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Abstract. Synthesis of distributed protocols is a hard, often undecid-
able, problem. Completion techniques provide partial remedy by turning
the problem into a search problem. However, the space of candidate
completions is still massive. In this paper, we propose optimization tech-
niques to reduce the size of the search space by a factorial factor by ex-
ploiting symmetries (isomorphisms) in functionally equivalent solutions.
We present both a theoretical analysis of this optimization as well as
empirical results that demonstrate its effectiveness in synthesizing both
the Alternating Bit Protocol and Two Phase Commit. Our experiments
show that the optimized tool achieves a speedup of approximately 2 to
10 times compared to its unoptimized counterpart.

1 Introduction

Distributed protocols are at the heart of the internet, data centers, cloud ser-
vices, and other types of infrastructure considered indispensable in a modern
society. Yet distributed protocols are also notoriously difficult to get right, and
have therefore been one of the primary application domains of formal verifica-
tion [14,18,19,21,30]. An even more attractive proposition is distributed protocol
synthesis: given a formal correctness specification ψ, automatically generate a
distributed protocol that satisfies ψ, i.e., that is correct-by-construction.

Synthesis is a hard problem in general, suffering, like formal verification, from
scalability and similar issues. Moreover, for distributed systems, synthesis is gen-
erally undecidable [11,22,28,29]. Techniques such as program sketching [25,26]
remedy scalability and undecidability concerns essentially by turning the syn-
thesis problem into a completion problem [2,3]: given an incomplete system M0

and a specification ψ, automatically synthesize a completionM ofM0, such that
M satisfies ψ.

For example, the synthesis of the well-known alternating-bit protocol (ABP)
is considered in [4] as a completion problem: given an ABP system containing
the incomplete Sender0 and Receiver0 processes shown in Fig. 1, complete these
two processes (by adding but not removing any transitions, and not adding nor
removing any states), so that the system satisfies a given set of requirements.

http://arxiv.org/abs/2306.02967v2
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In cases where the space of all possible completions is finite, completion turns
synthesis into a decidable problem.1 However, even then, the number of possible
completions can be prohibitively large, even for relatively simple protocols. For
instance, as explained in [4], the number of all possible completions in the ABP
example is 5124 · 36, i.e., approximately 2.5 trillion candidate completions.

r5 r4 r3

r1r0 r2Receiver0 :=
p′0? deliver!

a0!

p′1?deliver!

a1!

s0

s1 s2 s3

s4

s7 s6 s5

send?

p0! a′0?

done!

send?

p1!a′1?

done!

Sender0 :=

Fig. 1. The incomplete ABP Sender and Receiver processes of [4]

Not only is the number of candidate completions typically huge, but it is
often also interesting to generate not just one correct completion, but many.
For instance, suppose both M1 and M2 are (functionally) correct solutions. We
may want to evaluate M1 and M2 also for efficiency (perhaps using a separate
method) [10]. In general, we may want to synthesize (and then evaluate w.r.t.
performance or other metrics) not just one, but in principle all correct comple-
tions. We call this problem the completion enumeration problem, which is the
main focus of this paper.

Enumeration is harder than 1-completion (synthesis of just one correct solu-
tion), since the number of correct solutions might be very large. For instance, in
the case of the ABP example described above, the number of correct completions
is 16384 and it takes 88 minutes to generate all of them [4].

The key idea in this paper is to exploit the notion of isomorphisms in order
to reduce the number of correct completions, as well as the search space of
candidate completions in general. To illustrate the idea, consider a different
incomplete Sender0 process, shown in Fig. 2. Two possible completions of this
Sender0 are shown in Fig. 3. Although these two completions are in principle
different, they are identical except that states s3 and s7 are swapped. Our goal

1 We emphasize that no generality is lost in the sense that one can augment the search
for correct completions with an outer loop that keeps adding extra empty states
(with no incoming or outgoing transitions), which the inner completion procedure
then tries to complete. Thus, we can keep searching for progressively larger systems
(in terms of number of states) until a solution is found, if one exists.



Synthesis of Distributed Protocols by Enumeration Modulo Isomorphisms 3

s0

s1 s2 s3

s4

s7 s6 s5

a′0?, a
′

1?

send?

p0!

send?
p1!

timeout?

timeout?

timeout?

send?

a′0?

timeout?

a′0?, a
′

1?

a′1?

send?

Sender0 :=

Fig. 2. An incomplete ABP Sender with permutable states s3, s7

is to develop a technique which considers these two completions equivalent up to
isomorphism, and only explores (and returns) one of them.
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Fig. 3. Two synthesized completions of the incomplete process of Fig. 2. Observe that
the two completions are identical except that states s3 and s7 are flipped.

To achieve this goal, we adopt the guess-check-generalize paradigm (GCG)
[1,2,12,25,26]. In a nutshell, GCG works as follows: (1) pick a candidate comple-
tion M ; (2) check whether M satisfies ψ: if it does, M is one possible solution
to the synthesis problem; (3) if M violates ψ, prune the search space of possible
completions by excluding a generalization of M , and repeat from step (1). In
the most trivial case, the generalization of M contains only M itself. Ideally,
however, and in order to achieve a more significant pruning of the search space,
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the generalization ofM should contain many more “bad” completions which are
somehow “similar” (for instance, isomorphic) to M .

A naive way to generalize based on isomorphism is to keep a list of com-
pletions encountered thus far and perform an isomorphism check against every
element of this list whenever a new candidate is picked. Our approach is smarter:
in fact, it does not involve any isomorphism checks whatsoever. Instead, our ap-
proach guarantees that no isomorphic completions are ever picked to begin with
by pruning them from the search space. This is ultimately done using syntactic
transformations of completion representations. The details are left for Section 4.

Furthermore, our notion of “encountering” a completion is quite wide. Rather
than just pruning completions that are isomorphic to candidates, we also prune
completions that are isomorphic to any completion in the generalizations of the
candidates (with respect to some prior, unextended notion of generalization). Be-
tween the trivial approach involving isomorphism checks and our own approach
are several other approaches which are good, but not excellent. Indeed, a catego-
rization of the subtle differences between such approaches is a key contribution
of this paper (see Section 4.3). These subtleties are easy to miss.

In summary, the main contributions of this paper are the following: (1) we
define the 1-completion and completion-enumeration problems modulo isomor-
phisms; (2) we examine new methods to solve these problems based on the GCG
paradigm; (3) we identify properties that an efficient GCG modulo isomorphisms
algorithm should have; (4) we propose two instances of such an algorithm, us-
ing a naive and a sophisticated notion of generalization; (5) we evaluate our
methods on the synthesis of two simple distributed protocols: the ABP and Two
Phase Commit (2PC) and demonstrate speedups with respect to the unopti-
mized method of approximately 2 to 10 times.

2 Preliminaries

Labeled Transition Systems A (finite) labeled transition system (LTS) M is
a tuple 〈Σ,Q,Q0, ∆〉, where

– Σ is a finite set of transition labels
– Q is a finite set of states
– Q0 ⊆ Q is the set of initial states
– ∆ ⊆ Q×Σ ×Q is the transition relation.

