the set of minimal elements of Ensure≤C

(v) with
respect to ≤C is called the Pareto frontier from v and is denoted by Pareto(v).



Multi-Weighted Reachability Games 7

Definition 2 (Ensured Values Problems). Let (Gd, v0) be an initialized
game. Depending on the partial order, we distinguish two problems: (i) com-

putation of the upper value, Val(v0), and (ii) computation of the Pareto

frontier, Pareto(v0).

Theorem 1. Given an initialized game (Gd, v0),

1. The upper value Val(v0) can be computed in polynomial time.
2. The Pareto frontier can be computed in exponential time.
3. If d is fixed, the Pareto frontier can be computed in pseudo-polynomial time.

Statement 1 is obtained by Theorem 3, Statements 2 and 3 are proved by
Theorem 4.

A strategy σ1 of P1 from v is said Pareto-optimal from v if σ1 ensures x
for some x ∈ Pareto(v). If we want to explicitly specify the element x of the
Pareto frontier which is ensured by the Pareto-optimal strategy we say that the
strategy σ1 is x-Pareto-optimal from v. Finally, a strategy σ1 of P1 from v is
said lexico-optimal if it ensures the only x ∈ Val(v).

In Section 3.3, we show how to obtain (i) a x-Pareto-optimal strategy from
v0 for each x ∈ Pareto(v0) and (ii) a lexico-optimal strategy from v0 which is
positional. Notice that, as in Example 2, Pareto-optimal strategies sometimes
require finite-memory.

Constrained Existence We are also interested in deciding, given a cost profile
x, whether there exists a strategy σ1 of P1 from v0 that ensures x. We call this
decision problem the constrained existence problem (CE problem).

Definition 3 (Constrained Existence Problem – CE Problem). Given
an initialized game (Gd, v0) and x ∈ N

d, does there exist a strategy σ1 ∈ Σv0
1

such that for all strategies σ2 ∈ Σv0
2 , Cost(〈σ1, σ2〉v0) . x?

The complexity results of this problem are summarized in the following the-
orem which is restated and discussed in Section 4.

Theorem 2. If . is the lexicographic order, the CE problem is solved in PTime.
If . is the componentwise order, the CE problem is PSpace-complete.

We conclude this section by showing that memory may be required by P1 in
order to ensure a given cost profile.

Example 2. We consider the game such that its arena is a restriction of the arena
given in Figure 1. This restricted arena is inside the dotted rectangle. For clarity,
we assume that the arena is only composed by vertices v0, v1, v2, v4, v6, v7 and
v9 and their associated edges. We prove that with the componentwise order ≤C,
memory for P1 is required to ensure the cost profile (8, 8). There are only two
positional strategies of P1: σ1 defined such that σ1(v4) = v6 and τ1 defined such
that τ1(v4) = v7. For all the other vertices, P1 has no choice. With σ1, if P2

chooses v1 from v0, the resulting cost profile is (10, 6). In the same way, with
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τ1, if P2 chooses v2 from v0, the resulting cost profile is (6, 10). This proves that
P1 cannot ensure (8, 8) from v0 with a positional strategy. This is nevertheless
possible if P1 plays a finite-memory strategy. Indeed, by taking into account the
past choice of P2, P1 is able to ensure (8, 8): if P2 chooses v1 (resp. v2) from v0
then, P1 should choose v7 (resp. v6) from v4 resulting in a cost profile of (8, 8)
in both cases.

3 Ensured Values

This section is devoted to the computation of the sets minimal(Ensure.(v))
for all v ∈ V . In Section 3.1, we provide a fixpoint algorithm which computes
these sets. In Section 3.2, we study the time complexity of the algorithm both
for the lexicographic and the componentwise orders. Finally, in Section 3.3, we
synthesize lexico and Pareto-optimal strategies.

3.1 Fixpoint Algorithm

Our algorithm that computes the sets minimal(Ensure.(v)) for all v ∈ V shares
the key idea of some classical shortest path algorithms. First, for each v ∈ V ,
we compute the set of cost profiles that P1 ensures from v in k steps. Then,
once all these sets are computed, we compute the sets of cost profiles that can
be ensured by P1 from each vertex but in k + 1 steps. And so on, until the sets
of cost profiles are no longer updated, meaning that we have reached a fixpoint.

For each k ∈ N and each v ∈ V , we define the set Ensurek(v) as the set of
cost profiles that can be ensured by P1 within k steps. Formally, Ensurek(v) =

{x ∈ N
d
| ∃σ1 ∈ Σv

1 st. ∀σ2 ∈ Σv
2 ,Cost(〈σ1, σ2〉v) . x ∧ |〈σ1, σ2〉v|F ≤ k}4,

where for all ρ = ρ0ρ1 . . . ∈ Plays, |ρ|F = k if k is the least index such that
ρk ∈ F and |ρ|F = −∞ otherwise.

Notice that the sets Ensurek(v) are upward closed and that they are infi-
nite sets except if Ensurek(v) = {∞}. This is the reason why, in the algorithm,
we only store sets of minimal elements denoted by Ik(v). Thus, the correct-
ness of the algorithm relies on the property that for all k ∈ N and all v ∈ V ,
minimal(Ensurek(v)) = Ik(v).

The fixpoint algorithm is provided by Algorithm 1 in which, if X is a set of
cost profiles, and v, v′ ∈ V , X + w(v, v′) = {x + w(v, v′) | x ∈ X }. For the
moment, do not pay attention to Lines 10 to 13, we come back to them later.

Example 3. We now explain how the fixpoint algorithm runs on Example 1. Ta-
ble 1 represents the fixpoint of the fixpoint algorithm both for the lexicographic
and componentwise orders. Table 2 in Appendix A.1 provides all steps of the
algorithm. Remark that the fixpoint is reached with k∗ = 4, while the algorithm
takes one more step in order to check that I4(v) = I5(v) for all v ∈ V . We only
focus on some relevant steps of the algorithm with the componentwise order ≤C.

4 To lighten the notations, we omit the mention of . in subscript.
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Algorithm 1: Fixpoint algorithm

1 for v ∈ F do I0(v) = {0}
2 for v 6∈ F do I0(v) = {∞}
3

4 repeat

5 for v ∈ V do

6 if v ∈ F then Ik+1(v) = {0}
7

8 else if v ∈ V1 then

9 Ik+1(v) = minimal





⋃

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)





10 for x ∈ Ik+1(v) do
11 if x ∈ Ik(v) then fk+1

v (x) = fk

v (x)
12 else

13 fk+1
v (x) = (v′,x′) where v′ and x′ are such that

v′ ∈ Succ(v), x = x′ +w(v, v′) and x′ ∈ Ik(v′)

14

15 else if v ∈ V2 then

16 Ik+1(v) = minimal





⋂

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)





17 until Ik+1(v) = Ik(v) for all v ∈ V

. v0 v1,v2 v3 v4 v5 v6,v7,v10 v8 v9

I∗(·) ≤L {(8, 8)} {(4, 6)} {(4, 4)} {(3, 5)} {(3, 3)} {(1, 1)} {(2, 2)} {(0, 0)}
≤C {(8, 8)} {(6, 4), (4, 6)} {(4, 4)} {(5, 3), (3, 5)} {(3, 3)} {(1, 1)} {(2, 2)} {(0, 0)}

Table 1. Fixpoint of the fixpoint algorithm reached at step k∗ = 4.

Let us first assume that the first step is computed and is such that I1(v9) =
{(0, 0)} since v9 ∈ F, I1(v) = {(1, 1)} if v ∈ {v6, v7, v10} and I1(v) = {(∞,∞)}
for all other vertices.We now focus on the computation of I2(v4). By Algorithm 1,
I2(v4) = minimal(↑ I1(v6) + (4, 2)∪ ↑ I1(v7) + (2, 4)) = minimal(↑ {(5, 3)}∪ ↑
{(3, 5)}) = {(5, 3), (3, 5)}.

We now assume: I3(v0) = {(∞,∞)}, I3(v1) = I3(v2) = I3(v3) = {(4, 6), (6, 4)},
I3(v4) = {(5, 3), (3, 5)} and I3(v5) = {(3, 3)}. We compute I4(v0) which is equal
to minimal(↑ {(4, 6), (6, 4)}+(4, 2)∩ ↑ {(4, 6), (6, 4)}+(2, 4)∩ ↑ {(4, 6), (6, 4)}+
(1, 1)) = minimal(↑ {(8, 8), (10, 6)}∩ ↑ {(6, 10), (8, 8)}∩ ↑ {(5, 7), (7, 5)}) =
minimal(↑ {(8, 8)}∩ ↑ {(5, 7), (7, 5)}) = {(8, 8)}. Finally, we compute I4(v3) =
minimal(↑ {(6, 4), (4, 6)}∪ ↑ {(4, 4)}) = minimal({(6, 4), (4, 6), (4, 4)}) = {(4, 4)}.

Termination We focus on the termination of the fixpoint algorithm.

Proposition 1. The fixpoint algorithm terminates in less than |V |+ 1 steps.
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The proof of this proposition relies on Propositions 2 and 3. Proposition 2
is interesting on its own. It states that if there exists a strategy σ1 of P1 which
ensures a cost profile x ∈ N

d from v ∈ V then, there exists another strategy σ′
1

of P1 which also ensures x from v but such that the number of edges between
v and the first occurrence of a vertex in F is less than or equal to |V |, and this
regardless of the behavior of P2.

Proposition 2. Given a game Gd, a vertex v ∈ V and a cost profile x ∈ N
d,

if there exists a strategy σ1 of P1 such that for all strategies σ2 of P2 we have
that Cost(〈σ1, σ2〉v) . x then, there exists σ′

1 of P1 such that for all σ2 of P2

we have: (i) Cost(〈σ′
1, σ2〉v) . x and (ii) |〈σ′

1, σ2〉v|F ≤ |V |.

The strategy σ′
1 is obtained by adequately removing cycles formed by the

strategy σ1. Let us point out that Proposition 2 does not imply that σ′
1 is posi-

tional. Indeed, in Example 2, the finite-memory strategy is the only strategy that
ensures the cost profile (8, 8), it satisfies conditions (i) and (ii) of Proposition 2
but requires memory.

Proposition 3. We have: (i) for all k ∈ N and for all v ∈ V , Ensurek(v) ⊆
Ensurek+1(v); and (ii) there exists k∗ ≤ |V |, such that for all v ∈ V and for all

ℓ ∈ N, Ensurek
∗+ℓ(v) = Ensurek

∗

(v).

Properties stated in Proposition 3 hold by definition of Ensurek(v) and
Proposition 2. Moreover, the step k∗ is a particular step of the algorithm that
we call the fixpoint of the algorithm. Notice that even if the fixpoint is reached
at step k∗, the algorithm needs one more step in order to check that the fixpoint
is reached. In the remaining part of this document, we write Ensure∗(v) (resp.

