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Abstract. We consider lexicographic bi-objective problems on Markov
Decision Processes (MDPs), where we optimize one objective while guar-
anteeing optimality of another. We propose a two-stage technique for
solving such problems when the objectives are related (in a way that we
formalize). We instantiate our technique for two natural pairs of objec-
tives: minimizing the (conditional) expected number of steps to a target
while guaranteeing the optimal probability of reaching it; and maximiz-
ing the (conditional) expected average reward while guaranteeing an op-
timal probability of staying safe (w.r.t. some safe set of states). For the
first combination of objectives, which covers the classical frozen lake en-
vironment from reinforcement learning, we also report on experiments
performed using a prototype implementation of our algorithm and com-
pare it with what can be obtained from state-of-the-art probabilistic
model checkers solving optimal reachability.

Keywords: Markov decision processes · Multi-objective · Synthesis.

1 Introduction

Probabilistic model-checkers, such as Storm [16] or Prism [18], have been de-
veloped to solve the model-checking problem for logics like PCTL and models
like Markov decision processes. These tools can be used to compute strategies
(or schedulers) that maximize the probability of, for instance, reaching a set of
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Fig. 1. In the game of Frozen Lake, a robot moves in a slippery grid. It has to reach
the target (the gem) while avoiding holes in the grid. The robot can no longer move
once in a hole. Part of the grid contains walls and the robot cannot move into them.
The frozen surface of the lake being slippery, when the robot tries to move by picking a
cardinal direction, the next state is determined stochastically over adjacent directions.
For example, trying to move right would result on the robot going to the cell on the
right with probability 0.8 but going up or down with probability 0.1 for each.

states. As a concrete example, they can be used to solve the Frozen Lake problem
shown in Figure 1, where a robot must navigate from an initial point to a target
while avoiding holes in the ice. The ground is frozen and so the movements of the
robot are subject to stochastic dynamics. While model-checkers provide optimal
strategies for the probability of reaching the target, those strategies may not
be efficient in terms of the expected number of steps required to reach it. For
instance, the strategy returned by Storm for the grid given in Fig. 1 requires
on average 345 steps to reach the target, while there are other strategies that
are optimal for reachability that can reach the target in just 34 steps on average.
Indeed, a strategy can be optimal in terms of the probability to reach the target
while (seemingly) behaving like a random walk on the grid (on portions without
holes in particular). In the worst case, one could expect to reach the target after
large number of steps (even on grids where there is a short and direct path to
target), which can be considered useless for practical purposes.5 Therefore, in
this context, we aim to not only maximize the probability of reaching the tar-
get, but also minimize the expected number of steps required to reach it, which
is thus a multi-objective problem. Unfortunately, multi-objective optimization
is not yet standard for probabilistic model checkers and most of them support
it only for specific combinations of some objectives. For instance, Storm can
solve the optimal reachability problem and compute the minimal expected cost
to target, but only for target sets that can be reached with probability one. The
latter is not usually the case in the Frozen Lake problem: the robot may need to

5 In particular, the strategy could be used as a component of some larger approach
dealing with a more challenging problem too difficult for exact methods. In these
cases, such as [7], one frequently relies on machine-learning techniques (e.g. Monte-
Carlo methods or reinforcement learning) that run simulations for a fixed number
of steps. Thus, a strategy that takes needlessly too many steps to reach a target will
not help with learning practical and relevant strategies.
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walk next to a hole, and risk falling into it, in order to reach the target. In this
paper, we demonstrate how to address the problems we have identified with the
Frozen Lake example by leveraging the algorithms implemented in Storm.

We identify a family of bi-objective optimization problems that can be solved
in two steps using readily available model-checking tools. This family of problems
is formalized as follows. Let M be an MDP and Σ(M) the set of all strategies
for it. We study reward functions that map strategies σ ∈ Σ(M) to real numbers
via the induced MC Mσ. Concretely, let f, g : Σ(M) → R. We say a strategy
σ ∈ Σ(M) is f -optimal if f(σ) = supτ∈Σ(M) f(τ) and write Σf for the set of all
f -optimal strategies.

There are multiple ways in which one can approach the problem of finding
optimal strategies with respect to both f and g (see, e.g., [10] and references
therein). In this work, we fix a lexicographic order on the functions. Formally,
we want to compute a strategy σ such that the following holds:

σ ∈ Σf and g(σ) = sup
τ∈Σf

g(τ) (1)

Our contribution. In this paper, we discuss the problem described above for
two concrete cases of f and g. First, we tackle the motivating example from
Frozen Lake and detail how to find strategies that maximize f , the probability
of reaching a set of target states, while minimizing the conditional expected
number of steps to reach them, encoded as g. It is not clear how to obtain an
exact finite representation of the set Σf of all optimal strategies for f . To solve
this problem, we first compute an over-approximation Σover

f of Σf . We then
prune the original MDP in such a way that the set of all strategies in the pruned
MDP is exactly Σover

f . In this context, Σover
f will be the set of strategies that

only play actions used by at least one optimal strategy for reachability. We then
optimize a modified objective g′ in the pruned MDP, that, in turn, optimizes
both f and g in the lexicographic order in the original MDP. The pruned MDP
may contain actions from states that are part of some strategy maximizing the
probability of reaching a target but which (taken together) do not make any
progress towards the target (for example, a self-loop). These actions, however,
are not part of the strategies that optimize g′ in the pruned MDP and hence they
are also not part of the strategies that are returned by our algorithm. Secondly,
we also consider the problem of maximizing the probability of remaining in a safe
set of states, encoded as f , while maximizing the expected mean-payoff along
safe paths, encoded as g. Unlike the case for reachability, in this problem, we
can in fact construct an exact finite representation of Σf in the form of an MDP
(Theorem 2), which we again construct by pruning the original one. Similar to
the reachability case, we then optimize a modified objective g′ in the pruned
MDP. In both of these cases, we prove (in Theorems 1 and 3) that the strategies
optimizing g′ in the pruned MDP, are solutions to Eq. 1.

Note that, the solution to the second problem is related to the shielding [2]
framework and similar works [11,17], where one computes an exact representa-
tion of the set of all optimal strategies for the first objective and then solves
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for the second objective within that space. However, as remarked earlier, it is
unclear how to get an exact representation of Σf in the first problem.

In both cases, our solution to these (lexicographic) bi-objective problems can
be implemented by using two calls to off-the-shelf tools like Storm or PRISM,
thus resulting in a polynomial-time solution. We report on experimental results
for the Frozen Lake example that validate the need and practicality of our ap-
proach. Finally, we discuss other instances of multi-objective problems where
our approach naturally generalizes.

Related works. The strategy synthesis problem in MDPs (or stochastic games,
their 2.5-players extension) can be defined for a wide variety of temporal objec-
tives and quantitative rewards. Multi-objective problems are particularly chal-
lenging, as they need to optimize for multiple, potentially conflicting, goals.
[9] detailed a strategy synthesis algorithm for lexicographic combinations of ω-
regular objectives. This problem has also been studied with model-free, rein-
forcement learning approaches [15]. However, these approaches do not consider
objectives that maximize quantitative rewards, and cannot optimize for proper-
ties such as the time to reach a target. In [6], one can mix LTL objectives with
mean-payoff rewards and in [20] a lexicographic combination of discounted-sum
rewards is considered. Moreover, a discounted semantics of LTL6 is studied in
[1], and can be used as a way to optimize for the time until a target is reached.
Combinations of LTL and total-reward objectives have been considered in works
such as [14] and [12], under assumptions that exclude our problem. Indeed, while
minimizing the time to reach a target can be encoded as optimizing the total-
reward of a slightly modified structure (where costs are 1 at every move before
the target is reached then 0 forever), these works are not directly applicable to
our problem: applying [14] requires the assumption that the optimal probability
to reach a target is 1 in order to minimize the expected time to target, and
[12] searches for a strategy on the Pareto frontier instead of optimizing for a
lexicographic combination of objectives.