We write the transition (p, a, q) ∈ ∆ as p
a
→ q.

A run of M is an infinite sequence q0
a0→ q1

a1→ q2
a2→ ..., where q0 ∈ Q0

and for each i we have (qi, ai, qi+1) ∈ ∆. The trace produced by this run is
a0a1a2 · · · . Semantically, an LTS M represents a set of infinite traces, denoted
[[M ]] ⊆ Σω. Specifically, a trace a0a1a2 · · · is in [[M ]] exactly when there exists a

run q0
a0→ q1

a1→ q2
a2→ ... of M .

Correctness Specification We will assume that we have some formal notion
of specification and some formal notion of satisfaction between an LTS M and
a specification ψ. We write M � ψ to denote that M satisfies ψ. Our work is
agnostic to what exactly ψ might be (e.g., a temporal logic formula, etc.).
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Completions and Syntactic Constraints Suppose that M and M0 are two
LTSs with the same set of labels Σ, the same set of states Q, the same set of
initial states Q0, and with transition relations ∆ and ∆0, respectively. We say
that M is a completion of M0 exactly when ∆0 ⊆ ∆. That is, M completes M0

by adding more transitions to it (and not removing any). For example, each of
the two LTSs of Fig. 3 is a completion of the LTS shown in Fig. 2.

Often, we wish to impose some constraints on the kind of synthesized pro-
cesses that we want to obtain during automated synthesis, other than the global
constraints imposed on the system by the correctness specification. For example,
in the formal distributed protocol model proposed in [4], synthesized processes
such as the ABP Sender and Receiver are constrained to satisfy a number of
requirements, including absence of deadlocks, determinism of the transition re-
lation, the constraint that each state is either an input state (i.e., it only receives
inputs) or an output state (i.e., it emits a unique output), the constraint that
input states are input-enabled (i.e., they do not block any inputs), and so on.
Such properties are often syntactic or structural and can be inferred statically
by observing the transition relation. The fact that an LTS is a completion of
another LTS can also be captured by such constraints.

Constraints like the above are application-specific, and our approach is ag-
nostic to their precise form and meaning. We will therefore abstract them away,
and assume that there is a propositional logic formula Φ which captures the set of
all syntactically well-formed candidate completions. The variable space of Φ and
its precise meaning is application-specific. We will give a detailed construction
of Φ for LTS in Section 3. We write M � Φ when LTS M satisfies the syntactic
constraints Φ. Let [[Φ]] = {M |M � Φ}.

We say that an LTS is correct if it satisfies both the syntactic constraints
imposed by Φ and the semantic constraints imposed by ψ.

Computational Problems

Problem 1 (Model-Checking). Given LTS M , specification ψ, and constraints Φ,
check whether M � ψ and M � Φ.

A solution to the model-checking problem is an algorithm, mc, such that for all
M,Φ, ψ, ifM � Φ andM � ψ then mc(M,Φ, ψ) = 1; otherwise,mc(M,Φ, ψ) = 0.

Problem 2 (Synthesis). Given specification ψ and constraints Φ, find, if one ex-
ists, LTS M such that M � ψ and M � Φ.

Problem 3 (Completion). Given LTS M0, specification ψ, and constraints Φ,
find, if one exists, a completion M of M0 such that M � ψ and M � Φ.

Problem 4 (Completion enumeration). Given LTS M0, specification ψ, and con-
straints Φ, find all completions M of M0 such that M � ψ and M � Φ.

3 The Guess-Check-Generalize Paradigm

In this section we first propose a generic GCG algorithm and reason about its
correctness (Section 3.1). We then show how to instantiate this algorithm to
solve Problems 3 and 4 (Section 3.2).
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3.1 A Generic GCG Algorithm and its Correctness

Algorithm 1 is a formal description of a generic GCG algorithm. The algorithm
takes as input: (1) a set of syntactic constraints in the form of a propositional for-
mula Φ, as described in Section 2; (2) a specification ψ as described in Section 2;
and (3) a generalizer function γ, described below.

Algorithm 1: gcg[Φ, ψ, γ]

1 while Φ is satisfiable do

2 σ := sat(Φ);
3 if mc(Mσ, Φ, ψ) = 1 then

4 return σ;
5 Φ := Φ ∧ ¬σ;

6 else

7 Φ := Φ ∧ ¬γ(σ);

Φ is a propositional logic formula (over a certain set of boolean variables that
depends on the application domain at hand) encoding all possible syntactically
valid completions. Every satisfying assignment σ of Φ corresponds to one com-
pletion, which we denote as Mσ. Observe that gcg does not explicitly take an
initial (incomplete) model M0 as input: this omission is not a problem because
M0 can be encoded in Φ, as mentioned in Section 2. We explain specifically how
to do that in the case of LTS in Section 3.2.

The algorithm works as follows: while Φ is satisfiable: Line 2: pick a candidate
completion σ allowed by Φ by calling a SAT solver. Line 3: model-check the
corresponding model Mσ against ψ (by definition, Mσ satisfies Φ because σ
satisfies Φ). Line 4: ifMσ satisfies ψ then we have found a correct model: we can
return it and terminate if we are solving Problem 3, or return it and continue
our search for additional correct models if we are solving Problem 4. In the latter
case, in line 5 we exclude σ from Φ (slightly abusing notation, we treat σ as a
formula satisfied exactly and only by σ, so that ¬σ is the formula satisfied by
all assignments except σ). Line 7: if Mσ violates ψ, then we exclude from Φ the
generalization γ(σ) of σ, and continue our search.

Generalizers A generalizer is a function γ which takes an assignment σ and
returns a propositional logic formula γ(σ) that encodes all “bad” assignments
that we wish to exclude from Φ. Ideally, however, γ(σ) will encode many more
assignments (and therefore candidate completions), so as to prune as large a
part of the search space as possible. A concrete implementation of γ may require
additional information other than just σ. For example, γ may consult the specifi-
cation ψ, counter-examples returned by the model-checker (which are themselves
a function of ψ and σ), and so on. We avoid including all this information in
the inputs of γ to ease presentation. We note that ψ does not change during a
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run of Algorithm 1 and therefore ψ can be “hardwired” into γ without loss of
generality.

A valid generalizer should include the assignment being generalized and it
should only include bad assignments (i.e., it should exclude correct completions).
Formally, a generalizer γ is said to be proper if for all σ such that σ � Φ and
Mσ 2 ψ, the following conditions hold: (1) Self-inclusion: σ � γ(σ), and (2)
Correct-exclusion: for any ̺, if ̺ � Φ and M̺ � ψ then ̺ 2 γ(σ).

The Correctness of GCG

Lemma 1. If γ is proper then gcg[Φ, ψ, γ] terminates.

Proof. If γ is proper then γ(σ) is guaranteed to include at least σ. Φ is a propo-
sitional logic formula, therefore it only has a finite set of satisfying assignments.
Every iteration of the loop removes at least one satisfying assignment from Φ,
therefore the algorithm terminates. ⊓⊔

During a run, Algorithm 1 returns a (possibly empty) set of assignments
Sol = {σ1, σ2, ..., σn}, representing the solution to Problems 3 or 4. Also during
a run, the algorithm guesses candidate assignments by calling the subroutine
sat (line 2). Let Cand be the set of all these candidates. Note that Sol ⊆ Cand,
since every solution returned (line 4) has been first guessed in line 2.