I∗(v)) instead of Ensurek
∗

(v) (resp. Ik
∗

(v)).

Correctness The fixpoint algorithm (Algorithm 1) exactly computes the sets
minimal(Ensure.(v)) for all v ∈ V , i.e., for all v ∈ V , minimal(Ensure.(v)) =
I∗(v). This is a direct consequence of Proposition 4.

Proposition 4. For all k ∈ N and all v ∈ V , minimal(Ensurek(v)) = Ik(v).

3.2 Time Complexity

In this section we provide the time complexity of the fixpoint algorithm. The
algorithm runs in polynomial time for the lexicographic order and in exponential
time for the componentwise order. In this latter case, if d is fixed, the algorithm
is pseudo-polynomial, i.e., polynomial if the weights are encoded in unary.

Theorem 3. If . is the lexicographic order, the fixpoint algorihtm runs in time
polynomial in |V | and d.
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Theorem 4. If . is the componentwise order, the fixpoint algorithm runs in
time polynomial in W and |V | and exponential in d.

Theorem 3 relies on the fact that Line 9 and Line 16 can be performed in
polynomial time. Indeed, in the lexicographic case, for all k ∈ N and all v ∈ V ,
Ik(v) is a singleton. Thus these operations amounts to computing a minimum or
a maximum between at most |V | values. Theorem 4 can be obtained thanks to
representations of upward closed sets and operations on them provided in [5].

3.3 Synthesis of Lexico-optimal and Pareto-optimal Strategies

To this point, we have only explained the computation of the ensured values
and we have not yet explained how lexico and Pareto-optimal strategies are
recovered from the algorithm. This is the reason of the presence of Lines 10
to 13 in Algorithm 1. Notice that in Line 13, we are allowed to assume that
x′ is in Ik(v′) instead of ↑ Ik(v′) because for all k ∈ N, for all v ∈ V1\F,

Ik+1(v) = minimal
(

⋃

v′∈Succ(v) I
k(v) +w(v, v′)

)

.

Roughly speaking, the idea behind the functions fk
v is the following. At each

step k ≥ 1 of the algorithm and for all vertices v ∈ V1\F, we have computed
the set Ik(v). At that point, we know that given x ∈ Ik(v), P1 can ensure a cost
profile of x from v in at most k steps. The role of the function fk

v is to keep
in memory which next vertex, v′ ∈ Succ(v), P1 should choose and what is the
cost profile x′ = x−w(v, v′) which is ensured from v′ in at most k − 1 steps. If
different such successors exist one of them is chosen arbitrarily.

In other words, fk
v provides information about how P1 should behave locally

in v if he wants to ensure one of the cost profile x ∈ Ik(v) from v in at most k
steps. In this section, we explain how, from this local information, we recover a
global strategy which is x-Pareto optimal from v (resp. lexico-optimal from v)
for some v ∈ V and some x ∈ I∗(v)\{∞}, if . is the componentwise order (resp.
the lexicographic order).

We introduce some additional notations. Since for all k ∈ N and all v ∈ V ,

fk
v : Ik(v) −→ V × N

d
, if (v′,x′) = fk

v (x) for some x ∈ Ik(v) then, we write
fk
v (x)[1] = v′ and fk

v (x)[2] = x′. Moreover, for all v ∈ V , we write f∗
v instead

of fk∗

v . Finally, if X is a set of cost profiles, min≤L
(X) = {x ∈ X | ∀y ∈

X, (y≤L x =⇒ y = x)}.
For all u ∈ V and all c ∈ I∗(u)\{∞}, we define a strategy σ∗

1 ∈ Σu
1 . The

aim of this strategy is to ensure c from u by exploiting the functions f∗
v . The

intuition is as follows. If the past history is hv with v ∈ V1, P1 has to take
into account the accumulated partial costs Cost(hv) up to v in order the make
adequately his next choice to ensure c at the end of the play. For this reason, he
selects some x ∈ I∗(v) such that x . c −Cost(hv) and follows the next vertex
dictated by f∗

v (x)[1].

Definition 4. Given u ∈ V and c ∈ I∗(u)\{∞}, we define a strategy σ∗
1 ∈ Σu

1

such that for all hv ∈ Hist1(u), let C(hv) = {x′ ∈ I∗(v) | x′ . c −Cost(hv) ∧
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x′ ≤L c−Cost(hv)},

σ∗
1(hv) =

{

v′ for some v′ ∈ Succ(v), if C(hv) = ∅

f∗
v (x)[1] where x = min≤L

C(hv), if C(hv) 6= ∅
.

Remark 1. For some technical issues, when we have to select a representative in
a set of incomparable elements, the ≤L order is used in the definitions of C(hv)
and of the strategy. Nevertheless, Definition 4 holds both for the lexicographic
and the componentwise orders.

For all u ∈ V and c ∈ I∗(u)\{∞}, the strategy σ∗
1 defined in Definition 4

ensures c from u. In particular, σ∗
1 is lexico-optimal and c-Pareto-optimal from

u.

Theorem 5. Given u ∈ V and c ∈ I∗(u)\{∞}, the strategy σ∗
1 ∈ Σu

1 defined in
Definition 4 is such that for all σ2 ∈ Σu

2 , Cost(〈σ∗
1 , σ2〉u) . c.

Although the strategy defined in Definition 4 is a lexico-optimal strategy
from u, it requires finite-memory. However, for the lexicographic order, positional
strategies are sufficient.

Proposition 5. If . is the lexicographic order, for u ∈ V and c ∈ I∗(u)\{∞},
the strategy ϑ∗1 defined as: for all hv ∈ Hist1(u), ϑ

∗
1(hv) = f∗

v (x)[1] where x is
the unique cost profile in I∗(v), is a positional lexico-optimal strategy from u.

4 Constrained Existence

Finally, we focus on the constrained existence problem (CE problem).

Theorem 6. If . is the lexicographic order, the CE problem is solved in PTime.

Theorem 6 is immediate since, in the lexicographic case, we can compute the
upper value Val(v0) in polynomial time (Theorem 3).

Theorem 7. If . is the componentwise order, the CE problem is PSpace-
complete.

PSpace-easiness. Proposition 2 allows us to prove that the CE problem
with the componentwise order is in APTime. The alternating Turing machine
works as follows: all vertices of the game owned by P1 (resp. P2) correspond to
disjunctive states (resp. conjunctive states). A path of length |V | is accepted if
and only if, (i) the target set is reached along that path and (ii) the sum of the
weights until an element of the target set is ≤C x. If such a path exists, there
exists a strategy of P1 that ensures the cost profile x. This procedure is done in
polynomial time and since APTime = PSpace, we get the result.

PSpace-hardness. The hardness part of Theorem 7 is based on a polyno-
mial reduction from the Quantified Subset-Sum problem, proved PSpace-
complete [12, Lemma 4]. This problem is defined as follows. Given a set of
natural numbers N = {a1, . . . , an} and a threshold T ∈ N, we ask if the formula
Ψ = ∃x1 ∈ {0, 1} ∀x2 ∈ {0, 1} ∃x3 ∈ {0, 1} . . .∃xn ∈ {0, 1},

∑

1≤i≤n xiai = T is
true.
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A Additional Content of Section 3: Ensured Values

A.1 Fixpoint Algorithm

All the steps of the fixpoint algorithm performed on Example 1 are given in
Table 2 both for the componentwise order ≤C and the lexicographic order ≤L.
The sets in color are sets that are updated with respect to the previous step.

Termination

Proposition 2. Given a game Gd, a vertex v ∈ V and a cost profile x ∈ N
d,

if there exists a strategy σ1 of P1 such that for all strategies σ2 of P2 we have
that Cost(〈σ1, σ2〉v) . x then, there exists σ′

1 of P1 such that for all σ2 of P2

we have: (i) Cost(〈σ′
1, σ2〉v) . x and (ii) |〈σ′

1, σ2〉v|F ≤ |V |.

The proof of Proposition 2 relies on the notion of strategy tree that we
introduce hereunder and that is also useful in Section A.3.

Strategy tree Given a game Gd, T is a tree rooted at v for some v ∈ V if (i)
T is a subset of non-empty histories of Gd, i.e., T ⊆ Hist(v), (ii) v ∈ T and (iii)
if tu ∈ T then, t ∈ T . All t ∈ T are called nodes of the tree and the particular
node v is called the root of the tree. As for histories in a game, for all tu ∈ T ,
Last(tu) = u. The depth of a node t ∈ T , written depth(t), is equal to |t| and its
height, denoted by height(t), is given by sup{|Last(t)t′| | t′ ∈ V ∗ and tt′ ∈ T }.
The height of the tree corresponds to the height of its root. A node t ∈ T is
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. v0 v1 v2 v3 v4 v5

I0(·) ≤C {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)}
≤L {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)}

I1(·) ≤C {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)}
≤L {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)}

I2(·) ≤C {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(5, 3), (3, 5)} {(∞,∞)}
≤L {(∞,∞)} {(∞,∞)} {(∞,∞)} {(∞,∞)} {(3, 5)} {(∞,∞)}

I3(·) ≤C {(∞,∞)} {(6, 4), (4, 6)} {(6, 4), (4, 6)} {(6, 4), (4, 6)} {(5, 3), (3, 5)} {(3, 3)}
≤L {(∞,∞)} {(4, 6)} {(4, 6)} {(4, 6)} {(3, 5)} {(3, 3)}

I4(·) = I∗(·) ≤C {(8, 8)} {(6, 4), (4, 6)} {(6, 4), (4, 6)} {(4, 4)} {(5, 3), (3, 5)} {(3, 3)}
≤L {(8, 8)} {(4, 6)} {(4, 6)} {(4, 4)} {(3, 5)} {(3, 3)}

. v6 v7 v8 v9 v10

I0(·) ≤C {(∞,∞)} {(∞,∞)} {(∞,∞)} {(0, 0)} {(∞,∞)}
≤L {(∞,∞)} {(∞,∞)} {(∞,∞)} {(0, 0)} {(∞,∞)}

I1(·) ≤C {(1, 1)} {(1, 1)} {(∞,∞)} {(0, 0)} {(1, 1)}
≤L {(1, 1)} {(1, 1)} {(∞,∞)} {(0, 0)} {(1, 1)}

I2(·) ≤C {(1, 1)} {(1, 1)} {(2, 2)} {(0, 0)} {(1, 1)}
≤L {(1, 1)} {(1, 1)} {(2, 2)} {(0, 0)} {(1, 1)}

I3(·) ≤C {(1, 1)} {(1, 1)} {(2, 2)} {(0, 0)} {(1, 1)}
≤L {(1, 1)} {(1, 1)} {(2, 2)} {(0, 0)} {(1, 1)}

I4(·) = I∗(·) ≤C {(1, 1)} {(1, 1)} {(2, 2)} {(0, 0)} {(1, 1)}
≤L {(1, 1)} {(1, 1)} {(2, 2)} {(0, 0)} {(1, 1)}

Table 2. Execution of the fixpoint algorithm (Algorithm 1) on Example 1 both for
≤C and ≤L orders.

called a leaf if height(t) = 0. We denote by T↾t, the subtree of T rooted at t
for some t ∈ T , that is the set of non-empty histories such that t′ ∈ T↾t if and
only if t′ = tw for some w ∈ V ∗. Finally, a (finite or infinite) branch of the
tree is a (finite or infinite) sequence of nodes n0n1 . . . such that for all k ∈ N,
(Last(nk),Last(nk+1)) ∈ E. The cost of an infinite branch is defined similarly

as the cost a play: Costi(n0n1 . . .) =
∑ℓ−1

k=0 wi(Last(nk),Last(nk+1)) if ℓ is the
least index such that Last(nℓ) ∈ F and Costi(n0n1 . . .) = ∞ otherwise. This
definition may be easily adapted if the branch is finite.