Note that minimizing the time to reach a target (a variant of the stochastic
shortest path problem [5]) is only well-defined under the condition that the target
is reached, so that our example requires studying conditional probabilities. This
notion has been studied in single-objective settings, so that for example proba-
bilistic model-checkers can optimize for the (conditional) probability of satisfying
an ω-regular event under the condition that another ω-regular event holds [3]. In
particular, [4] details how to maximize the expected total-reward until a target
is reached, under the assumption that the target is indeed reached with positive
probability. This does not solve our motivating example however, as it may yield
a strategy that is suboptimal for the probability of reaching the target. Finally,
we note that tools such as [8] can handle settings similar to our second example
(optimizing for safety and mean-payoff), but they do not consider conditional
mean-payoff.

6 This allows one to express constraints on the number of steps needed to satisfy an
Until operator.



Bi-Objective Lexicographic Optimization in MDPs 5

Overall, our general two-stage technique covers combinations of objectives
that are subcases of problems previously studied (e.g. in [9]) but it is also ap-
plicable to combinations not previously considered. Interestingly, and to the
best of our knowledge, optimizing for a reachability objective while minimiz-
ing the conditional time to satisfy is not formally covered by previous work on
multi-objective strategy synthesis, and is not an available feature of probabilistic
model-checkers. It may be possible that this problem can be reduced to finding
bias-optimal strategies [13] in a slightly modified MDP. However, this does not
generalize to other objectives.

2 Preliminaries

A probability distribution on a countable set S is a function d : S → [0, 1] such
that

∑
s∈S d(s) = 1. We denote the set of all probability distributions on set S by

D(S). The support of a distribution d ∈ D(S) is Supp(d) = {s ∈ S | d(s) > 0}.

2.1 Markov Chain

Definition 1 (Markov chain). A (discrete-time) Markov chain or an MC is
a tuple M = (S, P ), where S is a countable set of states and P is a mapping
from S to D(S).

For states s, s′ ∈ S, P (s)(s′) denotes the probability of moving from state
s to state s′ in a single transition and we denote this probability P (s)(s′) as
P (s, s′).

For a Markov chain M , a finite path ρ = s0s1 . . . si of length i > 0 is a se-
quence of i+1 consecutive states such that for all t ∈ [0, i−1], st+1 ∈ Supp(P (st)).
We also consider states to be paths of length 0. Similarly, An infinite path is an in-
finite sequence ρ = s0s1s2 . . . of states such that for all t ∈ N, st+1 ∈ Supp(P (st)).
For a finite or infinite path ρ = s0s1 . . ., we denote its (i+1)th state by ρ[i] = si.
We denote the last state of a finite path ρ = s0s1 . . . sn by last(ρ) = sn. Let
ρ = s0s1 . . . si and ρ′ = s′0s

′
1 . . . s

′
j be two paths such that si = s′0. Then, ρ · ρ′

denotes the path s0s1 . . . sis
′
1 . . . s

′
j . For a finite or infinite path ρ = s0s1 . . ., we

denote its i-length prefix as ρ|i = s0s1 . . . si.
For a finite path ρ ∈ PathsM , we use PathsωM (ρ) to denote the set of all paths

ρ′ ∈ PathsωM such that there exists ρ′′ ∈ PathsωM with ρ′ = ρ · ρ′′. PathsωM (ρ) is
called the cylinder set of ρ.

The σ-algebra associated with the MC M is the smallest σ-algebra that
contains the cylinder sets PathsωM (ρ) for all ρ ∈ PathsM . For a state s in S, a
measure is defined for the cylinder sets as –

PM,s(Paths
ω
M (s0s1 . . . si)) =

{∏i−1
t=0 P (st)(st+1) if s0 = s

0 otherwise.

We also have PM,s(Paths
ω
M (s)) = 1 and PM,s(Paths

ω
M (s′)) = 0 for s′ ̸= s. This

can be extended to a unique probability measure PM,s on the aforementioned
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σ-algebra. In particular, if C ⊆ PathsM is a set of finite paths forming pair-
wise disjoint cylinder sets, then PM,s(∪ρ∈CPaths

ω
M (ρ)) =

∑
ρ∈C PM,s(Paths

ω
M (ρ)).

Moreover, if Π ∈ PathsωM is the complement of a measurable set Π ′, then
PM,s(Π) = 1− PM,s(Π

′).

2.2 Markov Decision Process

Definition 2 (Markov decision process). A Markov decision process or an
MDP is a tuple M = (S,A, P ), where S is a finite set of states, A is a finite set
of actions, and P is a (partial) mapping from S ×A to D(S).

P (s, a)(s′) denotes the probability that action a in state s leads to state s′

and we denote this probability P (s, a)(s′) as P (s, a, s′). Note that not all actions
may be legal from a state. Therefore, if an action a is legal from a state s, we
will have

∑
s′∈S P (s, a, s′) = 1. Otherwise, we will have P (s, a, s′) is undefined

(denoted by ⊥) for all s′ ∈ S.
The definitions and notations used for paths in Markov chain can be extended

in the case of MDPs. In an MDP, a path is a sequence of states and actions.
For an MDP M, a (probabilistic) strategy is a function σ : PathsM → D(A)

that maps a finite path ρ to a probability distribution in D(A). For a path
ρ ∈ PathsM and a strategy σ, we will write σ(ρ, a) in place of σ(ρ)(a). A strategy
σ is deterministic if the support of the probability distributions σ(ρ) has size 1.
A strategy σ is memoryless if σ(ρ) depends only on last(ρ), i.e. if σ satisfies that
for all ρ, ρ′ ∈ PathsM, last(ρ) = last(ρ′) ⇒ σ(ρ) = σ(ρ′). We denote the set of all
finite paths in M starting from s following σ by PathsM(s, σ).

An MDP M induced by a strategy σ defines an MC Mσ. Intuitively, this
is obtained by unfolding M using the strategy σ and using the probabilities in
M to define the transition probabilities. Formally, Mσ = (PathsM, Pσ) where
for all paths ρ ∈ PathsM, Pσ(ρ)(ρ · as) = σ(ρ)(a) · P (last(ρ), a)(s). Thus, a
state ρ in PathsM uniquely matches a finite path ρ′ in Mσ where last(ρ′) = ρ.
This way when a strategy σ and a state s is fixed, the probability measure PMσ,s

defined in Mσ is also extended for paths in PathsM. We write the expected value
of a random variable X with respect to the probability distribution PMσ,s as
EMσ,s(X). For the ease of notation, we write PMσ,s and EMσ,s as Pσ,s and Eσ,s

respectively, if the MDP M is clear from the context. Also, we write PathsωMσ
(ρ)

as Cylσ(ρ), if the MDP M is clear from the context.
In the sequel, we make use of (technical) lemmas that follow from the exten-

sive literature on Markov chains and MDPs. However, for completeness, and to
give the reader intuition regarding the presented objectives, we also give proofs
for some of them.

3 Length-Optimal Strategy for Reachability

We begin by considering the multi-objective problem motivated by the game of
frozen lake – the robot tries to reach a target with as few steps as possible while
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not compromising on the probability of reaching a target. More formally, in this
section, we find a strategy in an MDP that minimizes the expected number
of steps to reach some goal states among those strategies that maximize the
probability of reaching the goal states.

We consider a set of target states T ⊆ S in M, and assume that every
state in T is a sink state, that is, it has only one outgoing action to itself with
probability 1. Given a path ρ in an MC M = (S, P ), we use lenT (ρ) to denote
the length of the shortest prefix of ρ that reaches one of the states of T , that is,
lenT (ρ) = i if ρ[i] ∈ T and for all j < i, ρ[j] /∈ T .

For an MDP M = (S,A, P ), let Pσ,s(♢T ) be the probability of reaching
a state in T , starting from s ∈ S, following the strategy σ in M. Then, let
ValM(s) = maxσ Pσ,s(♢T ) be the maximum probability to reach T from s, and
ΣM,s(♢T ) = argmaxσ Pσ,s(♢T ) be the set of all optimal strategies.