Whenever the algorithm reassigns Φ := Φ∧¬ϕ, we say that it prunes ϕ, i.e.,
the satisfying assignments of ϕ are now excluded from the search. We will need
to reason about the set of assignments that have been pruned after a certain
partial run of the program. In such cases we can imagine running the algorithm
for some amount of time and pausing it. Then the set Pruned denotes the set of
assignments that have been pruned up until that point. It is true that after the
program terminates Pruned = [[Φ]] \ Cand, but this equality does not necessarily
hold for all partial runs.

Theorem 1. (1) gcg[Φ, ψ, γ] is sound, i.e., for all σ ∈ Sol, we have σ � Φ and
Mσ � ψ. (2) If γ is proper then gcg[Φ, ψ, γ] is complete, i.e., for all σ � Φ, if
Mσ � ψ then σ ∈ Sol.

Proof. Every σ ∈ Sol satisfies Φ (line 2) and the corresponding Mσ satisfies ψ
(line 3), therefore gcg[Φ, ψ, γ] is sound. Now, suppose that γ is proper, and take
̺ such that ̺ � Φ and M̺ � ψ. To show completeness, it suffices to show that
̺ ∈ Cand. Then, we also have ̺ ∈ Sol becauseM̺ passes the model-checking test
in line 3. Suppose, for a contradiction, that ̺ 6∈ Cand, i.e., that ̺ is pruned. Then
there must exist some σ such that ̺ � γ(σ) (line 7). But σ � Φ (line 2), which
means that ̺ violates the correct-exclusion property of γ. Contradiction. ⊓⊔

3.2 A Concrete Instance of GCG for LTS

Algorithm 1 is generic in the sense that depending on how exactly we instan-
tiate Φ, ψ, and γ, we can encode different completion enumeration (and more
generally model enumeration) problems, as well as solutions. We now show how
to instantiate Algorithm 1 to solve Problems 3 and 4 concretely for LTS.
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Encoding LTSs and Completions in Propositional Logic Let M0 =
〈Σ,Q,Q0, ∆0〉 be an incomplete LTS. Then we can define a set of boolean vari-
ables

V := {p#a q | p, q ∈ Q ∧ a ∈ Σ}

so that boolean variable p #a q encodes whether transition p
a
→ q is present or

not (if p
a
→ q is present, then p#a q is true, otherwise it is false). More formally,

let asgnV be the set of all assignments over V . An assignment σ ∈ asgnV

represents LTS Mσ with transition relation ∆σ = {(p, a, q) | σ(p #a q) = 1}. To
enforce Mσ to be a completion of M0, we need to enforce that ∆0 ⊆ ∆σ. We do
so by initializing our syntactic constraints Φ as Φ := Φ∆0 , where

Φ∆0 :=
∧

p
a

→q∈∆0

p#a q.

We can then add extra constraints to Φ such as determinism or absence of
deadlocks, as appropriate.

A Concrete Generalizer for LTS Based on the principles of [4], we can
construct a concrete generalizer γLTS(σ) for LTS as γLTS(σ) := γsafe(σ)∨γlive(σ),
which we separate into a disjunction of a safety violation generalizer and a
liveness violation generalizer. The safety component γsafe works on the principle
that if LTS Mσ violates a safety property, then adding extra transitions will not
solve this violation. Thus:

γsafe(σ) :=
∧

{x∈V |σ(x)=1}

x.

The liveness component γlive can be defined based on a notion of reachable,
“bad” cycles that enable something to happen infinitely often. Thus, ¬γlive cap-
tures all LTSs that disable these bad cycles by breaking them or making them
unreachable.

It can be shown that the concrete generalizer γLTS is proper. Therefore, the
concrete instance gcg[Φ, ψ, γLTS] is sound, terminating, and complete, i.e., it
solves Problems 3 and 4.

Even though the concrete generalizer is correct, it is not very effective. In
particular, it does not immediately prune isomorphisms. There may be O(n!)
trivially equivalent completions up to state reordering, where n is the number of
states in the LTS. In the next section we present two optimizations exploiting
isomorphisms.

4 Synthesis Modulo Isomorphisms

4.1 LTS Isomorphisms

Intuitively, two LTS are isomorphic if we can rearrange the states of one to obtain
the other. For synthesis purposes, we often wish to provide as a constraint a set
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of permutable states A, so as to exclude rearrangements that move states outside
of A. If we can still rearrange the states of an LTSM1 to obtain another LTSM2

subject to this constraint, then we say that M1 and M2 are isomorphic up to A.
For example, the two LTSs of Fig. 3 are isomorphic up to the set of permutable
states A = {s3, s7}. Strictly speaking, they are permutable up to any set of their
states, but we choose A to reflect the fact that those two states have no incoming
or outgoing transitions in Fig. 2. Permuting any other states would yield an LTS
that is not a completion of Fig. 2.

We now define isomorphisms formally. Let M0, M1, and M2 be LTSs with
the same Σ,Q,Q0, and with transition relations ∆0, ∆1, and ∆2, respectively.
Suppose thatM1 and M2 are both completions ofM0. Let A ⊆ Q\Q0. Then we

say M1 and M2 are isomorphic up to A, denoted M1
A
≃M2, if and only if there

exists a bijection f : A→ A (i.e., a permutation) such that

p
a
→ q ∈ ∆1 if and only if f(p)

a
→ f(q) ∈ ∆2.

By default, we will assume that A is the set of non-initial states that have no
incoming or outgoing transitions in M0. In that case we will omit A and write
M1 ≃M2.

Lemma 2. LTS isomorphism is an equivalence relation, i.e., it is reflexive, sym-
metric, and transitive.

We use [M ] to denote the equivalence class ofM , i.e., [M ] = {M ′ |M ′ ≃M}.

Lemma 3. If M1
A
≃M2 then [[M1]] = [[M2]].

Lemma 3 states that LTS isomorphism preserves traces. More generally, we will
assume that our notion of specification is preserved by LTS isomorphism, namely,

that if M1
A
≃M2 then for any specification ψ, M1 � ψ iff M2 � ψ.

Isomorphic Assignments Two assignments σ and ̺ are isomorphic if the
LTSs that they represent are isomorphic. Hence we write σ ≃ ̺ if and only if
Mσ ≃ M̺. We write [̺] to denote the equivalence class of ̺, i.e., the set of all
assignments that are isomorphic to ̺. These equivalence classes partition Φ since
≃ is an equivalence relation.

4.2 Completion Enumeration Modulo Isomorphisms

Isomorphisms allow us to focus our attention to Problem 5 instead of Problem 4:

Problem 5 (Completion enumeration modulo isomorphisms). Given LTS M0,
specification ψ, and constraints Φ, find the set

{[M ] |M is a completion of M0 such that M � ψ and M � Φ}.