When we fix a strategy σ1 ∈ Σv
1 for some v ∈ V , we can see all the possible

outcomes consistent with a strategy of P2 as a tree consistent with σ1. Given
σ1 ∈ Σv

1 , the strategy tree Tσ1
of σ1 is such that: (i) the root of the tree is v,

(ii) for all t ∈ Tσ1
, if Last(t) ∈ F then, for all t′ ∈ V +, tt′ 6∈ Tσ1

. Otherwise, if
Last(t) ∈ V1\F then, tv′ ∈ Tσ1

with v′ = σ1(t). Else if Last(t) ∈ V2\F, for all
v′ ∈ Succ(Last(t)) we have tv′ ∈ Tσ1

.

In the same way, a tree T which satisfies the following conditions allows to
define a strategy σT of P1. For all t ∈ T ,

– if Last(t) = u ∈ F, then there is no u′ ∈ V such that tu′ ∈ T ;

– if Last(t) = u ∈ V2\F then, for all u′ ∈ Succ(u), tu′ ∈ T ;

– if Last(t) = u ∈ V1\F then there exists a unique u′ ∈ Succ(u) such that
tu′ ∈ T ; and σT (t) = u′.
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Notice that in this way, σT ∈ Σv
1 is not well defined on histories which

are not consistent with σT and some σ2 ∈ Σv
2 . This is not a problem for our

purpose, we may assume that for such histories h ∈ Hist1(v), σT (h) = v′ for
some arbitrary (fixed) v′ ∈ Succ(Last(h)). We call this well defined strategy the
strategy associated with T .

Example 4. We illustrate the notion of strategy tree by considering the game
described in Example 1. Let us recall that the game arena is given in Figure 1.

We define a strategy σ1 of P1 from v0 as, for all hv ∈ Hist1(v0): σ(hv) = v′

with v′ = v4 if v ∈ {v1, v2, v3}, v′ = v6 if hv ∈ {v0v2v4, v0v3v4}, v′ = v7 if
hv = v0v1v4, v

′ = v9 if v ∈ {v6, v7, v9}, v′ = v8 if v = v5 and v′ = v10 if v = v8.
This strategy is a finite-memory strategy since the choice made in v4 depends
on the past history: if it crossed vertices v2 or v3 the next vertex is v6 while it
is v7 if it crossed v1. We also define a positional strategy σ2 of P2 from v0 as,
σ2(v0) = v2 and σ2(v10) = v9. The outcome of the strategy profile (σ1, σ2) from
v0 is 〈σ1, σ2〉v0 = v0v2v4v6v

ω
9 and its cost profile is Cost(〈σ1, σ2〉v0) = (8, 8).

The strategy tree of σ1 is

Tσ1
= {v0, v0v1, v0v2, v0v3, v0v1v4, v0v2v4, v0v3v4, v0v1v4v7,

v0v2v4v6, v0v3v4v6, v0v1v4v7v9, v0v2v4v6v9, v0v3v4v6v9}

and is drawn in Figure 2. The root of this tree is the node n0 = v0 and there
are three leaves v0v1v4v7v9, v0v2v4v6v9, and v0v3v4v6v9. The height of the root,
height(v0), is equal to 4 and the depth of the node n′ = v0v2v4, depth(n

′), is
equal to 2.

v0

v0v1

v0v2

v0v3

v0v1v4 v0v1v4v7 v0v1v4v7v9

v0v2v4 v0v2v4v6 v0v2v4v6v9

v0v3v4 v0v3v4v6 v0v3v4v6v9

Fig. 2. Strategy tree Tσ1 of the strategy σ1 defined in Example 4.

Intuition of the proof of Proposition 2 The intuition of the proof is illustrated
in Figure 3. This tree represents all the consistent plays with the strategy σ1 of
P1 and all the possible strategies of P2. Notice that since for all strategies of P2

the target set is reached, all branches of the strategy tree are finite. The main
idea is that we remove successively all cycles in the branches of the tree. That
ensures that the height of the tree is less than |V |.

If there exists a branch with a cycle beginning with a node ending by a vertex
of P1, as the one between the two hatched nodes, P1 can directly choose to follow
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the dotted edge. By considering this new strategy, and so by removing this cycle,
the cost profiles of the branches of the new obtained tree are less than or equal
to those of the old tree. Once all such kind of cycles are removed, we conclude
that there is no more cycle in the tree.

Indeed, the only possibility is that there remains a cycle beginning with a
node ending by a vertex of P2, as the black nodes. In this case, either (i) all
nodes between the black nodes end with a vertex of P2 or (ii) there exists at
least a node ending with a vertex of P1 between the two black nodes, as the
node in gray. If situation (i) occurs there should exist an infinite branch of the
tree in which this cycle is repeated infinitely often, but it is impossible because
the target set is assumed to be reached along all branches. If it is the situation
(ii) that occurs, there should exist a branch in which there is a cycle beginning
with a node ending by a vertex of P1, as in the figure. But we assumed that this
was no longer the case.

Finally, at the end of the procedure, we obtain a tree from which we re-
cover a strategy σ′

1 of P1 from v such that for all strategies σ2 of P2 from v,
Cost(〈σ′

1, σ2〉v) . x and |〈σ′
1, σ2〉v|F ≤ |V |.

Remark 2. Let us point out that this construction does not imply that the build
strategy σ′

1 is positional. Indeed, it is possible that two nodes ending in some
node u ∈ V appear in two different subtrees and induce two different subtrees.

Fig. 3. Strategy tree Tσ1 associated with a strategy σ1 of P1.

Proof (Proof of Proposition 2). Let σ1 be a strategy of P1 from v such that for
all strategies σ2 of P2 the target set F is reached along 〈σ1, σ2〉v. Let us assume
that the strategy tree of σ1, Tσ1

, is given by that of Figure 3. As the target set
is reached for all strategies of P2, all branches of the tree are finite. Formally,
height(v) 6= ∞ and all branches n0 . . . nk end in a leaf with Last(nk) ∈ F and
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Cost(n0 . . . nk) . x. Notice that since Tσ1
is rooted at v, n0 = v.

We remove cycles in the tree one by one: we begin with T0 = Tσ1
and at each

step of the procedure these two properties are preserved, (i) the height of the root
is finite and (ii) for all (finite) branches n0 . . . nk of the tree,Cost(n0 . . . nk) . x.
Cycles are removed until there are none left and we obtain a tree Tα∗ , for some
α∗ ∈ N, which respects (i) and (ii). Moreover, because there is no more cycle,
the height of Tα∗ is less than |V |. Finally, from Tα∗ we recover a strategy σ′

1 such
that for all σ2 ∈ Σv

2 , we have that Cost(〈σ′
1, σ2〉v) . x and |〈σ′

1, σ2〉v|F ≤ |V |.

More precisely, let us assume that we want to build Tα+1 from Tα. There still
exists a branch n0 . . . nk . . . nℓ . . . nm in Tα such that

(i) ∃k, ℓ ∈ N, 0 ≤ k < ℓ ≤ m, such that Last(nk) = Last(nℓ) and (ii) Last(nk) ∈ V1.

(1)
This is for example the case of the hatched nodes in Figure 3. In this situation,

P1 generates an unnecessary cycle since the target set is not reached along
this cycle and the cost profile increase along the cycle. Thus P1 can avoid this
unnecessary cycle by directly choosing the doted edge.

We have to build a new tree Tα+1 from Tα. Let us recall that, while branches
are sequences of nodes, trees are sets of non-empty histories. Thus, for all w ∈ Tα,
w ∈ Hist(v). The new tree Tα+1 is obtained as follows: for all w ∈ Tα:

– if w = Last(n0) . . .Last(nk) . . .Last(nℓ)wk+1 . . . wn for some n ∈ N then, the
cycle Last(nk) . . .Last(nℓ) is removed and so Last(n0) . . .Last(nk)wk+1 . . . wn ∈
Tα+1;

– else, w ∈ Tα+1.

We now consider Tα∗ in which there is no more branch that satisfies con-
ditions (1). We prove that there is no branch n0 . . . nk . . . nℓ . . . nm of Tα∗ such
that (i) ∃k, ℓ ∈ N, 0 ≤ k < ℓ ≤ m, such that Last(nk) = Last(nℓ) and (ii)
Last(nk) ∈ V2.

Let us assume the contrary in order to obtain a contradiction. We consider
the following two cases:

– if for all k < ξ < ℓ, Last(nξ) ∈ V2 then, Last(n0) . . . (Last(nk) . . .Last(nℓ−1))
j

should be nodes of Tα∗ for all j ∈ N. This is in contradiction with the fact
that the height of the root of Tα∗ is finite.

– Otherwise, we consider the least index ξ ∈ N such that k < ξ < ℓ and
Last(nξ) ∈ V1. This is for example the case of the gray node between the
two black nodes in Figure 3.
In this case, the node t = Last(n0) . . .Last(nk) . . .Last(nξ) . . .Last(nℓ) . . .Last(nξ)
should be a node of Tα∗ . Thus, there is at least one branch in the tree which
has t as a prefix. Which contradicts the assumption that there is no more
cycle generates by P1 in Tα∗ .

Since we have removed all cycles of the finite branches of Tσ1
. We have that

the height of Tα∗ is less than |V | and the cost profiles of the branches may only
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decrease, because the weights on the edges are natural numbers. It means that
for all branches n0 . . . nk of Tα∗ , Cost(n0 . . . nk) . x.

To conclude, we recover from Tα∗ the strategy σ′
1 associated with Tα∗ as

explained in the paragraph about strategy tree at the beginning of Appendix A.1.
For all σ2 ∈ Σv

2 , we have (i) Cost(〈σ′
1, σ2〉v) . x and (ii) |〈σ′

1, σ2〉v|F ≤ |V |. ⊓⊔

Correctness Some of the arguments of our proofs rely on the following lemma
and its corollary.