Problem statement.

Given an MDP M, an initial state s0 and a set of goal states T , our objective
is to find a strategy that minimizes Eσ,s0(lenT | ♢T ) among the strategies in
ΣM,s0(♢T ), that is, the strategies which maximize Pσ,s0(♢T ).

For the rest of this section, we fix the MDP M = (S,A, P ) and a set of
target states T ⊆ S. Note that, in this case, the functions σ 7→ Pσ,s0(♢T ) and
σ 7→ −Eσ,s0(lenT | ♢T ) correspond to the two functions f and g, respectively,
and the set ΣM,s0(♢T ) corresponds to Σf , described in the introduction (Eq. 1).

3.1 Maximizing Probability to Reach a Target

We denote the set {(s, a) ∈ S × A | ValM(s) =
∑

s′ P (s, a, s′) · ValM(s′)} by
OptM. For s ∈ S, let OptM(s) be the set {a | (s, a) ∈ OptM}. Finally, we use
ΣOpt

M to represent the set of strategies that takes actions according to OptM,
that is, ΣOpt

M = {σ | ∀ρ,∀a ∈ Supp(σ(ρ)); (last(ρ), a) ∈ OptM} .

Lemma 1. For every state s ∈ S and for every a ∈ A,

ValM(s) ≥
∑
s′

P (s, a, s′) · ValM(s′) .

Proof. Suppose, there is a state s ∈ S and an action a ∈ A such that ValM(s) <∑
s′ P (s, a, s′) ·ValM(s′). Now, consider the strategy σ′ that takes action a from

s and then from paths s ·as′ follows a strategy σs′ ∈ ΣM,s′(♢T ) that maximizes
the probability to reach states in T from s′. Formally,

σ′(ρ) =

{
a if ρ = s

σs′(ρ
′) if ρ = s · as′ · ρ′

Then, Pσ′,s(♢T ) =
∑

s′ P (s, a, s′) · Pσs′ ,s
′(♢T ) =

∑
s′ P (s, a, s′) · ValM(s′) >

ValM(s) , which is a contradiction as ValM(s) ≥ Pσ,s(♢T ) for any σ.
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Lemma 2. For every state s ∈ S, ΣM,s(♢T ) ⊆ ΣOpt
M .

Proof. Towards a contradiction, suppose that, there is a strategy σ∗ ∈ ΣM,s(♢T )
such that σ∗ /∈ ΣOpt

M . Then there exists a path ρ and an action a ∈ Supp(σ∗(ρ))
such that (last(ρ), a) ̸∈ OptM. Let last(ρ) = t. Then, from Lemma 1 and the fact
that (t, a) ̸∈ OptM, we get:

ValM(t) >
∑
s′

P (t, a, s′) · ValM(s′) , (2)

and for every other action a′ ̸= a,

ValM(t) ≥
∑
s′

P (t, a′, s′) · ValM(s′) . (3)

Consider the strategy σ∗ that differs from σ∗ only on paths with ρ as prefix: on
every path having ρ as a prefix, σ∗ takes the next action according to a strategy
σt ∈ ΣM,t(♢T ) that maximizes the probability to reach a state in T from t,
whereas, it takes action according to σ∗ on every other path. Formally,

σ∗(ρ′) =

{
σt(ρ

′′) if ρ′ = ρ · ρ′′

σ∗(ρ′) otherwise.

Note that, for every strategy σ, and for all a′ ∈ A, PMσ∗ ,ρ·a′s′(♢T ) ≤ ValM(s′) .

Therefore, Pσ∗,ρ(♢T ) =
∑
a′

(
σ∗(ρ, a′) ·

∑
s′

(
P (t, a′, s′) · Pσ∗,ρ·a′s′(♢T )

))
≤

∑
a′

(
σ∗(ρ, a′) ·

∑
s′

(
P (t, a′, s′) · ValM(s′)

))
<

∑
a′

σ∗(ρ, a′) · ValM(t) [from Eq. 2 and 3]

= ValM(t)

So, Pσ∗,ρ(♢T ) = Pσt,t(♢T ) = ValM(t) > Pσ∗,ρ(♢T ). For a finite path ρ and an
infinite path ρ′, we write ρ ⊑ ρ′ if there exists an infinite path ρ′′ such that
ρ′ = ρ · ρ′′. Now note that, for every strategy σ,

Pσ,s(♢T ) = Pσ,s(ρ
′ |= ♢T ∧ ρ ⊑ ρ′) + Pσ,s(ρ

′ |= ♢T ∧ ρ ̸⊑ ρ′)

= Pσ,s(Cylσ(p)) · Pσ,ρ(♢T ) + Pσ,s(ρ
′ |= ♢T ∧ ρ ̸⊑ ρ′) (4)

Since for any ρ′ such that ρ ̸⊑ ρ′, σ∗(ρ′) = σ∗(ρ′), we have Pσ∗,s(Cylσ(ρ)) is
equal to Pσ∗,s(Cylσ∗(ρ)), and furthermore, Pσ∗,s(ρ

′ |= ♢T ∧ ρ ̸⊑ ρ′) is equal to
Pσ∗,s(ρ

′ |= ♢T ∧ρ ̸⊑ ρ′). Plugging this into Eq. 4 for σ∗ and σ∗, and the fact that
Pσ∗,ρ(♢T ) < Pσ∗,ρ(♢T ), we conclude Pσ∗,s(♢T ) < Pσ∗,s(♢T ), which contradicts
the fact that σ∗ is an optimal strategy.
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3.2 Minimizing Expected Conditional Length to Target

In the following, we propose a simple two-step pruning algorithm to solve the
multi-objective problem defined earlier in this section. Towards that direction,
we first modify the given MDP M in the following manner.

Definition 3. We define the pruned MDP M′ = (S′, A, P ′) with S′ = {s ∈ S |
ValM(s) > 0} and P ′ constructed from P in the following way:

P ′(s, a, s′) =

{
P (s, a, s′) · ValM(s′)

ValM(s) if (s, a) ∈ OptM and s, s′ ∈ S′

⊥ otherwise.

Note that M′ = (S′, A, P ′) is well-defined, since P ′ is a probability distribu-
tion. Indeed,

∑
s′ P

′(s, a, s′) =
∑

s′ P (s, a, s′) · ValM(s′)
ValM(s) = ValM(s)

ValM(s) = 1.
From the construction of M′, we get that the set Σ(M′) of all strategies

in M′ is, in fact, ΣOpt
M . Following similar notation as introduced earlier, for a

strategy σ ∈ Σ(M′), we write PM′
σ,s

and EM′
σ,s

as P′
σ,s and E′

σ,s, respectively.
Also, we write PathsωM′

σ
(ρ) as Cyl′σ(ρ).

We now have all the ingredients to present the algorithm:

Algorithm 1
Input: M = (S,A, P ), s0 ∈ S and T ⊆ S.
1: Create MDP M′ = (S′, A, P ′) according to Definition 3.
2: Find a strategy σ∗ that minimizes the expected length in M′:

σ∗ ∈ argminσ E′
σ,s0(lenT ) .

3: return σ∗.

Note that, the strategies present in the pruned MDP M′ contain every strat-
egy of M that optimizes the probability of reaching a target (Lemma 2). To
show that Algorithm 1 indeed returns a length-optimal strategy maximizing the
probability of reachability in M, we need to show the following:

– the strategy given by Algorithm 1 is indeed a strategy that optimizes the
probability to reach a target, and

– for every strategy σ ∈ ΣM,s0(♢T ), the conditional expected length to a tar-
get state Eσ,s0(lenT | ♢T ) in M is the same as E′

σ,s0(lenT ) in M′. Therefore,
it is enough to minimize the expected length in M′.

We first show a relation between the measures of cylinder sets in M and M′.