Problem 5 asks that only significantly different (i.e., non-isomorphic) comple-
tions are returned to the user. Problem 5 can be solved by a simple modification
to Algorithm 1, namely, to exclude the entire equivalence class [σ] of any dis-
covered solution σ, as shown in Algorithm 2, line 5.
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Algorithm 2: gcg≃[Φ, ψ, γ] solving Problem 5

1 while Φ is satisfiable do

2 σ := sat(Φ);
3 if mc(Mσ, Φ, ψ) = 1 then

4 return σ;
5 Φ := Φ ∧ ¬[σ];

6 else

7 Φ := Φ ∧ ¬γ(σ);

4.3 Properties of an Efficient GCG Algorithm

We begin by presenting a list of properties that an efficient instance of GCG
ought to satisfy. Except for Property 1, satisfaction of these properties generally
depends on the generalizer used.

Property 1. For all σ that satisfy Φ, [σ] ∩ Sol has 0 or 1 element(s). In other
words, we return at most one solution per equivalence class.

Property 1 asks that only significantly different (i.e., non-isomorphic) com-
pletions are returned to the user, thereby solving Problem 5, which is our main
goal. In addition, this property implies that the number of completions is kept
small, which is important when these are fed as inputs to some other routine
(e.g., one that selects a “highly fit” completion among all valid completions).

gcg≃ satisfies Property 1, regardless of the parameters. However, we can go
further, by ensuring that not only we do not return isomorphic completions, but
we do not even consider isomorphic candidate completions in the first place:

Property 2. For all σ that satisfy Φ, [σ] ∩ Cand has 0 or 1 element(s). In other
words, we consider at most one candidate per equivalence class.

Maintaining Property 2 now guarantees that we only call the most expensive
subroutines at most once for each equivalence class. Note that, since Sol ⊆ Cand,
Property 2 implies Property 1.

Property 2 is still not entirely satisfactory. For instance, suppose the algo-
rithm generates σ as a candidate and then prunes γ(σ). Now suppose that ̺ ≃ σ.
Property 2 implies that we cannot call/prune γ(̺). Property 3 rectifies this:

Property 3 (invariant). Suppose that gcg≃ invokes Φ := Φ ∧ ¬γ(σ). Then for
any ̺ ≃ σ, we should have [[γ(̺)]] ⊆ Pruned. In other words, if we prune γ(σ),
we should also prune γ(̺) for every ̺ isomorphic to σ.

We note that, contrary to Properties 1 and 2 which need only hold after ter-
mination, Property 3 is an invariant: we want it to hold for all partial executions
of the algorithm.

Theorem 2. Suppose γ is proper. If gcg≃[Φ, ψ, γ] maintains Property 3 as an
invariant, then gcg≃[Φ, ψ, γ] also maintains Property 2.
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Maintaining Property 3 increases the rate at which the search space is pruned,
but is still not enough. Suppose that τ � γ(σ) and that τ ′ ≃ τ . If we prune the
members of γ(σ), then we will prune τ , but not necessarily τ ′. This possibility is
unsatisfactory, since τ and τ ′ should both be treated whenever one of them is.

Property 4 (invariant). Suppose τ ∈ Pruned and τ ′ ≃ τ . Then τ ′ ∈ Pruned or
τ ′ ∈ Sol. In other words, if we prune τ we should also prune any isomorphic τ ′,
unless τ ′ happens to be a solution. (Note that Property 1 guarantees that this
exception applies to at most one τ ′).

Maintaining Property 4 as an invariant further accelerates pruning. Under
certain conditions, Property 3 implies Property 4. In particular, Property 3 im-
plies Property 4 if γ is invertible, a concept that we define next.

Invertible Generalizers Let γ be a generalizer and let τ be an assignment.
We define the inverse γ−1(τ), to be the propositional logic formula satisfied by
all σ such that τ � γ(σ). That is, σ � γ−1(τ) iff τ � γ(σ).

Let ϕ and ϕ′ be propositional logic formulas. Suppose that for every σ � ϕ,
there exists a σ′ � ϕ′ such that σ′ ≃ σ. Then we say that ϕ subsumes ϕ′ up to
isomorphism. If ϕ and ϕ′ both subsume each other, then we say that they are
equivalent up to isomorphism.

A generalizer γ is invertible if for all assignments τ, τ ′ that satisfy Φ, if τ ≃ τ ′

then γ−1(τ) and γ−1(τ ′) are equivalent up to isomorphism. Now if τ � γ(σ) and
τ ′ ≃ τ , invertibility guarantees that we can point to a σ′ ≃ σ such that τ ′ � γ(σ′).

Theorem 3. Suppose γ is proper and invertible. If gcg≃[Φ, ψ, γ] maintains
Property 3 as an invariant, then gcg≃[Φ, ψ, γ] also maintains Property 4 as an
invariant.

Proof. Let γ be a proper, invertible generalizer.We will proceed by contradiction.
Assume that we have run the algorithm for some amount of time and paused
its execution, freezing the state of Pruned. Suppose that gcg≃[Φ, ψ, γ] satisfies
Property 3 at this point, but that it does not satisfy Property 4. From the
negation of Property 4, we have at this point in the execution two assignments
τ and τ ′ such that (1) τ ≃ τ ′, (2) τ ∈ Pruned, (3) τ ′ /∈ Pruned, and (4) τ ′ /∈ Sol

There are two cases that fall out of (2). Either τ was pruned using a call to γ,
or exactly [τ ] was pruned. In the second case, we quickly reach a contradiction
since it implies that τ ′ ∈ Pruned, violating assumption (3).

So instead, we assume τ � γ(σ) for some σ and that this call to γ was invoked
at some point in the past. So σ � γ−1(τ). But then by invertibility and (1) there
exists σ′ ≃ σ such that σ′ � γ−1(τ ′) and hence τ ′ � γ(σ′). Property 3 tells us
then that τ ′ ∈ Pruned, but this conclusion also violates assumption (3). ⊓⊔

It can be shown that the generalizer γLTS is invertible. Essentially, this is be-
cause γLTS does not depend on state names (for example, the structure of cycles
and paths is independent of state names). Still, gcg≃[Φ, ψ, γLTS] satisfies only
Property 1 above. Therefore, we will next describe an optimized generalization
method that exploits isomorphism to satisfy all properties.
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4.4 Optimized Generalization

Equivalence Closure If γ is a generalizer and ≃ is an equivalence relation,
then let

≃
γ(̺) :=

∨

σ∈[̺]

γ(σ)

be the equivalence closure of γ. If γ(σ) ≡
≃
γ(σ) for all σ, we say that γ is closed

under equivalence.

Note that
≃
γ is itself a generalizer. An instance of gcg≃ that uses

≃
γ is correct

and satisfies all the efficiency properties identified above:

Theorem 4. If γ is a proper generalizer, then gcg≃[Φ, ψ,
≃
γ ] is sound, termi-

nating, and complete up to isomorphisms.

Theorem 5. If γ is proper, then gcg≃[Φ, ψ,
≃
γ] maintains Properties 1 and 2.

Furthermore, the algorithm maintains Property 3 as an invariant.