Lemma 1. For all k ∈ N,

1. for all v ∈ V1\F, for all x ∈ Ik+1(v), there exist v′ ∈ Succ(v) and x ∈ Ik(v′)
such that x = x′ +w(v, v′).

2. for all v ∈ V2\F, for all x ∈ Ik+1(v), for all v′ ∈ Succ(v), there exists
x′ ∈ Ik(v′) such that x′ +w(v, v′) . x.

Corollary 1. For all v ∈ V ,

– If v ∈ V1\F then, for all x ∈ I∗(v), there exist v′ ∈ Succ(v) and x ∈ I∗(v′)
such that x = x′ +w(v, v′).

– If v ∈ V2\F then, for all x ∈ I∗(v), for all v′ ∈ Succ(v), there exists x′ ∈
I∗(v′) such that x′ +w(v, v′) . x.

This section is devoted to the proof of the following theorem.

Theorem 8. For all v ∈ V , minimal(Ensure.(v)) = I∗(v).

This is a direct consequence of Proposition 4.

Proposition 4. For all k ∈ N and all v ∈ V , minimal(Ensurek(v)) = Ik(v).

Proof. We proceed by induction on ℓ. Base case ℓ = 0, let v ∈ V . If v ∈ F then,

Ensure0(v) = {x ∈ N
d
| 0 . x} and minimal(Ensure0(v)) = {0} which is equal

to I0(v) by Algorithm 1. Else, if v 6∈ F, Ensure0(v) = {∞} and I0(v) = {∞}.
Let us assume that the assertion is true for all 0 ≤ ℓ ≤ k and let us prove it

is still true for ℓ = k + 1. In particular, the following equality holds:

minimal(Ensurek(v)) = Ik(v) (2)

Since Ensurek(v) is upward closed, we have that:

Ensurek(v) =↑ Ik(v) (3)

If v ∈ F, we have minimal(Ensurek(v)) = {0} = Ik(v) for all k ∈ N. This is
the reason why we assume v 6∈ F in the rest of the proof.

For all v 6∈ F, we prove that Ensurek+1(v) =















⋃

v′∈Succ(v)

↑ Ik(v′) +w(v, v′) if v ∈ V1

⋂

v′∈Succ(v)

↑ Ik(v′) +w(v, v′) if v ∈ V2
.

That proves that minimal(Ensurek+1(v)) = Ik+1(v).
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– We first prove the inclusion ⊆. Let x ∈ Ensurek+1(v).
We know that there exists a strategy σk+1

1 ∈ Σv
1 such that for all strategies

σ2 ∈ Σv
2 we have that

Cost(〈σk+1
1 , σ2〉v) . x and |〈σk+1

1 , σ2〉v|F ≤ k + 1. (4)

• If v ∈ V1, let v
′ = σk+1

1 (v). We consider σk+1
1 ↾v : Hist1(v

′) −→ V : hu 7→

σk+1
1 (vhu).

We have for all σ2 ∈ Σv
2 :

Cost(〈σk+1
1 , σ2〉v) = Cost(v〈σk+1

1 ↾v, σ2↾v〉v′)

= w(v, v′) +Cost(〈σk+1
1 ↾v, σ2↾v〉v′ ) (v 6∈ F)

Thus in particular, for all σ2 ∈ Σv′

2 :

w(v, v′) +Cost(〈σk+1
1 ↾v, σ2〉v′ ) . x

and

|〈σk+1
1 ↾v, σ2〉v′ |

F
= |〈σk+1

1 , σ2〉v|F − 1 ≤ k.

Meaning that x−w(v, v′) ∈ Ensurek(v′). By Equation (3), Ensurek(v′) =↑
Ik(v′). It follows that x ∈↑ Ik(v′) +w(v, v′) and we obtain the result we
were looking for: x ∈

⋃

v′∈Succ(v) ↑ Ik(v′) +w(v, v′).

• If v ∈ V2, for all v
′ ∈ Succ(v) and for all strategies σ2 ∈ Σv′

2 , we have by
Equation (4):

Cost(v〈σk
1 ↾v, σ2〉v′) = w(v, v′) +Cost(〈σk

1 ↾v, σ2〉v′) (v 6∈ F)

. x

and, since v 6∈ F,

|〈σk
1 ↾v, σ2〉v′ |

F
= |〈σk+1

1 , σ2〉v|F − 1 ≤ k.

It follows that for all v′ ∈ Succ(v), x−w(v, v′) ∈ Ensurek(v′) =↑ Ik(v′),
by Equation (3). Thus we conclude that x ∈

⋂

v′∈Succ(v) ↑ Ik(v′) +

w(v, v′).

– We now prove the inclusion ⊇.

• If v ∈ V1, let x ∈
⋃

v′∈Succ(v)

↑ Ik(v′) +w(v, v′). It means that there exists

y ∈↑ Ik(v′) such that x = y + w(v, v′) for some v′ ∈ Succ(v).
By Equation (3), y ∈ Ensurek(v′), thus there exists σk

1 ∈ Σv′

1 such that
for all σ2 ∈ Σv′

2 we have:

Cost(〈σk
1 , σ2〉v′) . y and |〈σk

1 , σ2〉v′ |F ≤ k. (5)
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We consider σk+1
1 ∈ Σv

1 defined as

σk+1
1 (vh) =

{

v′ if h is the empty history, i.e., vh = v

σk
1 (h) otherwise

.

Let σ2 ∈ Σv
2 ,

Cost(〈σk+1
1 , σ2〉v) = w(v, v′) +Cost(〈σk+1

1 ↾v, σ2↾v〉v′) (v 6∈ F)

= w(v, v′) +Cost(〈σk
1 , σ2↾v〉v′) . w(v, v′) + y (By Eq. (5))

Moreover, |〈σk+1
1 , σ2〉v|F = 1 + |〈σk

1 , σ2↾v〉v′ |
F
≤ 1 + k.

We conclude that x ∈ Ensurek+1(v).

• If v ∈ V2, let x ∈
⋂

v′∈Succ(v)

↑ Ik(v′) +w(v, v′).

For all v′ ∈ Succ(v′), there exists y′ ∈↑ Ik(v′) such that x = y′+w(v, v′).
By Eq. (3), there exists σv′

1 ∈ Σv′

1 such that for all σ2 ∈ Σv′

2 ,

Cost(〈σv′

1 , σ2〉v′ ) . y′ and |〈σv′

k , σ2〉v′ |F ≤ k

Let us consider σk+1
1 ∈ Σv

1 defined as: σk+1
1 (vv′h) = σv′

1 (v′h) for all
vv′h ∈ Hist1(v). Let σ2 ∈ Σv

2 , if σ2(v) = v′, we have:

Cost(〈σk+1
1 , σ2〉v) = Cost(v〈σk+1

1 ↾v, σ2↾v 〉v′) = Cost(v〈σv′

1 , σ2↾v〉v′ )

= w(v, v′) +Cost(〈σv′

1 , σ2↾v〉v′ ) (v 6∈ F)

. w(v, v′) + y′.

Moreover, |〈σk+1
1 , σ2〉v|F = |v〈σv′

1 , σ2↾v 〉v′ |
F
= |〈σv′

1 , σ2↾v〉v′ |
F
+1 ≤ k+1.

In conclusion, x ∈ Ensurek+1(v). ⊓⊔

A.2 Time Complexity

Let us recall that W = max{wi(e) | 1 ≤ i ≤ d and e ∈ E}. We also explicitly
restate a remark done in the main part of the paper (in Section 3.3).

Remark 3. In Line 13, we are allowed to assume that x′ is in Ik(v′) instead of
↑ Ik(v′) thanks to Lemma 2 stated just after this remark.

Lemma 2. For all k ∈ N, for all v ∈ V1\F,

Ik+1(v) = minimal





⋃

v′∈Succ(v)

Ik(v) +w(v, v′)



 .
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Lexicographic Order In this section we prove Theorem 3.

Theorem 3. If . is the lexicographic order, the fixpoint algorihtm runs in time
polynomial in |V | and d.

By abuse of notation, the only x ∈ Ik(v) is denoted by Val
k
(v).

Proposition 6. If v ∈ V1\F, Ik+1(v) = min≤L
{Val

k
(v′) + w(v, v′) | v′ ∈

Succ(v)}.

Proof. Let v ∈ V1\F,

Ik+1(v) = minimal





⋃

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)



 By Algorithm 1

= minimal





⋃

v′∈Succ(v)

Ik(v′) +w(v, v′)



 By Lemma 2

= minimal({Val
k
(v′) +w(v, v′) | v′ ∈ Succ(v)})

= min
≤L

{Val
k
(v′) +w(v, v′) | v′ ∈ Succ(v)}

⊓⊔

Proposition 7. If v ∈ V2\F, Ik+1(v) = max≤L
{Val

k
(v′) + w(v, v′) | v′ ∈

Succ(v)}.

Proof. We begin the proof by a remark: if x,y ∈ N
d
then,

↑ {x}∩ ↑ {y} =↑ {max
≤L

{x,y}} (6)

Let v ∈ V2\F,

Ik+1(v) = minimal





⋂

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)



 By Algorithm 1

= minimal





⋂

v′∈Succ(v)

↑ {Val
k
(v′) +w(v, v′)}





= minimal(max
≤L

{Val
k
(v′) +w(v, v′) | v′ ∈ Succ(v)}) By Equation (6)

= max
≤L

{Val
k
(v′) +w(v, v′) | v′ ∈ Succ(v)}

⊓⊔
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Proof (Proof of Theorem 3). By Proposition 1, Algorithm 1 mainly consists

in (|V | + 1) · |V | ≈ |V |2 operations of the type min≤L
{Val

k
(v′) + w(v, v′) |

v′ ∈ Succ(v)} or max≤L
{Val

k
(v′) + w(v, v′) | v′ ∈ Succ(v)} which are done in

O(|V | ·d). It follows that the global complexity of the algorithm if the considered
order is the lexicographic order is in O(|V |3 · d). ⊓⊔

Componentwise Order This section is devoted to the proof of Theorem 4.

Theorem 4. If . is the componentwise order, the fixpoint algorithm runs in
time polynomial in W and |V | and exponential in d.

During the computation of the fixpoint algorithm, even if we have a finite
representation of the infinite sets ↑ Ik(v) by only storing their minimal elements
Ik(v), we need to explain how to manipulate them efficiently. In particular, we
explicit how given some accurate representation of ↑ Ik(v) and ↑ Ik(v′) for some
k ∈ N and v, v′ ∈ V we compute: (i) the union ↑ Ik(v)∪ ↑ Ik(v′), (ii) the inter-
section ↑ Ik(v)∩ ↑ Ik(v′), (iii) the translation ↑ Ik(v) +w(v, v′) and (iv) the set
of minimal elements minimal(↑ Ik(v)). Inspired by the approach explained in [5],
we use a part of the logic of upward closed sets in order to express the infinite
sets ↑ Ik(v) in a convenient way.