Lemma 3. For every strategy σ ∈ ΣOpt
M and for every path ρ = s0a0s1 . . . sn ∈

((S′ \ T ) ·A)∗T ∩ PathsM′(s0, σ), P′
σ,s0(Cyl

′
σ(ρ)) =

Pσ,s0 (Cylσ(ρ))

ValM(s0)
.
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Proof. As sn ∈ T , ValM(sn) = 1. So,

P′
σ,s0(Cyl

′
σ(ρ)) =

n−1∏
i=0

σ(ρ|i, ai) · P ′(si, ai, si+1)

=

n−1∏
i=0

σ(ρ|i, ai) · P (si, ai, si+1) ·
ValM(si+1)

ValM(si)

= Pσ,s0(Cylσ(ρ)) ·
ValM(sn)

ValM(s0)
=

Pσ,s0(Cylσ(ρ))

ValM(s0)
.

Using Lemma 3 we will prove that (cf. Corollary 1) every strategy that max-
imizes the probability of reaching a target state in M, reaches a target state in
M′ with probability 1, and vice versa.

Lemma 4. For every strategy σ ∈ ΣOpt
M , P′

σ,s0(♢T ) =
Pσ,s0

(♢T )

ValM(s0)
.

Proof. Note that, PathsM′(s0)∩ ((S′ \T ) ·A)∗T = PathsM(s0)∩ ((S \T ) ·A)∗T ,
since in the construction of M′ we only remove states of M from which no state
in T is reachable. Therefore, using Lemma 3, we get:

P′
σ,s0(♢T ) =

∑
ρ∈PathsM′ (s0)∩((S′\T )A)∗T

P′
σ,s0(Cyl

′
σ(ρ))

=
∑

ρ∈PathsM(s0)∩((S\T )A)∗T

Pσ,s0(Cylσ(ρ))

ValM(s0)

=
Pσ,s0(♢T )
ValM(s0)

.

Corollary 1. For every σ ∈ Σ(M), σ ∈ ΣM,s0(♢T ) iff P′
σ,s0(♢T ) = 1.

Since for every σ ∈ ΣM,s0(♢T ), Pσ,s0(♢T | ♢T ) = 1, we can write:

Eσ,s0(lenT | ♢T ) =
∞∑
r=0

r · Pσ,s0({ρ | ρ |= ♢T ∧ lenT (ρ) = r})
Pσ,s0(♢T )

=

∞∑
r=0

r ·
∑

ρ∈PathsM(s0)∩((S\T )A)∗T :lenT (ρ)=r

Pσ,s0(Cylσ(ρ))

ValM(s0)
.

We now relate the expected length of reaching a target state in M′ with the
expected conditional length of reaching a target state in M.

Lemma 5. For any strategy σ ∈ ΣM,s0(♢T ), E′
σ,s0(lenT ) = Eσ,s0(lenT | ♢T ).

Proof. Using PathsM′(s0) ∩ ((S′ \ T ) · A)∗T = PathsM(s0) ∩ ((S \ T ) · A)∗T ,
Lemma 3 and Corollary 1, we get:

E′
σ,s0(lenT ) =

∞∑
r=0

r · P′
σ,s0({ρ | ρ |= ♢T ∧ lenT (ρ) = r})

=
∞∑
r=0

r ·
∑

ρ∈PathsM′ (s0)∩((S′\T )A)∗T :lenT (ρ)=r

P′
σ,s0(Cyl

′
σ(ρ))
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=

∞∑
r=0

r ·
∑

ρ∈PathsM(s0)∩((S\T )A)∗T :lenT (ρ)=r

Pσ,s0(Cylσ(ρ))

ValM(s0)

= Eσ,s0(lenT | ♢T ) .

Finally, we prove the correctness of Algorithm 1:

Theorem 1. Given an MDP M = (S,A, P ), a state s0 ∈ S and T ⊆ S, let σ∗

be the strategy returned by Algorithm 1. Then,

1. Pσ∗,s0(♢T ) = ValM(s0).
2. Eσ∗,s0(lenT | ♢T ) = min

σ∈ΣM,s0
(♢T )

Eσ,s0(lenT | ♢T )

Proof. From Corollary 1, we get that E′
σ,s0(lenT ) ̸= ∞ iff σ ∈ ΣM,s0(♢T ).

So if σ∗ /∈ ΣM,s0(♢T ), then E′
σ∗,s0(lenT ) = ∞. But since for any strategy

σ in ΣM,s0(♢T ), E′
σ,s0(lenT ) < ∞, it contradicts the fact that σ∗ minimizes

E′
σ,s0(lenT ). Therefore, σ∗ ∈ ΣM,s0(♢T ), and hence Pσ∗,s0(♢T ) = ValM(s0).

From Lemma 5, we get for any σ ∈ ΣM,s0(♢T ),

Eσ,s0(lenT | ♢T ) = E′
σ,s0(lenT )

=⇒ argmin
σ∈ΣM,s0

(♢T )

Eσ,s0(lenT | ♢T ) = argmin
σ∈ΣM,s0

(♢T )

E′
σ,s0(lenT )

Hence, σ∗ ∈ argminσ∈ΣM,s0
(♢T ) Eσ,s0(lenT | ♢T ) and therefore, we conclude,

Eσ∗,s0(lenT | ♢T ) = min
σ∈ΣM,s0

(♢T )
Eσ,s0(lenT | ♢T ).

Note that, constructing the MDP M′ (Line 1 of Algorithm 1) takes polyno-
mial time. Finding a strategy that optimizes E′

σ,s0(lenT ) also takes polynomial
time [5]. Therefore, the overall algorithm terminates in polynomial time.

4 Experimental Results

We have made a prototype implementation of the pruning-based algorithm (Al-
gorithm 1) described in Section 3. In this section, we compare the performance
(expected number of steps to reach the goal states) of our algorithm with the
strategies generated by Storm that (only) maximize the probability of reaching
the goal states.

In our MDP, when the robot tries to move by picking a direction, the next
state is determined randomly over the neighbouring positions of the robot, ac-
cording to the following distribution weights: the intended direction gets a weight
of 10, and other directions that are not a wall and not the reverse direction of
the intended one get a weight of 1, the distribution is then normalized so that
the weights sum up to 1.

We generated 100 layouts of size 10 × 10 where we placed walls in (i) each
cell in the border of the grid and (ii) with probability 0.1, at each of other cells.
We then placed holes in the remaining empty cells with the same probability.
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layouts (M) ValM(s0,♢T ) Shortest distance vDistOpt vStorm

1 0.66 9 76.48 76.48
2 0.52 18 299.75 629.16
3 1.00 2 2.40 12.12
4 1.00 3 3.44 34.47
5 1.00 6 7.71 137.56
6 0.68 10 264.04 9598.81
7 1.00 5 112.69 9367.02
8 0.91 10 11.49 5879.63
9 1.00 3 3.66 5711.76
10 0.91 5 12.89 149357.57

Table 1. Comparison of the expected conditional length to reach the target for the
strategies given by Algorithm 1 (vDistOpt) and Storm (vStorm) on some of the ran-
domly generated layouts, sorted by their ratio. ‘Shortest distance’ refer to the length of
the shortest path to the target (without considering the stochastic dynamics of Frozen
Lake) and ‘ValM(s0,♢T )’ represents the maximum probability of reaching the target
from the initial position of the robot (s0).

Finally, we chose the position of the target and the starting position from the
remaining empty cells uniformly at random.

From these layouts, we constructed MDPs described in the Prism language,
a format supported by Storm. For each MDP, we extracted two strategies: (i)
a strategy σStorm ∈ ΣM,s(♢T ) that is produced by Storm that optimizes the
probability to reach the target, and (ii) σDistOpt, a strategy that is derived from
Algorithm 1. Note that, both of these strategies are optimal for the probability
to reach the target. However, the first strategy does not focus on optimizing the
length to reach the target. For both of these strategies, we calculate the expected
conditional distance to the target in their induced Markov chains. Table 1 reports
on our experimental results for a representative subset of the 100 layouts we
generated, one of each decile (one layout from the 10 best percents, one from
the 10− 20% range, etc).