Theorem 6. If γ is both proper and invertible, then: (1)
≃
γ is invertible; (2)

gcg≃[Φ, ψ,
≃
γ ] maintains Property 4 as an invariant.

Computation Options for
≃

γ The naive way to compute
≃
γ is to iterate over

all σ1, σ2, · · · , σk ∈ [̺], compute each γ(σi), and then return the disjunction of
all γ(σi). We call this the naive generalization approach. The problem with this
approach is that we have to call γ as many as n! times, where n is the number
of permutable states. The experimental results in Section 5 indicate empirically
that this naive method does not scale well.

We thus propose a better approach, which is incremental, in the sense that
we only have to compute γ once, for γ(σ1); we can then perform simple syntactic
transformations on γ(σ1) to obtain γ(σ2), γ(σ3), and so on. As we will show,
these transformations are much more efficient than computing each γ(σi) from
scratch. So-called permuters formalize this idea:

Permuters A permuter is a function π that takes as input an assignment ̺
and the generalization γ(σ) for some σ ≃ ̺, and returns a propositional logic
formula π(σ, γ(̺)) such that ∀̺ � Φ, ∀σ ≃ ̺ :: M̺ 2 ψ → π(̺, γ(σ)) ≡ γ(̺).
That is, assuming ̺ is “bad” (M̺ 2 ψ), π(̺, γ(σ)) is equivalent to γ(̺). However,
contrary to γ, π can use the extra information γ(σ) to compute the generalization

of ̺. Then, instead of
≃
γ(̺), we can compute the logically equivalent formula

γπ(̺) :=
∨

σ∈[̺]

π(σ, γ(̺)).

Theorem 7. Theorems 4, 5, and 6 also hold for gcg≃[Φ, ψ, γπ].

Proof. Follows from the fact that for any ̺, γπ(̺) ≡
≃
γ(̺). ⊓⊔
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A Concrete Permuter for LTS We now explain how to compute π concretely
in our application domain, namely LTS. Let M0 be an incomplete LTS. Let
σ1, σ2 be two assignments encoding completions Mσ1 and Mσ2 of M0. Suppose

Mσ1

A
≃Mσ2 . Recall that A is the set of permutable states (the non-initial states

with no incoming/outgoing transitions by default). Then there is a permutation
f : A → A, such that applying f to the states of Mσ1 yields Mσ2 . f allows
us to transform one LTS to another, but it also allows us to transform the
generalization formula for σ1, namely γ(σ1), to the one for σ2, namely γ(σ2).

For example, let M0 be the leftmost LTS in Fig. 4, with alphabet Σ = {a},
states Q = {p0, p1, p2, p3}, initial state p0, and the empty transition relation.
Let Mσ1 and Mσ2 be the remaining LTSs shown in Fig. 4. Let A = {p1, p2, p3}
and let f be the permutation mapping p1 to p3, p3 to p2, and p2 to p1. Then

Mσ1

A
≃Mσ2 and f is the witness to this isomorphism.

Let γ(σ1) = (p0 #a p1) ∧ (p1 #a p2) ∧ (p2 #a p3). γ(σ1) captures the four
LTSs in Fig. 5. The key idea is that we can compute γ(σ2) by transforming
γ(σ1) purely syntactically. In particular, we apply the permutation f to all pi
appearing in the variables of the formula. Doing so, we obtain γ(σ2) = (p0 #a

p3) ∧ (p3 #a p1) ∧ (p1 #a p2). This formula in turn captures the four LTSs in
Fig. 6, which are exactly the permutations of those in Fig. 5 after applying f .

We now describe this transformation formally. Observe that Mσ1 and Mσ2

have the same set of states, say Q. We extend the permutation to f : Q→ Q by
defining f(q) = q for all states q /∈ A. Now, we extend this permutation of states
to permutations of the set V (the set of boolean variables encoding transitions).
Specifically we extend f to permute V by defining: f(p #a q) := f(p) #a f(q)
and we extend it to propositional formulas by applying it to all variables in the
formula. Then we define πLTS(σ2, γ(σ1)) := f(γ(σ1)).

In essence, the permuter πLTS identifies the permutation f witnessing the
fact that σ1 ≃ σ2. It then applies f to the variables of γ(σ1). Applying f to
γ(σ1) is equivalent to applying f to all assignments that satisfy γ(σ1).

p3 p2

p0 p1

p3

p0

p2

p1

p2 p1

p0 p3M0 := a

a

a

a

a

a

Mσ1 := Mσ2 :=

Fig. 4. An incomplete LTS M0 and two possible completions, Mσ1 and Mσ2

p3 p2

p0 p1

p3

p0

p2

p1

p3 p2

p0 p1

p3 p2

p0 p1a

a

a

a

a

a

a

a

a

a a a a

a

a

a

Fig. 5. LTSs represented by (p0 #
a p1) ∧ (p1 #

a p2) ∧ (p2 #
a p3)



14 D. Egolf & S. Tripakis

p2 p1

p0 p3

p2

p0

p1

p3

p2 p1

p0 p3

p2 p1

p0 p3a

a

a

a

a

a

a

a

a

a a a a

a

a

a

Fig. 6. LTSs represented by (p0 #
a p3) ∧ (p3 #

a p1) ∧ (p1 #
a p2)

It can be shown that πLTS is a permuter for LTS. It follows then that the
concrete instance gcg≃[Φ, ψ, γπ] (where γ := γLTS and π := πLTS) satisfies
Theorem 7, i.e., it is sound, terminating, complete up to isomorphisms, and
satisfies all Properties 1-4.

5 Implementation and Evaluation

Implementation and Experimental Setup We evaluate the three algo-
rithms discussed so far: the unoptimized algorithm gcg[Φ, ψ, γLTS] of [2,4] (Sec-

tion 3.2); and the naive optimization gcg≃[Φ, ψ,
≃
γ ] and permuter optimization

gcg≃[Φ, ψ, γπ] algorithms of Section 4.4. These are respectively labeled ‘unopt.’,
‘naive opt.’, and ‘perm. opt.’ in the tables that follow.

In addition, we evaluate the unoptimized algorithm outfitted with an addi-
tional optimization, which we call the dead transition optimization. We say that
a transition of an LTS is dead if this transition is never taken in any run. If M
with states Q is correct and has k dead transitions, then there are |Q|k solutions
that are equivalent modulo dead transitions, since we can point a dead transi-
tion anywhere while maintaining correctness. The dead transition optimization
prunes all solutions which are equivalent modulo dead transitions. It is equiva-
lent to the unoptimized algorithm in cases where there are no solutions or where
we are looking for only one solution. Therefore, we evaluate the dead transition
optimization side-by-side with the unoptimized solution only when we are enu-
merating all correct completions. The naive and permuter optimizations both
include the dead transition optimization.