Let D = {t1, . . . , td} be a set of d variables, if G = {x1, . . . ,xn} for some

n ∈ N and x1, . . . ,xn ∈ N
d
, we can express ↑ G as a formula φ:

φ =
∨

1≤i≤n

(t1 ≥ xi1) ∧ . . . ∧ (td ≥ xid). (7)

We define the size of the formula, denoted by |φ|, by n · d. Additionally, the
set G is called the set of generators of ↑ G, or equivalently the set of generators
of φ. Thus G allows to encode the formula in a succinct way. Notice that the
fewer generators there are, the more succinct the formula to express ↑ G is.
Moreover, the set of tuples that evaluates formula φ to true are denoted by [[φ]],

i.e., [[φ]] = {c ∈ N
d
|
∨

1≤i≤n(c1 ≥ xi1) ∧ . . . (cd ≥ xid)}. Thus, in particular,
[[φ]] =↑ G. Conversely, if we have a formula φ as in Equation (7), it represents an
upward closed set [[φ]] and its set of generators is given by gen(φ) = {x1, . . . ,xn}.

For each ↑ Ik(v), we denote by φ(k, v) the corresponding formula. In Propo-
sition 8, we explain how unions, intersections and translations of sets of the type
↑ Ik(v) are done and what are the complexities of those operations.

Proposition 8 ([5]). Given two sets Ik(v) = {x1, . . . ,xn}, for some n ∈ N,
and Ik(v′) = {y1, . . . ,ym}, for some m ∈ N, such that their upward closures are
expressed respectively by φ(k, v) and φ(k, v′), we have:

1. Union: the set X =↑ Ik(v)∪ ↑ Ik(v′) is expressed thanks to the formula

ψ =
∨

1≤i≤n+m

(t1 ≥ zi1) ∧ . . . ∧ (td ≥ zid)



24 T. Brihaye and A. Goeminne

where zi = xi if 1 ≤ i ≤ n and zi = yi−n if n + 1 ≤ i ≤ n + m. Thus
|ψ| = |φ(k, v)|+|φ(k, v′)| and this operation is done in O(|φ(k, v)|+|φ(k, v′)|).

2. Intersection: the set X =↑ Ik(v)∩ ↑ Ik(v′) is expressed thanks to the for-
mula

ψ =
∨

1≤i≤n

∨

1≤j≤m

(t1 ≥ max{xi1, y
j
1}) ∧ . . . ∧ (td ≥ max{xid, y

j
d}).

Thus |ψ| = |φ(k, v)| · |φ(k, v′)| and this operation is done in O(|φ(k, v)| ·
|φ(k, v′)|).

3. Translation: the set X =↑ Ik(v) + c is expressed thanks to the formula

ψ =
∨

1≤i≤n

(t1 ≥ xi1 + c1) ∧ . . . ∧ (td ≥ xid + cd).

Thus |ψ| = |φ(k, v)| and this operation is done in O(|φ(k, v)|).

Even if the sets Ik(v) and Ik(v′) are minimal, an union or an intersection
as described in Statements 1 and 2 in Proposition 8 may produce a formula ψ
such that set gen(ψ) is not minimal. Therefore we consider the minimization of
a set of generators in order to obtain a (minimal) new set of generators that
encodes a new formula φ′ in such a way that [[φ′]] = [[φ]] and |φ′| is as small as
possible. Notice that the translation operation preserves the minimality of the
set of generators.

Proposition 9 ([5]). If an upward closed set X is expressed by φ with G =
gen(φ) and X ′ = minimal(X), then G′ = minimal(G) can be computed in
O(|φ|2).

Remark 4. Notice that in the previous proposition, as X is upward closed, G′ =
minimal(G) = minimal(↑ G) = minimal(X).

The key idea in order to obtain an algorithm at most polynomial in W and
|V | and exponential in d is to ensure that the size of the formulae, and so their
sets of generators, that represent the sets ↑ Ik(v) do not grow too much. The
size of such a formula depends on the number of elements in Ik(v) and the
number of dimensions d. Since for all k ∈ N, Ensurek(v) ⊆ Ensurek+1(v) ⊆

I|V |(v) and |Ensure|V |(v)\{∞}| ≤ (W ·|V |)d, the maximal size of a set Ik(v) =
minimal(Ensurek(v)) is also bounded by (W ·|V |)d. Let |Imax| = Wd ·|V |d be this
(rough) upper-bound.

Proposition 10. For all k ∈ N and v ∈ V1\F, the operation

Ik+1(v) = minimal





⋃

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)





can be computed in O(d2 ·W2d ·|V |2·d+2).
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Proof. Let k ∈ N and v ∈ V1\F. For all v′ ∈ Succ(v), we denote by φ(k, v′)
the formulae that express the sets ↑ Ik(v′). By hypothesis, for all v′ ∈ Succ(v),
|φ(k, v′)| ≤ |Imax| ·d.

– Translations. We first compute the sets ↑ Ik(v′) +w(v, v′) by computing
their associated formulae that we denote by φ(k, v′) +w(v, v′). Notice that
computing each of those formulae can be done in O(|φ(k, v′)|) = O(|Imax| ·d)
and that the obtained formula has a size |φ(k, v′) +w(v, v′)| = |φ(k, v′)|, by
Proposition 8. In conclusion, the computation of all translations is done in
O(|V | · |Imax| ·d).

– Unions. Let us denote by ψ the formula that expresses
⋃

v′∈Succ(v)

↑ Ik(v′) +

w(v, v′) which can be obtained thanks to successive unions inO(
∑

v′∈Succ(v) |φ(k, v
′)+

w(v, v′)|) = O(
∑

v′∈Succ(v) |φ(k, v
′)|) = O(|Imax| ·d · |V |), by Proposition 8.

– Minimization of the set of generators of ψ. It remains to compute

thanks to ψ the set minimal(
⋃

v′∈Succ(v)

↑ Ik(v′)+w(v, v′)) which corresponds

to the minimization of the set of generators of ψ by Remark 4. This can be
done in O(|ψ|2) = O(|Imax|

2 ·d2 · |V |2), by Proposition 9.

In conclusion, the global complexity of computing Ik+1(v) for v ∈ V1\F is
O(W2d ·|V |2d · d2 · |V |2) = O(d2 ·W2d ·|V |2d+2). ⊓⊔

Proposition 11. For all k ∈ N and v ∈ V2\F, the operation

Ik+1(v) = minimal





⋂

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)





can be computed in O(d4 ·W4d ·|V |4d+1).

Proof (Proof of Proposition 11).
Let k ∈ N and v ∈ V2\F. For all v′ ∈ Succ(v), we denote by φ(k, v′) the

formulae that express the sets ↑ Ik(v′). By hypothesis, for all v′ ∈ Succ(v),
|φ(k, v′)| ≤ |Imax| ·d. The line 16 of Algorithm 1 may be replaced by:

1 I = Ik(w) for some w ∈ Succ(v)
2 for v′ ∈ Succ(v) do

3 J =↑ Ik(v′) +w(v, v′)
4 I = minimal(↑ I ∩ J)

5 Ik+1(v) = I

Let us analyze the complexity of those lines. We assume that φ(J) and φ(↑ I)
are the formulae that express the sets J and ↑ I respectively. Thanks to the
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minimization of the set of generators of the corresponding formula in Line 4 ,
the formulae φ(J) and φ(↑ I) have a size at most equal to |Imax| ·d.

– Complexity of Line 3: O(|φ(k, v′)|) = O(|Imax| ·d), by Proposition 8;

– Complexity of Line 4: the intersection is done in O(|Imax|
2 ·d2), by Propo-

sition 8, and generates a formula φ(↑ I ∩ J) of size at most |φ(↑ I ∩ J)| ≤

|Imax|
2 ·d2. The minimization of the set of generators of ↑ I ∩ J is done in

O(|Imax|
4 ·d4), by Proposition 9, and allows to encode a formula of size at

most |Imax| ·d which also expresses ↑ I ∩ J .

– The global complexity of Lines 1 to 5, is |V |·(O(|Imax| ·d)+O(|Imax|
2
d2)+

O(|Imax|
4 ·d4)) = O(|V | · |Imax|

4 ·d4) = O(d4 ·W4d ·|V |4d+1).

⊓⊔

Proof (Proof of Theorem 4). Since the algorithm terminates in less than |V |+1
steps (Proposition 1), the fixpoint algorithm consists of about |V | repetitions
of the procedure between Line 5 and Line 16. This procedure is a for loop on
all the vertices of the game graph which computes essentially either an operation

minimal





⋃

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)



 or minimal





⋂

v′∈Succ(v)

↑ Ik(v′) +w(v, v′)



.

Thus, by Proposition 10 and Proposition 11 the complexity of the fixpoint algo-
rithm is in · O(|V |2 ·max{d2 ·W2d ·|V |2d+2 , d4 ·W4d ·|V |4d+1}) = O(|V |2 · d4 ·
W4d ·|V |4d+1) = O(d4 ·W 4d · |V |4d+3). ⊓⊔

A.3 Synthesis of Lexico-optimal and Pareto-optimal Strategies

In this section, we prove Theorem 5 and Proposition 5.

Theorem 5. Given u ∈ V and c ∈ I∗(u)\{∞}, the strategy σ∗
1 ∈ Σu

1 defined in
Definition 4 is such that for all σ2 ∈ Σu

2 , Cost(〈σ∗
1 , σ2〉u) . c.

To prove Theorem 5, we consider the strategy tree Tσ∗

1
of σ∗

1 and introduce a
labeling function of the tree nodes which allows to keep track some properties on
these nodes. This labeling function and properties are detailed in the following
proposition.

Proposition 12. For u ∈ V and c ∈ I∗(u)\{∞}, if Tσ∗

1
is the strategy tree of

the strategy σ∗
1 as defined in Definition 4 then, there exists a labeling function

τ : Tσ∗

1
−→ N

d such that, τ(u) = c ∈ I∗(u) and, for all hv ∈ Tσ∗

1
such that

|hv| ≥ 1:

1. τ(hv) ∈ I∗(v);

2. If Last(h) ∈ V1 then, (v, τ(hv)) = f∗
Last(h)(τ(h));

3. τ(hv)≤L τ(h)−w(Last(h), v);
4. τ(hv) = min≤L

{x′ ∈ I∗(v) | x′ . c−Cost(hv) ∧ x′ ≤L c−Cost(hv)}.
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Remark 5. The same remark as in Remark 1 is applicable in the context of
Proposition 12. Even if the lexicographic order ≤L is used in the statement
of the properties of the labeling function τ , Proposition 12 holds both for the
lexicographic order and the componentwise order.