Observe that the strategy given by Algorithm 1 does not necessarily suggest
following the shortest path, as this may not optimize the first objective (reaching
the target with maximum probability). For example, in the layout in Figure 1,
the ‘shortest’ path to the target has length 10. But if we need to maximize the
probability to reach the target, from the cell in the grid marked with 1, instead of
going right, a better strategy would be to keep going to the cell above and then
coming back. This way, the agent will avoid the hole below with certainty, and
will eventually go to the right. This is the strategy that Algorithm 1 provides,
which has expected conditional length to the target 33.85. On the other hand,
the expected conditional length to the target while following the optimal strategy
produced by Storm is much larger (345.34). This is because it asks the robot to
loop in the 6×3 area in the left. Because of the stochastic dynamics it eventually
leaves this area and reaches the target, but it may take a long time, increasing
the expected conditional length.
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While performing the experiments on the 100 randomly generated layouts,
we observed that in 9 layouts out of 10, the expected conditional length (vStorm)
for the strategy σStorm is at least twice the expected conditional length (vDistOpt)
for the strategy σDistOpt. In 69% of the layouts, vStorm values are 10 times worse
than the vDistOpt values. In the worst cases (23% of the layouts), vStorm values
are at least a 1000 times worse than the vDistOpt values.

5 Safety and Expected Mean Payoff

In this section, we consider another multi-objective problem – as a first objective,
we maximize the probability of avoiding a set of states in an MDP, and as a sec-
ond objective, we maximize the expected conditional Mean Payoff. We propose
a pruning-based algorithm, similar to Algorithm 1, to solve this problem.

For this section, we augment the definition of an MDP M with a reward
function R : S × A → R, where S,A and P are the same as in the previous
sections. Furthermore, we consider a set of states Bad ⊂ S in M and assume
that every state in Bad is a sink state.

For an MDP M = (S,A, P,R), let PMσ,s(□¬Bad) be the probability of
avoiding all states in Bad, starting from s ∈ S, following the strategy σ in M.
Then, let ValM(s) = maxσ PMσ,s(□¬Bad) be the maximum probability to avoid
Bad from s, and ΣM,s(□¬Bad) = argmaxσ PMσ,s(□¬Bad) be the set of all
optimal strategies for safety.

To formally define the second objective, we first define the total reward of
horizon n for a path ρ = s0a0 . . . as Rewn(ρ) =

∑n−1
i=0 R(si, ai). Then, for a

strategy σ and a state s, the expected mean-payoff is defined as

Eσ,s(MP) = lim inf
n→∞

1

n
Eσ,s(Rewn) .

The optimal expected average reward starting from a state s in an MDP M
is defined over all strategies σ in M as supσ Eσ,s(MP). One can restrict the
supremum to the deterministic memoryless strategies [19, section 9.1.4].

We use Eσ,s(Rewn | □¬Bad) to denote the expected conditional finite horizon
reward. Then the expected conditional mean-payoff is defined as

Eσ,s(MP | □¬Bad) = lim inf
n→∞

1

n
Eσ,s(Rewn | □¬Bad) .

Intuitively, it represents the expected mean-payoff one would obtain by following
the strategy σ and staying safe.

Problem statement.

Given an MDP M, an initial state s0 and a set of states Bad where ValM(s0) > 0,
our objective is to find a strategy that maximizes EMσ,s0(MP | □¬Bad) among
the strategies in ΣM,s0(□¬Bad), i.e., the strategies maximizing PMσ,s0(□¬Bad).
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For the rest of this section, we fix the MDP M = (S,A, P,R) and a set of bad
states Bad ⊂ S. Note that, in this case, the functions σ 7→ Pσ,s0(□¬Bad) and
σ 7→ Eσ,s0(MP | □¬Bad) correspond to the two functions f and g, respectively,
and ΣM,s0(□¬Bad) corresponds to Σf , described in the introduction (Eq. 1).

5.1 Maximizing Probability of Staying Safe

We denote the set {(s, a) ∈ S ×A | ValM(s) =
∑

s′ P (s, a, s′) · ValM(s′)} using
OptM. For s ∈ S, let OptM(s) be the set {a | (s, a) ∈ OptM}. Finally, we use
ΣOpt

M to represent the set of strategies that takes actions according to OptM,
that is, ΣOpt

M = {σ | ∀ρ, ∀a ∈ Supp(σ(ρ)); (last(ρ), a) ∈ OptM} .
We first state the following results, analogous to Lemma 1 and 2 respectively,

which can be proved similarly as in the case of reachability.

Lemma 6. For every state s ∈ S \ Bad and for every action a,

ValM(s) ≥
∑
s′

P (s, a, s′) · ValM(s′) .

Lemma 7. For every state s ∈ S, ΣM,s(□¬Bad) ⊆ ΣOpt
M .

Furthermore, we will show that, unlike reachability, in this case, the other
direction of the containment also holds:

Lemma 8. For every state s ∈ S, ΣM,s(□¬Bad) ⊇ ΣOpt
M .

In order to prove Lemma 8, we first develop a few intermediate results. We
start with defining the following notations:

UPre0(Bad) = Bad, UPrei+1(Bad) = {s | ∀a,∃s′ ∈ UPrei(Bad), P (s, a, s′) > 0},

UPre∗(Bad) =
∞⋃
i=0

UPrei(Bad) .

Furthermore, we define Good = S \ UPre∗(Bad), V = S \ (Good ∪ Bad).

Lemma 9. For every state s ∈ S, ValM(s) = 1 iff s ∈ Good.

Proof. For s ∈ Good, ∃a such that Supp(P (s, a)) ⊆ Good. This gives a strategy
to surely avoid Bad, and hence ValM(s) = 1.

If s ̸∈ Good, then either (i) s ∈ Bad, in which case ValM(s) = 0, or (ii)
s ∈ UPre∗(Bad), and hence s ∈ UPrei(Bad) \UPrei−1(Bad) for some i. Then, for
every action a, Supp(P (s, a))∩UPrei−1(Bad) ̸= ∅. This implies, for any strategy
σ, there is a path from s of length at most i reaching Bad following σ. Since this
path has a non-zero probability, we therefore get that ValM(s) < 1.

For a strategy σ and a finite path ρ, we define the strategy σρ as follows: for
any finite path ρ′ starting from last(ρ), σρ(ρ

′) = σ(ρ · ρ′).
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Lemma 10. For every strategy σ ∈ ΣOpt
M , and every finite path ρ in M following

σ, Pσρ,last(ρ)(□¬Bad) = 1 iff last(ρ) ∈ Good.

Proof. We denote last(ρ) by s. First, let s ∈ Good. Then we can show that
∀a ∈ OptM(s),Supp(P (s, a)) ⊆ Good. Indeed, if there exists an action a ∈
OptM(s) and a state s′ ∈ Supp(P (s, a)) such that s′ /∈ Good, then from Lemma 9,
Val(s′) < 1, which would further imply that

ValM(s) =
∑
s′

P (s, a, s′) · ValM(s′) <
∑
s′

P (s, a, s′) = 1 ,

which contradicts the fact that s ∈ Good (using Lemma 9). So for every strategy
σ in ΣOpt

M , every path from s following σρ only visits states from Good. Therefore,
Pσρ,s(□¬Bad) = 1.

To conclude, observe that if s ∈ S \Good, Pσρ,s(□¬Bad) ≤ ValM(s) < 1.

In the following, for the ease of notation, for any state s ∈ S and a strategy σ,
we denote Pσ,s(Cylσ(ρ)) by Pσ,s(ρ). Recall that, for every action a ∈ OptM(s),
ValM(s) =

∑
s′ P (s, a, s′) · ValM(s′) . We can then expand ValM(s) as:

ValM(s) =
∑
a

σ(s, a)ValM(s) =
∑
a

σ(s, a)
∑
s′

P (s, a, s′) · ValM(s′) .