We use [27], the Python implementation of gcg[Φ, ψ, γLTS] made publicly
available by the authors of [2,4], and we implement our optimizations on top
of [27] in order to keep the comparison fair. The tool can handle completion
of distributed systems, rather than of single LTSs. Distributed systems are rep-
resented as networks of communicating LTSs similar to those in [4]. Specifica-
tions are represented using safety and liveness (Büchi) monitors, again similar
to those in [4]. However, let us again mention that our approach is not specific
to any particular specification logic; it should allow for performance gains when-
ever the cost of model-checking is greater than the cost of the simple syntactic
transformations applied by the permuter. We use the SAT solver Z3 [7] to pick
candidates from the search space. Our experimental results can be reproduced
using a publicly available artifact [9].
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For our experiments we use the ABP case study as presented in [4] as well
as our own two phase commit (2PC) case study. We consider three use cases:
(1) completion enumeration: enumerate all correct completions; (2) realizable 1-
completion: return the first correct completion and stop, where we ensure that
a correct completion exists; and (3) unrealizable 1-completion: return the first
correct completion, except that we ensure that none exists (and therefore the
tool has to explore the entire candidate space in vain).

We consider amany-process synthesis scenario, where the goal is to synthesize
two or more processes, and a 1-process synthesis scenario, where the goal is to
synthesize a single process. In both of these scenarios across both the ABP
and 2PC case studies, the synthesized processes are composed with additional
environment processes and safety and liveness monitors. The results of the many-
process synthesis scenario are presented shortly. Due to lack of space, the results
of the 1-process synthesis scenario are presented in Appendix A.2. The latter
results do not add much additional insight, except that 1-process synthesis tends
to take less time.

Each experiment was run on a dedicated 2.40GHz CPU core located on the
Northeastern Discovery Cluster. All times are in seconds, rounded up to the
second.

Many-Process Synthesis Experiments In all these experiments, there are
multiple LTSs that must both be completed. In the case of ABP: (1) the incom-
plete ABP Receiver0 of Fig. 1 without further modification; (2) an incomplete
sender process, which is obtained by removing some set of transitions from pro-
cess Sender of Fig. 3. The set of transitions removed from Sender are all incoming
and all outgoing transitions from all states designated as permutable for that
experiment (column A in the tables that follow). For instance, in experiment
{s1, s2} of Table 1 we remove all incoming and outgoing transitions from states
s1 and s2 of Sender, and similarly for the other experiments. And in the case
of 2PC (see Appendix A.1 for figures): (1) the two incomplete 2PC database
managers, of Fig. 8 without further modification; (2) an incomplete transaction
manager, which is obtained by removing some set of transitions from process tx.
man. of Fig. 7.

Completion Enumeration Table 1 presents the results for the completion enu-
meration use case and many-process synthesis scenario. Columns labeled sol.
and iter. record the number of solutions (i.e., |Sol|) and loop iterations of Al-
gorithm 2 (i.e., the number of candidates |Cand|, i.e., the number of times the
SAT routine is called), respectively. Pilot experiments showed negligible variance
across random seeds, so reported times are for one seed. TO denotes a timeout of
4 hours, in which case p/q means the tool produced p out of the total q solutions.
For the dead opt. column, we know that q = 24 · n, where n is the number of
solutions/equivalence classes found by the permuter optimization and 24 = 4! is
the number of isomorphisms for 4 states. Since the naive optimization produces
equivalence classes, q = n for the naive opt. column.

The results in Table 1 are consistent with our theoretical analyses. When
there are 2 permutable states, the naive and permuter optimizations explore
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Table 1: Many-Process Synthesis, Completion Enumeration
unopt. dead opt. naive opt. perm. opt.

Case Study;A sol. iter. time sol. iter. time sol. iter. time sol. iter. time
2PC;{p1, p2} 4 536 47 4 536 46 2 274 34 2 274 28
2PC;{p2, p3} 48 1417 130 4 1352 124 2 735 93 2 735 77
2PC;{p3, p4} 336 2852 266 6 2600 231 3 1328 161 3 1328 134
2PC;{p4, p8} 576 1813 168 4 1237 112 2 575 75 2 648 66
ABP;{s1, s2} 64 628 27 8 574 21 4 289 18 4 304 12
ABP;{s2, s3} 64 1859 75 8 1832 70 4 946 55 4 943 37
ABP;{s3, s4} 32 374 18 4 353 13 2 188 12 2 192 8
ABP;{s4, s5} 32 3728 177 4 3638 170 2 1913 160 2 1833 93
ABP;{s5, s6} 64 449 27 8 412 21 4 199 18 4 201 11
ABP;{s6, s7} 64 1518 94 8 1481 87 4 769 80 4 752 47

2PC;{p2, p3, p4} 2016 17478 1896 36 15646 1677 6 2693 719 6 2693 466
2PC;{p3, p4, p8} 79391⁄- 101278 TO 36 23044 2498 6 4079 1064 6 3997 682
ABP;{s1, s2, s3} 192 5641 226 24 5499 207 4 968 155 4 937 49
ABP;{s2, s3, s4} 3072 23025 1470 48 19114 934 8 3639 722 8 3331 225
ABP;{s3, s4, s5} 96 14651 748 12 15108 760 2 2599 567 2 2520 172
ABP;{s4, s5, s6} 1536 14405 876 24 13269 686 4 2458 554 4 2215 151
ABP;{s5, s6, s7} 192 4686 287 24 4559 268 4 809 241 4 748 57

2PC;{p1, p2, p3, p4} 8064⁄- 70250 TO 144 62280 11915 6 2770 2844 6 2719 1564
ABP;{s1, s2, s3, s4} 12288 90031 8143 192 76591 5458 8 3704 2931 8 3271 628
ABP;{s3, s4, s5, s6} 6144 59838 4777 96 52935 3543 4 2896 2655 4 2351 431
ABP;{s4, s5, s6, s7} 1009⁄- 108929 TO 38⁄96 111834 TO 2⁄4 10443 TO 4 8639 7480

about half the number of candidates as the dead transitions method. For 3
permutable states, the optimized methods explore about 3! = 6 times fewer can-
didates. For 4 permutable states, the optimized methods explore about 4! = 24
times fewer candidates than the dead transitions method in the only experi-
ment where the unoptimized method does not timeout. Notably, the permuter
optimization does not timeout on any of these experiments.

Realizable 1-Completion Table 2 presents the results for the realizable 1-completion
use case (return the first solution found and stop) and many-process synthesis
scenario. Our experiments and those of [4] suggest that there is more time vari-
ability for this task depending on the random seed provided to Z3. Thus, for
Table 2 we run the tools for 10 different random seeds and report average times
and number of iterations, rounded up. In one case (last row of Table 2), for a
single seed out of the 10 seeds, the program timed out before finding a solution.
As the true average is unknown in this case, we report it as TO.

Unrealizable 1-Completion Table 3 presents the results for the unrealizable 1-
completion use case and many-process synthesis scenario. For these experiments,
we artificially modify the ABP Sender by completely removing state s7, which
results in no correct completion existing. A similar change is applied to tx. man.
in the case of 2PC. Thus, the tools explore the entire search space and ter-
minate without finding a solution. As can be seen, the permuter optimization
significantly prunes the search space and achieves considerable speedups.
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Table 2: Many-Process Synthesis, Realizable 1-Completion
unopt. naive opt. perm. opt.