The intuition behind the properties on the labeling function τ in Propsosi-
tion 12 is the following one. The first property ensures that the values of τ is one
of the ensured value at the fixpoint in the set corresponding to the last vertex of
the node. The second property ensures that the construction of τ is consistent
with the strategy σ∗

1 . The third property ensures that when we follow a branch
of the tree, the value of τ decreases along it, this to guarantee that the target set
is actually reached. The fourth condition ensures that when we follow a branch
of the tree, at the end, the cost is below c. The most important of them are
summarized in Figure 4.

u . . .

hv

hw

hvv′

hww1

hww2

. . .

. . .

. . .

. . .

τ (u) = c ∈ I∗(u)

If t is v or w: τ (ht) ∈ I∗(t)
τ (ht) . c−Cost(ht)
τ (ht)≤L τ (h)−w(Last(h), t)

v′ = f∗
v (x)[1] with x = min≤L

C(hv)
τ (hvv′) ∈ I∗(v′)
τ (hvv′) . c−Cost(hvv′)
τ (hvv′)≤L τ (hv)−w(v, v′)

∀w′ ∈ Succ(w) : τ (hvw′) ∈ I∗(w′)
τ (hvw′) . c−Cost(hvw′)
τ (hvw′)≤L τ (hv)−w(v, w′)

Fig. 4. Labeling function associated with the strategy tree Tσ∗
1

In order to prove Proposition 12, we need some technical results about the
sets Ik(v) and the functions f∗

v . For all v 6∈ F, for all x ∈ I∗(v)\{∞}, we introduce

the notation Indxv to denote the first index such that x ∈ IInd
x

v (v).

Lemma 3. For all v 6∈ F, if x ∈ I∗(v)\{∞} then, for all ℓ ≥ Indxv , x ∈ Iℓ(v).

This lemma states that if a cost profile x is in the fixpoint I∗(v) for some v
then, this cost profile stays in Ik(v) from its first appearance to the fixpoint.

Proof. Let v 6∈ F and let x ∈ I∗(v)\{∞}. In the rest of the proof we set n = Indxv .
To obtain a contradiction, let us assume that there exists ℓ such that ℓ > n

such that x 6∈ Iℓ(v).
Because ℓ > n and by Proposition 3, x ∈ Ensureℓ(v). Since, by Proposition 4,

x 6∈ Iℓ(v) = minimal(Ensureℓ(v)), there exists x∗ ∈ Ensureℓ(v) such that x∗ < x.
Once again, by Proposition 3, x∗ ∈ Ensure∗(v). But, we have assumed that
x ∈ I∗(v) and by Theorem 8 we have that I∗(v) = minimal(Ensure∗(v)). Thus
x∗ < x and x∗ ∈ Ensure∗(v) leads to a contradiction with the minimality of x
in Ensure∗(v). ⊓⊔
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Lemma 4. For all v ∈ V1\F, for all x ∈ I∗(v)\{∞}, if (v′,x′) = f∗
v (x) then,

x′ ∈ I∗(v′) and x′ = x−w(v, v′).

Proof. In the proof we set n = Indx

v .
By construction and Proposition 4, x = x′+w(v, v′), x ∈ In(v) = minimal(Ensuren(v))

and x′ ∈ In−1(v′) = minimal(Ensuren−1(v′)). The second part of the assertion
is already proved. Let us prove the other one.

In order to obtain a contradiction, let us assume that there exists ℓ such that
n− 1 < ℓ ≤ k∗ and x′ 6∈ Iℓ(v′).

Since n − 1 < ℓ and by Proposition 3, we have that x′ ∈ Ensureℓ(v′). But
as x′ 6∈ Iℓ(v′) and Iℓ(v′) = minimal(Ensureℓ(v′)) (by Proposition 4), that means
that there exists y′ ∈ Ensureℓ(v′) such that y′ < x′. It follows that y′+w(v, v′) <
x′ +w(v, v′) = x and so y′ +w(v, v′) ∈ Ensureℓ+1(v).

Because n < ℓ+1, thanks to Lemma 3, we have that x ∈ Iℓ+1(v). Moreover, by
Proposition 4, Iℓ+1(v) = minimal(Ensureℓ+1(v)). Thus because y′ +w(v, v) < x
and y′ +w(v, v′) ∈ Ensureℓ+1(v), we obtain a contradiction with the fact that
x is minimal in Ensureℓ+1(v). ⊓⊔

We are now able to prove Proposition 12.

Proof (Proof of Proposition 12).
Let u ∈ V and c ∈ I∗(u)\{∞}. Let T ∗ = Tσ∗

1
. We define τ and prove

Invariant (1) to (4) step by step, by induction on the length of h ∈ T ∗.
Base case If h = uv for some v ∈ V .

– If u ∈ V1: We define τ(uv) = f∗
u(τ(u))[2] = f∗

u(c)[2]. By construction τ(u) =
c ∈ I∗(u) thus f∗

u(τ(u)) is well defined. Since u ∈ V1, v = σ∗
1(u) and by defi-

nition of σ∗
1 , v = f∗

u(x)[1] where x = min≤L
{x′ ∈ I∗(u) | x′ . c−Cost(u) ∧

x′ ≤L c −Cost(u)} = min≤L
{x′ ∈ I∗(u) | x′ . c ∧ x′ ≤L c} = min≤L

C(u).
Since c ∈ C(u), x ∈ I∗(u). But x, c ∈ I∗(u) = minimal(Ensure.(u)), by
Theorem 8, implies x = c. It follows that v = f∗

u(c)[1] = f∗
u(τ(u))[1]. Con-

sequently, Invariants (1) and (2) are satisfied.
Since τ(uv) = f∗

u(τ(u))[2], by Lemma 4, τ(uv) = τ(u)−w(u, v). That implies
Invariant (3).
Since τ(uv) = τ(u) − w(u, v), τ(u) = c and w(u, v) = Cost(uv), we have
that τ(uv) . c−Cost(uv) and τ(uv)≤L c−Cost(uv). Thus, τ(uv) ∈ {x′ ∈
I∗(v) | x′ . c − Cost(uv) ∧ x′ ≤L c − Cost(uv)} = C(uv). It remains to
prove that τ(uv) = min≤L

C(uv). By contradiction, we assume that there
exists y ∈ I∗(v) such that (i) y . c−Cost(uv), (ii) y≤L c−Cost(uv) and
(iii) y<L τ(uv). Let us recall that τ(uv) = τ(u) − w(u, v) and w(u, v) =
Cost(uv). Therefore, by (i), we have that y . c−w(u, v) = τ(u)−w(u, v) =
τ(uv). Finally, as y, τ(uv) ∈ I∗(v) = minimal(Ensure.(v)), by Theorem 8,
y = τ(uv) which is a contradiction with (iii). That concludes the proof of
Invariant (4).

– If u ∈ V2: we define τ(uv) = x where x = min≤L
{x′ ∈ I∗(v) | x′ . c −

Cost(uv) ∧ x′ ≤L c−Cost(uv)} = min≤L
C(uv).
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Since u ∈ V2 and τ(u) = c ∈ I∗(u), by Corollary 1, there exists x′′ ∈ I∗(v)
such that x′′ + w(u, v) . τ(u) = c. That implies x′′ ≤L c − Cost(uv) as
Cost(uv) = w(u, v). In particular, C(uv) 6= ∅ and so τ(uv) ∈ I∗(v) and
Invariants (1) and (4) hold.
Since u ∈ V2, Invariant (2) has not to be satisfied.
It remains to prove Invariant (3). Since τ(uv) ∈ C(uv), τ(uv)≤L c−Cost(uv) =
τ(u)−w(u, v).

Induction Hypothesis Let us assume that Invariant (1) to (4) hold for all
hv ∈ T ∗ such that |hv| ≤ k.

Let us now prove that for all hvv′ ∈ T ∗ such that |hvv′| = k + 1 these
invariants are still satisfied.

– If v ∈ V1: we define τ(hvv
′) = f∗

v (τ(hv))[2]. By induction hypothesis τ(hv) ∈
I∗(v) thus f∗

v (τ(hv)) is well defined. By definition of σ∗
1 , we have that v′ =

σ∗
1(hv) = f∗

v (x)[1] with x = min≤L
{x′ ∈ I∗(v) | x′ . c − Cost(hv) ∧

x′ ≤L c−Cost(hv)} and x = τ(hv) by induction hypothesis.
Moreover by Lemma 4, τ(hvv′) ∈ I∗(v′). That proves Invariant (1) and (2).
Invariant (3) is obtain thanks to the fact that τ(hvv′) = τ(hv)−w(v, v′) (by
Lemma 4).
It remains to prove Invariant (4). Thanks to the induction hypothesis we
obtain:

τ(hvv′) = τ(hv) −w(v, v′)≤L c−Cost(hv)−w(v, v′) = c−Cost(hvv′)

and

τ(hvv′) = τ(hv)−w(v, v′) . c−Cost(hv)−w(v, v′) = c−Cost(hvv′).

Let us assume now that τ(hvv′) 6= min≤L
{x′ ∈ I∗(v′) | x′ . c−Cost(hvv′) ∧

x′ ≤L c − Cost(hvv′)}. That means that there exists y′ ∈ I∗(v′) such that
y′ . c−Cost(hvv′), y′ ≤L c−Cost(hvv′) and y′<L τ(hvv

′).
Then y′ +w(v, v′) ∈↑ I∗(v), thus there exists z′ ∈ I∗(v) such that z′ . y′ +
w(v, v′). Since z′ . y′+w(v, v′) implies z′ ≤L y

′+w(v, v′), we have that z′ .
c−Cost(hv) and z′ ≤L c−Cost(hv). Since y′<L τ(hvv

′) = τ(hv)−w(v, v′),
that leads to z′<L τ(hv) which is a contradiction with the induction hypoth-
esis τ(hv) = min≤L

{x′ ∈ I∗(v) | x′ . c−Cost(hv) ∧ x′ ≤L c−Cost(hv)}.

– If v ∈ V2: we define τ(hvv′) = x where x = min≤L
{x′ ∈ I∗(v′) | x′ .

c − Cost(hvv′) ∧ x′ ≤L c − Cost(hvv′)}. Since v ∈ V2 and τ(hv) ∈ I∗(v),
by Corollary 1, there exists x′′ ∈ I∗(v′) such that x′′ + w(v, v′) . τ(hv).
Which implies x′′ + w(v, v′)≤L τ(hv). Moreover, by induction hypothesis,
x′′ . c−Cost(hv)−w(v, v′) = c−Cost(hvv′) and x′′ ≤L c−Cost(hvv′).
Therefore τ(hvv′) and x′′ are in the set C(hvv′) = {x′ ∈ I∗(v′) | x′ .
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c −Cost(hvv′) ∧ x′ ≤L c −Cost(hvv′)}. So, in particular τ(hvv′) ∈ I∗(v′)
and Invariant (1) is satisfied. Moreover, as τ(hvv′) is the minimum of the
elements of the set C(hvv′), we have that τ(hvv′)≤L x

′′ ≤L τ(hv)−w(v, v′).
We can conclude that Invariants 3 and 4 are satisfied. As v ∈ V2, the second
invariant has not to be satisfied.