We can generalize the above statement by unfolding ValM(·) for n steps:

Lemma 11. For every state s ∈ S and for every strategy σ ∈ ΣOpt
M ,

ValM(s) =
∑

ρ∈(V A)nV

Pσ,s(ρ) · ValM(last(ρ)) +
∑

ρ∈(V A)<nGood

Pσ,s(ρ)

The summation in the first term of the above expression is taken over all
paths that reach neither Good nor Bad within n steps, whereas the summation
in the second term is over all paths that reach some state in Good within n steps.
The result in Lemma 11 follows from the following result:

Lemma 12. For every finite path ρ = s0a0s1 . . . sn of length n and for every
strategy σ in ΣOpt

M , for all k < n:

ValM(sk) =
∑

ρ′∈(V A)n−kV

Pσρ|k
,sk (ρ

′) · ValM(last(ρ′)) +
∑

ρ′∈(V A)<n−kGood

Pσρ|k
,sk (ρ

′) .

Using Lemma 12, we can now prove Lemma 11:

Proof of Lemma 11. Putting k = 0 in Lemma 12, we get:

ValM(s0) =
∑

ρ′∈(V A)nV

Pσ,s0(ρ
′) · ValM(last(ρ′)) +

∑
ρ′∈(V A)<nGood

Pσ,s0(ρ
′) .
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We now characterize P(·) in the same way as we did for Val(·). Note that, for
any state s and any strategy σ, we can expand Pσ,s(□¬Bad) as

Pσ,s(□¬Bad) =
∑
a

σ(s, a)
∑
s′

P (s, a, s′) · Pσsas′ ,s
′(□¬Bad) .

Analogous to Lemma 11, we can generalize this statement by unfolding P(·) for
n steps:

Lemma 13. For every state s ∈ S and for every strategy σ ∈ ΣOpt
M ,

Pσ,s(□¬Bad) =
∑

ρ∈(V A)nV

Pσ,s(ρ) · Pσρ,last(ρ)(□¬Bad) +
∑

ρ∈(V A)<nGood

Pσ,s(ρ) .

Lemma 14. For every s ∈ S, and every σ ∈ ΣOpt
M , ValM(s) = Pσ,s(□¬Bad).

Proof. If s ∈ Good, ValM(s) = Pσ,s(□¬Bad) = 1. If s ∈ Bad, ValM(s) =
Pσ,s(□¬Bad) = 0. Finally, if s ∈ V , from Lemma 11 and Lemma 13,

ValM(s)− Pσ,s(□¬Bad) =
∑

ρ∈(V A)nV

Pσ,s(ρ) · (ValM(last(ρ))− Pσρ,last(ρ)(□¬Bad))

<
∑

ρ∈(V A)nV

Pσ,s(ρ) [Using Lemma 10]

For s ∈ UPre∗(Bad), there is a path of length at most |V | reaching Bad in Mσ.
So limn→∞

∑
ρ∈(V A)nV Pσ,s(ρ) = 0.

Lemma 8 follows directly from Lemma 14. Then, using Lemma 7 and 8, we
conclude the following theorem:

Theorem 2. For every state s ∈ S, ΣM,s(□¬Bad) = ΣOpt
M .

5.2 Maximizing Expected Conditional Mean Payoff

We propose a simple two-step pruning algorithm, similar to Algorithm 1, to solve
the multi-objective problem defined by safety and mean-payoff. We first modify
the given MDP M in the following manner.

Definition 4. Let S′ = {s ∈ S | ValM(s) > 0}. We define M′ = (S′, A, P ′, R)
where P ′ is defined as follows:

P ′(s, a, s′) =

{
P (s, a, s′) · ValM(s′)

ValM(s) if (s, a) ∈ OptM and s ∈ S′

⊥ otherwise.

Note that M′ is again well-defined. We now present the two-step algorithm:
For a state s0, a strategy σ, and a finite path ρ = s0a0s1 . . . sn ∈ (S′A)∗S′ ∩

PathsM′(s0, σ), we define, GoodCylσ(ρ) = Cylσ(ρ) ∩ {ρ′ | ρ′ |= □¬Bad}. Then,
using Lemma 14, we get that if σ ∈ ΣOpt

M , then

Pσ,s0(GoodCylσ(ρ)) = Pσ,s0(Cylσ(ρ)) ·Pσρ,sn(□¬Bad) = Pσ,s0(Cylσ(ρ)) ·ValM(sn). (5)
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Algorithm 2
Input: M = (S,A, P,R), s0 ∈ S, Bad ⊆ S

1: Create the MDP M′ = (S′, A, P ′, R′) according to Definition 4.
2: Find a strategy σ∗ that maximizes the expected mean payoff in M′:

σ∗ ∈ argmaxσ E′
σ,s0(MP) .

3: return σ∗.

Lemma 15. For every strategy σ ∈ ΣOpt
M , s0 ∈ S′ and every finite path ρ =

s0a0s1 . . . sn ∈ (S′A)∗S′ ∩ PathsM′(s0, σ), P′
σ,s0(Cyl

′
σ(ρ)) =

Pσ,s0
(GoodCylσ(ρ))

ValM(s0)
.

Proof.

P′
σ,s0(Cyl

′
σ(ρ)) =

n−1∏
i=0

σ(ρ|i, ai) · P ′(si, ai, si+1)

=

n−1∏
i=0

σ(ρ|i, ai) · P (si, ai, si+1) ·
ValM(si+1)

ValM(si)

= Pσ,s0(Cylσ(ρ)) ·
ValM(sn)

ValM(s0)
=

Pσ,s0(GoodCylσ(ρ))

ValM(s0)
[from Eq. 5]

We now show the following correlation between the expected mean-payoff in
M′ and the expected conditional mean-payoff in M:

Lemma 16. For every strategy σ, E′
σ(MP) = Eσ(MP | □¬Bad)

Proof. For r ∈ R, we define ξr = {ρ ∈ PathsM(s0) ∩ (SA)nS | Rewn(ρ) = r}
and ξ′r = {ρ ∈ PathsM′(s0) ∩ (S′A)nS′ | Rewn(ρ) = r}. Note that for a fixed n,
there are finitely many such non-empty ξr. From the definition of the conditional
expected reward in M, we get:

Eσ,s0(Rewn | □¬Bad) =
∑
r

r · Pσ,s0({ρ | Rewn(ρ) = r} ∩□¬Bad)
Pσ,s0(□¬Bad)

=
∑
r

r ·
∑
ρ∈ξr

Pσ,s0(Cylσ(ρ) ∩□¬Bad)
ValM(s0)

=
∑
r

r ·
∑
ρ∈ξr

Pσ,s0(GoodCylσ(ρ))

ValM(s0)
.

Then, E′
σ,s0(Rewn) =

∑
r

r · P′
σ,s0({ρ | Rewn(ρ) = r}) =

∑
r

r ·
∑
ρ∈ξ′r

P′
σ,s0(Cyl

′
σ(ρ))

=
∑
r

r ·
∑
ρ∈ξ′r

Pσ,s0(GoodCylσ(ρ))

ValM(s0)
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=
∑
r

r ·
∑
ρ∈ξr

Pσ,s0(GoodCylσ(ρ))

ValM(s0)
(6)

= Eσ,s0(Rewn | □¬Bad) (7)

The equality in Eq. 6 is due to the fact that for any finite path ρ = s0 . . . sn ∈
(SA)nS \ (S′A)nS′, ∃i s.t. ValM(si) = 0, which implies, Pσ,s0(GoodCylσ(ρ)) ≤
Pσ,s0(GoodCylσ(s0 . . . si)) = Pσ,s0...si(□¬Bad) ≤ ValM(si) = 0.

Finally, dividing by n and taking limit on the both sides of Eq. 7, we get
E′
σ,s0(MP) = Eσ,s0(MP | □¬Bad).