Case Study;A iter. time iter. time iter. time
2PC;{p1, p2} 199 19 157 20 157 17
2PC;{p2, p3} 483 47 429 55 426 46
2PC;{p3, p4} 798 72 696 84 666 69
2PC;{p4, p8} 380 37 319 44 311 34
ABP;{s1, s2} 111 4 110 7 100 4
ABP;{s2, s3} 220 9 205 13 200 9
ABP;{s3, s4} 106 5 102 7 105 5
ABP;{s4, s5} 1669 75 909 73 1202 60
ABP;{s5, s6} 102 5 95 8 102 5
ABP;{s6, s7} 507 28 294 28 294 17

2PC;{p2, p3, p4} 440 48 590 147 561 89
2PC;{p3, p4, p8} 954 94 861 205 796 121
ABP;{s1, s2, s3} 332 12 225 36 240 13
ABP;{s2, s3, s4} 2462 108 904 170 1028 64
ABP;{s3, s4, s5} 2267 102 1040 219 819 52
ABP;{s4, s5, s6} 2735 130 1513 333 1327 92
ABP;{s5, s6, s7} 361 21 264 69 308 22

2PC;{p1, p2, p3, p4} 806 81 495 387 572 220
ABP;{s1, s2, s3, s4} 1957 85 1068 760 890 122
ABP;{s3, s4, s5, s6} 5425 261 1003 860 1601 234
ABP;{s4, s5, s6, s7} 16098 1088 TO TO 4159 1158

Table 3: Many-Process Synthesis, Unrealizable 1-Completion
unopt. naive opt. perm. opt.

Case Study;A iter. time iter. time iter. time
2PC;{p1, p2} 3207 292 1658 206 1655 175
2PC;{p2, p3} 9792 978 4996 646 4982 552
2PC;{p3, p4} 14911 1527 7645 1053 7589 878
2PC;{p4, p8} 5123 494 2537 339 2555 282
ABP;{s1, s2} 1650 58 879 52 853 33
ABP;{s2, s3} 4300 173 2384 171 2374 106
ABP;{s3, s4} 327 13 173 11 164 7
ABP;{s4, s5} 3108 143 1592 130 1710 89
ABP;{s5, s6} 333 16 172 15 168 9

2PC;{p2, p3, p4} 66088 TO 19717 10867 19850 9610
2PC;{p3, p4, p8} 70586 TO 26343 TO 26516 14340
ABP;{s1, s2, s3} 20858 1022 3705 798 3668 253
ABP;{s2, s3, s4} 58974 4021 10516 2673 10496 1052
ABP;{s3, s4, s5} 12323 596 2231 504 2167 146
ABP;{s4, s5, s6} 11210 557 2104 491 1985 136

2PC;{p1, p2, p3, p4} 67659 TO 10365 TO 12308 TO
ABP;{s1, s2, s3, s4} 129264 TO 12096 TO 14739 TO
ABP;{s3, s4, s5, s6} 45056 2869 2466 2392 2004 339
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6 Related Work

Synthesis of Distributed Protocols: Distributed system synthesis has been stud-
ied both in the reactive synthesis setting [22] and in the setting of discrete-event
systems [28,29]. More recently, synthesis of distributed protocols has been stud-
ied using completion techniques in [2,3,4,16]. [2,4] study completion of finite-
state protocols such as ABP but they do not focus on enumeration. [3] considers
infinite-state protocols and focus on synthesis of symbolic expressions (guards
and assignments). None of [2,3,4] propose any reduction techniques. We propose
reduction modulo isomorphisms.

[16] studies synthesis for a class of parameterized distributed agreement-based
protocols for which verification is efficiently decidable. Another version of the
paper [15] considers permutations of process indices. These are different from
our permutations over process states.

Synthesis of parameterized distributed systems is also studied in [20] using
the notion of cutoffs, which guarantee that if a property holds for all systems
up to a certain size (the cutoff size) then it also holds for systems of any size.
Cutoffs are different from our isomorphism reductions.

Bounded Synthesis: The bounded synthesis approach [11] limits the search space
of synthesis by setting an upper bound on certain system parameters, and en-
codes the resulting problem into a satisfiability problem. Bounded synthesis is
applicable to many application domains, including distributed system synthe-
sis, and has been successfully used to synthesize systems such as distributed
arbiters and dining philosophers [11]. Symmetries have also been exploited in
bounded synthesis. Typically, such symmetries encode similarity of processes
(e.g., all processes having the same state-transition structure, as in the case of
dining philosophers). As such, these symmetries are similar to those exploited
in parameterized systems, and different from our LTS isomorphisms.

Symmetry Reductions in Model-Checking: Symmetries have been exploited in
model-checking [5]. The basic idea is to take a model M and construct a new
model MG which has a much smaller state space. This construction exploits the
fact that many states in M might be functionally equivalent, in the sense of
incoming and outgoing transitions. The key distinction between this work and
ours is that our symmetries are over the space of models rather than the space
of states of a fixed model. This distinction allows us to exploit symmetries for
completion enumeration rather than model-checking.

Symmetry-Breaking Predicates: Symmetry-breaking predicates have been used
to solve SAT [6], SMT [8], and even graph search problems [13], more efficiently.
Our work is related in the sense that we are also trying to prune a search space.
But our approach differs both in the notion of symmetry used (LTS isomorphism)
as well as the application domain (distributed protocols). Moreover, rather than
trying to eliminate all but one member of each equivalence class at the outset, say,
by somehow adding a global (and often prohibitively large) symmetry-breaking
formula Ξ to Φ, we do so on-the-fly for each candidate solution.
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Canonical Forms: In program synthesis work [24], a candidate program is only
checked for correctness if it is in some normal form. [24] is not about synthesis
of distributed protocols, and as such the normal forms considered there are
very different from our LTS isomorphisms. In particular, as with symmetry-
breaking, the normal forms used in [24] are global, defined a-priori for the entire
program domain, whereas our generalizations are computed on-the-fly. Moreover,
the approach of [24] may still generate two equivalent programs as candidates
(prior to verification), i.e., it does not satisfy our Property 2.

Sketching, CEGIS, OGIS, Sciduction: Completion algorithms such as GCG
belong to the same family of techniques as sketching [26], counter-example
guided inductive synthesis (CEGIS) [1,12,25,26], oracle-guided inductive syn-
thesis (OGIS) [17], and sciduction [23].

7 Conclusions

We proposed a novel distributed protocol synthesis approach based on comple-
tion enumeration modulo isomorphisms. Our approach follows the guess-check-
generalize synthesis paradigm, and relies on non-trivial optimizations of the gen-
eralization step that exploit state permutations. These optimizations allow to sig-
nificantly prune the search space of candidate completions, achieving speedups
of factors approximately 2 to 10 and in some cases completing experiments in
minutes instead of hours. To our knowledge, ours is the only work on distributed
protocol enumeration using reductions such as isomorphism.