⊓⊔

Before proving Theorem 5 we still need two technical results.

Lemma 5. For all v ∈ V1\F, for all x ∈ I∗(v)\{∞}, if (v′,x′) = f∗
v (x) then,

Indx
′

v′ < Indxv .

Proof. We set n = Indx

v and n′ = Indx
′

v′ .
By construction, we have that x = x′+w(v, v′), x ∈ In(v) and x′ ∈ In−1(v′).

Thus, n′ ≤ n− 1 holds by definition of Indx
′

v′ . ⊓⊔

Lemma 6. For all v ∈ V2\F, for all x ∈ I∗(v)\{∞}, for all v′ ∈ Succ(v)
and for all x′ ∈ I∗(v′) such that x′ + w(v, v′)≤L x, either, (i) x′<L x or, (ii)

Indx
′

v′ < Indxv .

Proof. Let v ∈ V2\F, x ∈ I∗(v)\{∞}, v′ ∈ Succ(v) and x′ ∈ I∗(v′) such that
x′ +w(v, v′)≤L x.

To obtain a contradiction, we assume that ¬(x′<L x) and Indx
′

v′ ≥ Indxv .
Since x′ ≤L x by hypothesis, ¬(x′<L x) implies x′ = x. Therefore, w(v, v′) = 0.

Let n = Indxv , by definition x ∈ In(v) and by Proposition 4, x ∈ Ensuren(v).
Since w(v, v′) = 0, x′ = x ∈ Ensuren−1(v′). In conclusion, the contradiction we

were looking for is given by Indx
′

v′ ≤ n− 1 < Indxv . ⊓⊔

We are now able to prove Theorem 5. This proof exploit the notions of tree
and strategy tree already defined in Appendix A.1.

Proof (Proof of Theorem 5). Let u ∈ V and c ∈ I∗(u)\{∞}. Let σ∗
1 ∈ Σu

1 as
defined in Definition 4. Let us consider the strategy tree Tσ∗

1
.

The first step of the proof is to prove that all branches of Tσ∗

1
are finite and

end with a node n such that Last(n) ∈ F.
Let us proceed by contradiction and assume that there exists a branch b =

n0n1n2 . . . which is infinite. By Statement 3 of Proposition 12, we know that the
sequence (τ(nk))k∈N is non increasing w.r.t. ≤L and it is lower bounded by 0. It
follows that:

∃ξ ∈ N such that ∀ℓ ∈ N, τ(nξ) = τ(nξ+ℓ). (8)

Either there exists ℓ ∈ N such that Last(nξ+ℓ) ∈ F which contradicts the fact
that branch b is infinite. Or, for all ℓ ∈ N,

Ind
τ(nξ+ℓ+1)

Last(nξ+ℓ+1)
< Ind

τ(nξ+ℓ)

Last(nξ+ℓ)
.

Let hv = nξ+ℓ+1 then, h = nξ+ℓ.
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– If Last(h) ∈ V1, by Statement 2 of Proposition 12 we have (v, τ(hv)) =

f∗
Last(h)(τ(h)). Moreover, by Lemma 5, we obtain Indτ(hv)v < Ind

τ(h)
Last(h).

– If Last(h) ∈ V2, by Statement 3 of Proposition 12, we have that τ(hv) +
w(Last(h), v)≤L τ(h). Additionnaly, by Lemma 6, either τ(hv)<L τ(h) which

is assumed to be impossible by Eq. (8) or Indτ(hv)
v < Ind

τ(h)
Last(h).

That means that the sequence
(

Ind
τ(nξ+ℓ)

Last(nξ+ℓ)

)

ℓ∈N

is strictly decreasing w.r.t.

the classical order < on the natural numbers and is lower bounded by 0. It fol-
lows that such an infinite branch cannot exist.

In what precedes, we proved that F is reached whatever the behavior of P2,
in particular each branch b = n0n1 . . . nk ends in a node nk which is a leaf,
and such that Last(nk) ∈ F. Thus, τ(nk) = 0. Moreover, if nk = hv, the cost
of the branch corresponds to Cost(hv) and by Proposition 12, we have that
τ(hv) . c−Cost(hv). That inequality implies that Cost(hv) . c. ⊓⊔

In the first part of this section we proved, given u ∈ V and c ∈ I∗(u)\{∞},
how to obtain a startegy σ∗

1 of P1 that ensures c from u (see Definition 4 and
Theorem 5). Thus, in particular, σ∗

1 is both a lexico-optimal strategy from u and
a c-Pareto-optimal strategy from u. However, σ∗

1 requires finite-memory.
In the remainder of this section, we prove that if we consider the lexicographic

order, the strategy ϑ∗1, given in Proposition 5, is a positional lexico-optimal
strategy from u.

Proposition 5. If . is the lexicographic order, for u ∈ V and c ∈ I∗(u)\{∞},
the strategy ϑ∗1 defined as: for all hv ∈ Hist1(u), ϑ

∗
1(hv) = f∗

v (x)[1] where x is
the unique cost profile in I∗(v), is a positional lexico-optimal strategy from u.

We now prove that the strategy ϑ∗1, as defined in Proposition 5, is a lexico-
optimal strategy from u. We proceed in the same way as we proved that σ∗

1

ensures c from u: we prove that a labeling function of the strategy tree Tϑ∗

1
exists

and has the same kind of properties as in Proposition 12. From that follows, for
the same arguments as these exploited in the proof of Theorem 5, that ϑ∗1 is a
lexico-optimal strategy from u.

Proposition 13. If . is the lexicographic order, for u ∈ V and c ∈ I∗(u)\{∞},
if Tτ∗

1
is the strategy tree of the strategy ϑ∗1 as defined in Proposition 5 then,

there exists a labeling function τ : Tϑ∗

1
−→ N

d such that, τ(u) = c ∈ I∗(u) and,
for all hv ∈ Tϑ∗

1
such that |hv| ≥ 1:

1. τ(hv) ∈ I∗(v);
2. If Last(h) ∈ V1 then, (v, τ(hv)) = f∗

Last(h)(τ(h));

3. τ(hv)≤L τ(h)−w(Last(h), v);
4. τ(hv)≤L c−Cost(hv).

Proof. Let u ∈ V and c ∈ I∗(u)\{∞}. Let T ∗ = Tϑ∗

1
. We define τ and prove

Invariant (1) to (4) step by step, by induction on the length of h ∈ T ∗.
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Before beginning the proof, we recall that, because we consider the lexico-
graphic order, each time we consider some x,x′ ∈ I∗(v) for some v ∈ V , we have
that x = x′ since I∗(v) is a singleton.

Base case If h = uv for some v ∈ V .

– If u ∈ V1: we define τ(uv) = f∗
u(τ(u))[2]. By hypothesis, τ(u) = c ∈ I∗(u) so

f∗
u(τ(u)) is well defined. Let us prove that the invariants are satisfied.
• Invariant (1). By Lemma 4, as τ(uv) = f∗

u(τ(u))[2], τ(uv) ∈ I∗(v).
• Invariant (2). By construction of T ∗, v = ϑ∗1(u) and by definition of ϑ∗1,
ϑ∗1(u) = f∗

1 (x)[1] where x is the only cost profile in I∗(u). Thus, x = c.
Finally, since τ(u) = c, we obtain that v = f∗

u(τ(u))[1].
• Invariants (3) and (4). Since τ(uv) = f∗

u(τ(u))[2], by Lemma 4, τ(uv) =
τ(u)−w(u, v). Moreover, because τ(u) = c and w(u, v) = Cost(uv), we
also have that τ(uv) = c−Cost(uv).

– If u ∈ V2: we define τ(uv) = x where x is the only cost profile in I∗(v). Let
us prove that the invariants are satisfied.
• Invariant 1. We have that τ(uv) ∈ I∗(v) by construction.
• Invariant 2. It does not have to be satisfied since u ∈ V2.
• Invariants 3 and 4. We have that v ∈ Succ(u) and τ(u) ∈ I∗(u), thus
by Corollary 1, there exists x′ ∈ I∗(v) such that x′ + w(u, v)≤L τ(u).
But, x,x′ ∈ I∗(v) implies that x = x′ (I∗(v) is a singleton). Moreover
τ(uv) = x, it follows that τ(uv)≤L τ(u)−w(u, v). Finally, since τ(u) = c
and w(u, v) = Cost(uv), we also obtain that τ(uv)≤L c−Cost(uv).

Induction Hypothesis Let us assume that Invariant (1) to (4) hold for all
hv ∈ T ∗ such that |hv| ≤ k.

Let us now prove that for all hvv′ ∈ T ∗ such that |hvv′| = k + 1 those
invariants are still satisfied.

– If v ∈ V1: we define τ(hvv
′) = f∗

v (τ(hv))[2]. By induction hypothesis, τ(hv) ∈
I∗(v), so f∗

v (τ(hv)) is well defined. We have that v′ = ϑ∗1(hv) and by definition
of ϑ∗1, ϑ

∗
1(hv) = f∗

v (x)[1] with x ∈ I∗(v). Since we consider the lexicographic
order, I∗(v) is a singleton and x = τ(hv). Moreover, by Lemma 4, τ(hvv′) ∈
I∗(v′). It follows that Invariants (1) and (2) are satisfied.
Invariant (3) is obtained thanks to Lemma 4 and the fact that τ(hvv′) =
τ(hv)−w(v, v′). It remains to prove that τ(hvv′)≤L c−Cost(hvv′) (Invari-
ant 4). By induction hypothesis, we know that τ(hv)≤L c−Cost(hv). Since
τ(hvv′) = τ(hv)−w(v, v′), we have: τ(hvv′) = τ(hv)−w(v, v′)≤L c−Cost(hv)−
w(v, v′) by induction hypothesis. The fact thatCost(hv)−w(v, v′) = Cost(hvv′)
concludes the proof.

– if v ∈ V2: we define τ(hvv′) = x where x is the only cost profile in I∗(v′).
Notice that in this way, τ(hvv′) ∈ I∗(v′) (Invariant 1) is already satisfied.
Since v ∈ V2, we do not have to check if Invariant (2) holds.
As by induction hypothesis τ(hv) ∈ I∗(v), we have by Corollary 1 that there
exists x′ ∈ I∗(v′) such that x′ +w(v, v′)≤L τ(hv). But since we consider the
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lexicographic order, the set I∗(v′) is a singleton, meaning that x = x′. The
fact that x = τ(hvv′) allows to conclude that Invariant 3 is satisfied.
By what we have just proved τ(hvv′)≤L τ(hv)−w(v, v′) and τ(hv)−w(v, v′)≤L c−
Cost(hv)−w(v, v′) = c−Cost(hvv′) by induction hypothesis. It is exactly
what Invariant (4) states.