Now we prove the correctness of Algorithm 2:

Theorem 3. Given an MDP M = (S,A, P,R), a state s0 ∈ S and Bad ⊂ S,
let σ∗ be the strategy returned by Algorithm 2. Then,

1. Pσ∗,s0(□¬Bad) = ValM(s0).
2. Eσ∗,s0(MP | □¬Bad) = max

σ∈ΣM,s0
(□¬Bad)

Eσ,s0(MP | □¬Bad)

Proof. From Theorem 2, for any σ in ΣOpt
M , Pσ,s0(□¬Bad) = ValM(s0). Note

that a strategy in M′ would be in ΣOpt
M . Therefore, Pσ∗,s0(□¬Bad) = ValM(s0).

From Lemma 16, we get for any σ,

Eσ,s0(MP | □¬Bad) = E′
σ,s0(MP)

⇒ argmax
σ∈ΣM,s0

(□¬Bad)

Eσ,s0(MP | □¬Bad) = argmax
σ∈ΣM,s0

(□¬Bad)

E′
σ,s0(MP)

Hence, σ∗ ∈ argmaxσ∈ΣM,s0
(□¬Bad) Eσ,s0(MP | □¬Bad) and therefore, we con-

clude, Eσ∗,s0(MP | □¬Bad) = max
σ∈ΣM,s0

(□¬Bad)
Eσ,s0(MP | □¬Bad).

Note that, constructing the MDP M′ (Line 1 of Algorithm 2) takes polyno-
mial time. Finding a strategy that optimizes E′

σ,s0(MP) also takes polynomial
time [19, Chapter 9]. Therefore, the overall algorithm takes polynomial time.

6 Discussion

The work presented in this article proposes a pruning-based approach (Algo-
rithms 1, 2) that can be used to solve certain multi-objective problems in MDPs.
The algorithms work by first pruning the given MDP based on the first objec-
tive, and then solving the (possibly simplified) second objective on the pruned
MDP. Note that, optimizing the second objective, in turn, optimizes both of the
objectives in the lexicographic order.

The case where the first objective is to maximize the probability of reaching
a set of (target) states in an MDP and the second objective is to minimize the
conditional expected time to reach the same set of states, has been discussed
in Section 3. Note that one can consider more general (positive) cost functions
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and try to minimize the conditional expected cost to reach the target states as
a secondary objective, keeping the first objective unchanged.

Based on a suggestion by Jakob Piribauer, we conjecture that the second
objective considered in this paper can, in fact, be replaced by any measurable
function. More precisely, when the first objective is to remain safe, our technique
can be applied to solve the bi-objective problem where the second objective is
to optimize the expected value of a measurable function g, conditioned on the
event that safety is satisfied. To this end, we can prove the following result:
every strategy in the original MDP M that maximizes E(g | □¬Bad) while
maximizing the probability of staying safe, also maximizes the expected value of
g in the pruned MDP M′, that is,

sup
σ∈ΣM

Safe

Eσ(g | □¬Bad) = sup
σ∈Σ(M′)

E′
σ(g)

where ΣM
Safe denotes the set of all strategies that maximize the probability of

staying safe in M. We believe this result can be proved by generalizing the
proof of Lemma 16.

Similarly, when the primary objective is to reach a set of target states with
as high probability as possible, we believe our technique will be able to compute
the optimal strategy when the secondary objective is given by any measurable
function g. We conjecture that the following result will hold: any strategy in
M that first maximizes the probability to reach a target and further maximizes
the expected value of a measurable function g conditioned on reaching a target
state, will also maximize the (unconditional) expected value of g in the pruned
MDP M′, among the strategies that reach a target almost surely, that is, with
probability 1. More formally, we can obtain the following result:

sup
σ∈ΣM

Reach

Eσ(g | ♢T ) = sup
σ∈ΣM′

a.s.Reach

E′
σ(g)

where ΣM′

a.s.Reach is the set of all strategies in M′ that, when followed, forces M′

to reach a target state with probability 1. Further, if it is the case that every
strategy in M′ maximizing the (unconditional) expected value of g reaches a
target with probability 1 (which was the case in the pair of objectives consid-
ered in Section 3), then the problem reduces to finding a strategy in M′ that
maximizes the (unconditional) expected value of g among all strategies, that is,

sup
σ∈ΣM

Reach

Eσ(g | ♢T ) = sup
σ∈Σ(M′)

E′
σ(g) .

While we studied only two-dimensional lexicographic objectives for the sake
of clarity and simplicity, we note that our work can be straight-forwardly ex-
tended to more than two reward structures. For example, one may want to op-
timize for safety first, reachability second, and minimal expected time to reach
a target as a third objective. In this case, we would proceed in three steps: a
first pruning of the MDP that solves the safety problem, a second pruning that
over-approximate the winning strategies for reachability, and finally we would
minimize the expected distance.
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A Missing proofs of Section 5

A.1 Proof of Lemma 6

Suppose, there is a state s ∈ S \ Bad and an action a ∈ A such that ValM(s) <∑
s′ P (s, a, s′)·ValM(s′). Now, consider the strategy σ′ that takes action a from s

and then from paths s·as′ follows a strategy σs′ ∈ ΣM,s′(□¬Bad) that maximizes
the probability to avoid states in Bad. Formally,

σ′(ρ) =

{
a if ρ = s

σs′(ρ
′) if ρ = s · as′ · ρ′

Then, we get the following: PMσ′ ,s(□¬Bad) =
∑

s′ P (s, a, s′) · Pσs′ ,s
′(□¬Bad) =∑

s′ P (s, a, s′) · ValM(s′) > ValM(s), which is a contradiction.

A.2 Proof of Lemma 7

Suppose that there is a strategy σ∗ ∈ ΣM,s(□¬Bad) where there exists a path
ρ and an action a ∈ Supp(σ∗(ρ)) such that (last(ρ), a) ̸∈ OptM. Let last(ρ) = t.
Assume that ρ |= □¬Bad. Then, from Lemma 6 and the fact that (t, a) ̸∈ OptM,

ValM(last(ρ)) >
∑
s′

P (t, a, s′) · ValM(s′)

and for every other action a′ ̸= a,

ValM(t) ≥
∑
s′

P (t, a′, s′) · ValM(s′) .

Consider the strategy σ′′ which differs from σ∗ only on paths with ρ as prefix: on
every path having ρ as a prefix, σ′′ takes the next action according to a strategy
σt ∈ ΣM,t(□¬Bad) that maximizes the probability to avoid states in Bad from
last(ρ), whereas, it takes action according to σ∗ on every other path. Formally,

σ′′(ρ′) =

{
σt(ρ

′′) if ρ′ = ρ · ρ′′

σ∗(ρ′) otherwise.

Note that, for every strategy σ,

PMσ,ρ(□¬Bad) =
∑
a′

(
σ(ρ, a′) ·

∑
s′

(P (t, a′, s′) · PMσ,ρ·a′s′(□¬Bad))
)
.

Also, PMσ∗ ,ρ·a′s′(□¬Bad) ≤ ValM(s′) for all a′ ∈ A. Therefore,

PMσ∗ ,ρ(□¬Bad) =
∑
a′

(
σ∗(ρ, a′) ·

∑
s′

(P (t, a′, s′) · PMσ∗ ,ρ·a′s′(□¬Bad))
)
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≤
∑
a′

(
σ∗(ρ, a′) ·

∑
s′

(P (t, a′, s′) · ValM(s′))

)
<

∑
a′

σ∗(ρ, a′) · ValM(t)

= ValM(t)

So, PMσ′′ ,ρ(□¬Bad) = PMσt ,t
(□¬Bad) = ValM(t, T ) > PMσ∗ ,ρ(□¬Bad). Now

note that, for any strategy σ,

PMσ,s(□¬Bad) = PMσ,s(ρ
′ |= □¬Bad ∧ ρ ⊑ ρ′) + PMσ,s(ρ

′ |= □¬Bad ∧ ρ ̸⊑ ρ′)

= PMσ,s(Cylσ(ρ)) · PMσ,ρ(□¬Bad) + PMσ,s(ρ
′ |= □¬Bad ∧ ρ ̸⊑ ρ′)

As σ∗(ρ′) = σ′′(ρ′) for any ρ′ such that ρ ⊑ ρ′,

PMσ∗ ,s((Cylσ∗(ρ))) = PMσ′′ ,s((Cylσ′′(ρ))) .

and

PMσ∗ ,s(ρ
′ |= □¬Bad ∧ ρ ̸⊑ ρ′) = PMσ′′ ,s(ρ

′ |= □¬Bad ∧ ρ ̸⊑ ρ′) .