As future work, we plan to employ this optimized enumeration approach
for the synthesis of distributed protocols that achieve not only correctness, but
also performance objectives. We also plan to address the question where do the
incomplete processes come from? If not provided by the user, such incomplete
processes might be automatically generated from example scenarios as in [2,4], or
might simply be “empty skeletons” of states, without any transitions. We also
plan to extend our approach to infinite-state protocols, as well as application
domains beyond protocols, as Algorithm 2 is generic and thus applicable to a
wide class of synthesis domains.
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A Appendix

A.1 The 2PC Processes

We used the 2PC transaction manager of Fig. 7 and the incomplete database
manager of Fig. 8 to obtain our experimental results (cf. page 15).

https://github.com/stavros7167/distributed_protocol_completion
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Fig. 8. An incomplete database manager; i ∈ {1, 2}

A.2 1-Process Synthesis Experiments

In each of these experiments, we only complete an incomplete sender process,
obtained in the same manner as for the many-process experiments on page 15,
namely, by removing some set of transitions from process Sender of Fig. 3. The
set of transitions removed depends on which states are designated as permutable
for that experiment. For instance, for A = {s1, s2}, we remove all incoming and
outgoing transitions from both states s1 and s2, and similarly for the other
experiments. We use the completed ABP Receiver shown in Fig. 9.

The results for the three use cases (completion enumeration, realizable 1-
completion, and unrealizable 1-completion) are presented in Tables 4, 5, and 6,
respectively. Similar speedups can be observed as those in the many-process
synthesis scenario (page 15).
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Fig. 9. A completed ABP Receiver

Table 4: 1-Process Synthesis, Completion Enumeration
unopt. dead opt. naive opt. perm. opt.

Case Study; A sol. iter. time sol. iter. time sol. iter. time sol. iter. time
2PC;{p1, p2} 4 493 49 4 493 44 2 252 32 2 252 27
2PC;{p2, p3} 48 1121 113 4 1092 103 2 571 76 2 580 65
2PC;{p3, p4} 336 2247 208 6 1751 160 3 908 117 3 921 105
2PC;{p4, p8} 576 1587 150 4 974 91 2 492 67 2 492 52
ABP;{s1, s2} 64 391 20 8 336 13 4 171 12 4 171 7
ABP;{s2, s3} 64 1329 57 8 1277 51 4 673 45 4 646 27
ABP;{s3, s4} 32 363 16 4 306 11 2 160 10 2 166 7
ABP;{s4, s5} 32 3729 175 4 3686 169 2 1825 149 2 1786 88
ABP;{s5, s6} 64 383 25 8 333 17 4 166 16 4 167 10
ABP;{s6, s7} 64 1324 84 8 1245 76 4 634 71 4 628 40

2PC;{p2, p3, p4} 2016 12793 1363 36 10650 1139 6 1842 509 6 1907 355
2PC;{p3, p4, p8} 87774⁄- 103999 TO 36 14747 1551 6 2491 667 6 2484 439
ABP;{s1, s2, s3} 192 3986 171 24 3845 153 4 673 116 4 652 35
ABP;{s2, s3, s4} 3072 18504 1197 48 15790 775 8 2959 631 8 2665 196
ABP;{s3, s4, s5} 96 14446 700 12 14083 675 2 2494 545 2 2508 165
ABP;{s4, s5, s6} 1536 14422 866 24 12477 609 4 2382 543 4 2301 161
ABP;{s5, s6, s7} 192 3970 257 24 3731 228 4 657 203 4 636 48

2PC;{p1, p2, p3, p4} 8064 50868 9354 144 42926 7557 6 1905 1956 6 1934 1124
ABP;{s1, s2, s3, s4} 12288 74398 6270 192 61456 3975 8 3195 2743 8 2641 449
ABP;{s3, s4, s5, s6} 6144 58044 4400 96 50824 3276 4 2554 2422 4 2130 351
ABP;{s4, s5, s6, s7} 512⁄- 112328 TO 24⁄96 112762 TO 4⁄4 9963 TO 4 8144 6181
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Table 5: 1-Process Synthesis, Realizable 1-Completion
unopt. naive opt. perm. opt.

Case Study;A iter. time iter. time iter. time
2PC;{p1, p2} 185 18 125 17 125 14
2PC;{p2, p3} 326 34 307 41 274 32
2PC;{p3, p4} 387 39 408 52 395 43
2PC;{p4, p8} 200 22 234 34 228 26
ABP;{s1, s2} 91 3 83 5 79 3
ABP;{s2, s3} 314 12 244 16 193 9
ABP;{s3, s4} 99 4 76 5 83 4
ABP;{s4, s5} 878 40 1395 111 939 46
ABP;{s5, s6} 61 4 59 5 67 4
ABP;{s6, s7} 395 22 288 30 301 18

2PC;{p2, p3, p4} 366 41 410 105 336 60
2PC;{p3, p4, p8} 747 76 849 211 557 90
ABP;{s1, s2, s3} 384 14 287 46 261 14
ABP;{s2, s3, s4} 2114 96 744 145 583 37
ABP;{s3, s4, s5} 1273 58 945 202 1320 83
ABP;{s4, s5, s6} 2466 114 1356 304 1095 72
ABP;{s5, s6, s7} 249 16 188 53 191 15

2PC;{p1, p2, p3, p4} 366 41 403 317 350 138
ABP;{s1, s2, s3, s4} 2555 117 803 615 723 95
ABP;{s3, s4, s5, s6} 3147 148 1525 1317 1161 169
ABP;{s4, s5, s6, s7} 23353 1660 4082 4916 3969 904
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Table 6: 1-Process Synthesis, Unrealizable 1-Completion. The timeout is checked
at the beginning of each iteration, so a program may terminate in just over 4
hours without timing out if the timeout occurs in the middle of the last iteration,
as is the case for the results of the experiment where A = {s1, s2, s3, s4} in the
perm. opt. column.

unopt. naive opt. perm. opt.

Case Study;A iter. time iter. time iter. time
2PC;{p1, p2} 3184 294 1638 211 1625 172
2PC;{p2, p3} 8916 926 4645 632 4598 535
2PC;{p3, p4} 13659 1410 6729 917 6820 814
2PC;{p4, p8} 4609 456 2320 320 2317 257
ABP;{s1, s2} 1229 47 630 43 628 26
ABP;{s2, s3} 3405 149 1788 136 1728 81
ABP;{s3, s4} 290 11 150 10 156 7
ABP;{s4, s5} 3171 145 1565 130 1610 80
ABP;{s5, s6} 275 14 142 13 137 8

2PC;{p2, p3, p4} 63991 TO 17894 10169 17927 8822
2PC;{p3, p4, p8} 65845 TO 23515 TO 23843 12547
ABP;{s1, s2, s3} 16797 851 2987 718 2773 198
ABP;{s2, s3, s4} 53138 3631 9879 2631 8088 694
ABP;{s3, s4, s5} 12407 616 2288 515 2205 145
ABP;{s4, s5, s6} 11202 564 2086 489 1997 140

2PC;{p1, p2, p3, p4} 60616 TO 9524 TO 11259 TO
ABP;{s1, s2, s3, s4} 120050 TO 11993 TO 12988 14626
ABP;{s3, s4, s5, s6} 43215 2577 2323 2173 1967 333
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