⊓⊔

B Additional content of Section 4: Constrained Existence

Proposition 14. If . is the componentwise order, the constrained existence
problem is PSpace-complete, even if d = 2 and |F | = 1.

PSpace-easiness of the constrained existence problem Proposition 2 al-
lows us to prove that the constrained existence problem is in APTime. The
alternating Turing machine works as follows: all vertices of the game owned by
P1 (resp. P2) correspond to disjunctive states (resp. conjunctive states). A path
of length |V | is accepted if and only if, (i) the target set is reached along that
path and (ii) the sum of the weights until a element of the target set is ≤C x. If
such a path exists, there exists a strategy of P1 that ensures the cost profile x.
This procedure is done in polynomial time and since APTime = PSpace, we
get the result.

The hardness of Proposition 14 is obtained thanks to a polynomial reduc-
tion from the Quantified Subset-Sum problem which is proved PSpace-
complete [12, Lemma 4]. We begin by providing some intuition on the PSpace-
hardness and we conclude this section by providing a formal proof of this result.

x1

x1
1

x0
1

x2

x1
2

x0
2

x3 . . . xn

x1
n

x0
n

y

(a1, 0)

(0, a1)

(a2, 0)

(0, a2)

(an, 0)

(0, an)

Fig. 5. Initialized game used in the reduction for the PSpace-hardness

PSpace-hardness of the constrained existence problem In the same spirit
as for the QBF problem [11], the Quantified Subset-Sum problem can be seen
as a two-player game in which two players (Player ∃ and Player ∀) take turn
in order to assign a value to the variables x1, . . . , xn: Player ∃ (resp. Player ∀)
chooses the value of the variables under an existential quantifier (resp. universal
quantifier). When a player assigns a value 1 to a variable xk, 1 ≤ k ≤ n, this
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player selects the natural number ak and he does not select it if xk is assigned to
0. The goal of Player ∃ is that the sum of the selected natural numbers is exactly
equal to T while the goal of Player ∀ is to avoid that. Thus, with this point of
view, the formula Ψ is true if and only if Player ∃ has a winning strategy.

In order to encode the equality presents in the Quantified Subset-Sum prob-
lem, we use the two inequality constraints in a two-player two-weighted game.
The arena of the game is given in Figure 5, P1 aka Player ∃ (resp. P2 aka Player ∀)
owns the rounded (resp. rectangular) vertices corresponding to variables under
an existential (resp. universal) quantifier. The target set is only composed of the
vertex y. When a player assigns the value 1 to a variable xk, 1 ≤ k ≤ n, the
resulting weight of this choice is (ak, 0), while if he assigns the value 0, the weight
is (0, ak). In this way, if we sum all those weights, we have on the first component
the sum of the selected natural numbers and on the second component the sum
of the not selected natural numbers. Thereby, there exists a strategy of P1 that
ensures the cost profile (T,

∑

1≤i≤n ai − T ) if and only if the formula Ψ is true.
Notice that asP1 can consider the previous assignations of variables x1, . . . , xk−1

to choose the assignation of a variable xk to 0 or 1, the resulting strategy needs
finite-memory.

Proof (Formal proof of the PSpace-hardness).
For all odd (resp. even) numbers k, 1 ≤ k ≤ n, we denote by f∃

k : {0, 1}k−1 −→
{0, 1} (resp. f∀

k : {0, 1}k−1 −→ {0, 1}) the valuation of the variable xk taking into
account the valuation of previous variables x1, . . . , xk−1. We assume that f∃

1 :
∅ −→ {0, 1}. Given a sequence f∃ = f∃

1 , f
∃
3 , . . . and a sequence f∀ = f∀

2 , f
∀
4 , . . .,

we define the function ν(f∃,f∀) : {x1, . . . , xn} −→ {0, 1} such that ν(f∃,f∀)(x1) =

f∃
1 (∅), ν(f∃,f∀)(x2) = f∀

2 (ν(f∃,f∀)(x1)), ν(f∃,f∀)(x3) = f∃
3 (ν(f∃,f∀)(x1)ν(f∃,f∀)(x2)),

. . . We also define the set S(f∃, f∀) = {p | ν(f∃,f∀)(xp) = 1}.

Thanks to these notations we rephrase the Quantified Subset-Sum prob-
lem as: does there exist a sequence of functions f∃ = f∃

1 , f
∃
3 , . . . such that for all

sequences f∀ = f∀
2 , f

∀
4 , . . .,

∑

p∈S(f∃,f∀) ap = T ?

We now describe the reduction from the Quantified Subset-Sum problem
to the constrained existence problem.

TheA2 = (V1, V2, E,w) of the initialized 2-weighted reachability game (G2, v0) =
(A2,F,Cost) is given in Figure 5. Formally, the game is build as follows:

– V1 is composed by the following vertices: a vertex y, for each variable xp
under an existential quantifier there is a vertex xp and finally for all ap ∈ I

there are two vertices x0p and x1p, ;
– V2 is the set of vertices denoted by xp such that the variable xp is under an

universal quantifier. Notice that in Figure 5 we assume that n is odd, and
so xn is under an existential quantifier.

– E is composed of the edges of the form:
• (xℓ, x

0
ℓ ) and (xℓ, x

1
ℓ), for all 1 ≤ ℓ ≤ n;

• (x1ℓ , xℓ+1) and (x0ℓ , xℓ+1), for all 1 ≤ ℓ ≤ n− 1;
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• (x1n, y), (x
0
n, y) and (y, y).

– the weight function w is defined as:
• w(xℓ, x

1
ℓ ) = (aℓ, 0) and w(xℓ, x

0
ℓ) = (0, aℓ), for all 1 ≤ ℓ ≤ d;

• for all the other edges e ∈ E, w(e) = (0, 0).
– F = {y};
– v0 = x1.

We prove the following equivalence.
There exists a sequence f∃ = f∃

1 , f
∃
3 , . . . such that for all sequences f∀ =

f∀
2 , f

∀
4 , . . .,

∑

p∈S(f∃,f∀) ap = T if and only if there exists a finite-memory strat-
egy σ1 of P1 from x1 such that for all strategies σ2 of P2 from x1,
Cost(〈σ1, σ2〉x1

)≤C(T,
∑

1≤p≤n ap − T ).

Remark Before proving this equivalence, let us notice that:

1. For each sequence f∃ = f∃
1 , f

∃
3 , . . . (resp. each sequence f∀ = f∀

2 , f
∀
4 , . . .),

there exists a corresponding finite-memory strategy σ1 of P1 (resp. σ2 of P2)
in (G2, x1);

2. For each finite-memory strategy σ1 of P1 (resp. each strategy σ2 of P2), there
exists a corresponding sequence f∃ = f∃

1 , f
∃
3 , . . . (resp. f

∀ = f∀
2 , f

∀
4 , . . .).

Construction of strategies of Statement 1. Let f∃ = f∃
1 , f

∃
3 , . . . and f∀ =

f∀
2 , f

∀
4 , . . .. We define σ1: for all 1 ≤ ℓ ≤ n such that ℓ is odd, σ1(x1) = xi1

if f∃
1 (∅) = i and σ1(x1v1x2v2 . . . xℓ) = xiℓ if f∃

ℓ (v1v2 . . . vℓ−1) = i with, for all
1 ≤ p ≤ ℓ, vp ∈ {x1p, x

0
p} and vp = 1 if vp = x1p and vp = 0 otherwise. The

strategy σ2 is defined exactly in the same way for all 1 ≤ ℓ ≤ n such that ℓ is
even, except that f∃

ℓ is replaced by f∀
ℓ .

Construction of strategies of Statement 2. Let σ1 be a finite-memory strat-
egy of P1 and σ2 be a strategy of P2. We build f∃ as follows: f∃

1 (∅) = i if
σ1(x1) = xi1 and, for all 1 ≤ ℓ ≤ n such that ℓ is odd, f∃

ℓ (v1 . . . vℓ−1) = i if
σ1(x1v1x2v2 . . . xℓ) = xiℓ with for all 1 ≤ p ≤ ℓ − 1, vp ∈ {0, 1} and vp = x1p if

vp = 1 and vp = x0p otherwise. The f∀
ℓ are defined exactly in the same way for

all 1 ≤ ℓ ≤ n such that ℓ is even and by replacing σ1 by σ2.

We come back to the proof of the equivalence.
(⇒) We assume that there exists a sequence f∃ = f∃

1 , f
∃
3 , . . . such that for all

sequences f∀ = f∀
2 , f

∀
4 , . . .,

∑

p∈S(f∃,f∀) ap = T .

We consider σ1 as defined previously (Remark, Statement 1). We have to
prove that for all strategies σ2 of P2 : Cost(〈σ1, σ2〉x1

)≤C(T,
∑

1≤p≤n ap − T ).
Let σ2 be a strategy of P2. As explained in Remark, Statement 2, we have

that σ2 corresponds to some sequence f∀ = f∀
2 , f

∀
4 , . . .. Thus, by construction of

the game arena and by hypothesis we have:
Cost1(〈σ1, σ2〉x1

) =
∑

p∈S(f∃,f∀) ap = T and Cost2(〈σ1, σ2〉x1
) =

∑

p6∈S(f∃,f∀) ap =
∑

1≤p≤n ap −
∑

p∈S(f∃,f∀) ap =
∑

1≤p≤n ap − T .

(⇐) Let us assume that there exists a finite-memory strategy σ1 of P1 such that
for all strategies σ2 of P2, Cost(〈σ1, σ2〉x1

)≤C(T,
∑

1≤p≤n ap − T ).
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We define the sequence f∃ = f∃
1 , f

∃
3 , . . . as explained in Remark, Statement 2.

Let f∀ = f∀
2 , f

∀
4 , . . ., we have to prove that

∑

p∈S(f∃,f∀) ap = T .

By Remark, Statement 1, the sequence f∀ corresponds to a strategy σ2 of
P2 in (G2, x1). It follows by hypothesis and construction of the game arena:

– Cost1(〈σ1, σ2〉x1
) =

∑

p∈S(f∃,f∀) ap

– Cost1(〈σ1, σ2〉x1
) ≤ T

and

– Cost2(〈σ1, σ2〉x1
) =

∑

p6∈S(f∃,f∀) ap =
∑

1≤p≤n ap −
∑

p∈S(f∃,f∀) ap

– Cost2(〈σ1, σ2〉x1
) ≤

∑

1≤p≤n ap − T.

Thus, we can conclude that
∑

p∈S(f∃,f∀) ap = T . ⊓⊔
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