Then PMσ∗ ,s(□¬Bad) < PMσ′′ ,s(□¬Bad), which cannot be true as σ∗ is an
optimal strategy. Therefore, ΣM,s(□¬Bad) ⊆ ΣOpt

M .

A.3 Proof of Lemma 12

We prove this by backward induction on k.
Base case: k = n− 1. If sn−1 ∈ Good, then ValM(sn−1) = 1. If sn−1 ∈ Bad, then
ValM(sn−1) = 0. In both cases, the statement is trivially true. If sn−1 ∈ V ,

ValM(sn−1) =
∑
an−1

σ(ρ|n−1
, an−1)

∑
s′n

P (sn−1, an−1, s
′
n) · ValM(s′n)

=
∑

ρ′∈{sn−1}AS

Pσρ|n−1
,sn−1(ρ

′) · ValM(last(ρ′))

=
∑

ρ′∈{sn−1}AV

Pσρ|n−1
,sn−1(ρ

′) · ValM(last(ρ′))+

∑
ρ′∈{sn−1}AGood

Pσρ|n−1
,sn−1(ρ

′)× 1 +
∑

ρ′∈{sn−1}ABad

Pσρ|n−1
,sn−1(ρ

′)× 0

=
∑

ρ′∈V AV

Pσρ|n−1
,sn−1(ρ

′) · ValM(last(ρ′)) +
∑

ρ′∈V AGood

Pσρ|n−1
,sn−1(ρ

′)

Suppose the statement is true for k + 1. Then,

ValM(sk) =
∑
ak

σ(ρ|k , ak)
∑
s′
k+1

P (sk, ak, s
′
k+1)ValM(s′k+1)

=
∑
ak

σ(ρ|k , ak)

 ∑
s′
k+1

∈V

P (sk, ak, s
′
k+1)ValM(s′k+1)+
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∑
s′
k+1

∈Good

P (sk, ak, s
′
k+1)ValM(s′k+1) +

∑
s′
k+1

∈Bad

P (sk, ak, s
′
k+1)ValM(s′k+1)


=

∑
ak

σ(ρ|k , ak)

 ∑
s′
k+1

∈V

P (sk, ak, s
′
k+1)ValM(s′k+1) +

∑
s′
k+1

∈Good

P (sk, ak, s
′
k+1)


=

∑
ak

σ(ρ|k , ak)
∑

s′
k+1

∈V

P (sk, ak, s
′
k+1)

∑
ρ′∈({s′

k+1
}·A)n−k−1·V

Pσρ|k+1
,s′

k+1
(ρ′) · ValM(last(ρ′))

+
∑
ak

σ(ρ|k , ak)
∑

s′
k+1

∈V

P (sk, ak, s
′
k+1)

∑
ρ′∈({s′

k+1
}·A)≤n−k−1·Good

Pσρ|k+1
,s′

k+1
(ρ′)

+
∑
ak

σ(ρ|k , ak)
∑

s′
k+1

∈Good

P (sk, ak, s
′
k+1)

=
∑

ρ′∈(V A)n−kV

Pσρ|k
,sk (ρ

′) · ValM(last(ρ′)) +
∑

ρ′∈(V A)<n−kGood

Pσρ|k
,sk (ρ

′) .

A.4 Proof of Lemma 13

Here, for the ease of notation, we will use Valσ(s) to denote Pσ,s(□¬Bad).

Lemma 17. Let ρ = s0a0s1 . . . sn be a finite path of length n. Let σ be a strategy in
ΣOpt

M . Then for all k < n:

Valσp|k
(sk) =

∑
ρ′∈(V A)n−kV

Pσp|k
,sk

(ρ′)·Valσp|k
·ρ′ (last(ρ

′))+
∑

ρ′∈(V A)<n−kGood

Pσp|k
,sk

(ρ′)

Proof. We prove this by backward induction on k. For k = n− 1. If sn−1 ∈ Good, then
ValM(sn−1) = 1. If sn−1 ∈ Bad, then ValM(sn−1) = 0. In both cases, the statement is
trivially true. If sn−1 ∈ V ,

Valσp|n−1
(sn−1) =

∑
a′
n−1

σ(p|n−1
, a′

n−1)
∑
s′n

P (sn−1, a
′
n−1, s

′
n)Valσp|n−1

·a′
n−1

s′
n−1

(s′n)

=
∑

ρ′∈{sn−1}AS

Pσp|n−1
,sn−1(ρ

′) · Valσp|n−1
·ρ′ (last(ρ

′))

=
∑

ρ′∈{sn−1}AV

Pσp|n−1
,sn−1(ρ

′) · Valσp|n−1
·ρ′ (last(ρ

′))

+
∑

ρ′∈{sn−1}AGood

Pσp|n−1
,sn−1(ρ

′)× 1

+
∑

ρ′∈{sn−1}ABad

Pσp|n−1
,sn−1(ρ

′)× 0

=
∑

ρ′∈V AV

Pσp|n−1
,sn−1(ρ

′) · Valσp|n−1
·ρ′ (last(ρ

′)) +
∑

ρ′∈V AGood

Pσp|n−1
,sn−1(ρ

′)

Suppose the statement is true for k + 1. Then, using Lemma 10,

Valσp|k
(sk) =

∑
a′
k

σ(p|k , a
′
k)

∑
s′
k+1

P (sk, a
′
k, s

′
k+1)Valσp|k

·a′
k
s′
k+1

(s′k+1)
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=
∑
ak

σ(p|k , ak)

 ∑
s′
k+1

∈V

P (sk, a
′
k, s

′
k+1)Valσp|k

·a′
k
s′
k+1

(s′k+1)

+
∑

s′
k+1

∈Good

P (sk, a
′
k, s

′
k+1)Valσp|k

·a′
k
s′
k+1

(s′k+1)

+
∑

s′
k+1

∈Bad

P (sk, a
′
k, s

′
k+1)Valσp|k

·a′
k
s′
k+1

(s′k+1)


=

∑
ak

σ(p|k , ak)

 ∑
s′
k+1

∈V

P (sk, a
′
k, s

′
k+1)Valσp|k

·a′
k
s′
k+1

(s′k+1)

+
∑

s′
k+1

∈Good

P (sk, a
′
k, s

′
k+1)


=

∑
ak

σ(p|k , ak)
∑

s′
k+1

∈V

P (sk, a
′
k, s

′
k+1)×

 ∑
ρ′∈(V A)n−k−1V

Pσp|k
·a′

k
s′
k+1

,sk+1
(ρ′) · Valσp|k

·a′
k
s′
k+1

·ρ′
(last(ρ′))

+
∑

ρ′∈(V A)<n−kGood

Pσp|k
,sk

(ρ′)


+

∑
ak

σ(p|k , ak)
∑

s′
k+1

∈Good

P (sk, a
′
k, s

′
k+1)

=
∑

ρ′∈(V A)n−kV

Pσp|k
,sk

(ρ′) · Valσp|k
·ρ′ (last(ρ

′))

+
∑

ρ′∈(V A)<n−kGood

Pσp|k
,sk

(ρ′)

Proof of Lemma 13. For k = 0 in Lemma 17, we get:

Valσ(s0) =
∑

p′∈(V A)nV

Pσ,s0(p
′) · Valσ(last(p′)) +

∑
p′∈(V A)<nGood

Pσ,s0(p
′) .
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