
Syntactic vs Semantic Linear Abstraction and
Refinement of Neural Networks ⋆

Calvin Chau[0000−0002−3437−0240]1, Jan Křet́ınský[0000−0002−8122−2881]2,3, and
Stefanie Mohr[0000−0002−8630−3218]2

1 Technische Universität Dresden, Dresden, Germany
2 Technical University of Munich, Munich, Germany

3 Masaryk University, Brno, Czech Republic
{mohr, kretinsky}@in.tum.de
calvin.chau@tu-dresden.de

Abstract. Abstraction is a key verification technique to improve scala-
bility. However, its use for neural networks is so far extremely limited.
Previous approaches for abstracting classification networks replace several
neurons with one of them that is similar enough. We can classify the sim-
ilarity as defined either syntactically (using quantities on the connections
between neurons) or semantically (on the activation values of neurons
for various inputs). Unfortunately, the previous approaches only achieve
moderate reductions, when implemented at all. In this work, we provide
a more flexible framework, where a neuron can be replaced with a linear
combination of other neurons, improving the reduction. We apply this
approach both on syntactic and semantic abstractions, and implement
and evaluate them experimentally. Further, we introduce a refinement
method for our abstractions, allowing for finding a better balance between
reduction and precision.

Keywords: Neural network · Abstraction · Machine learning

1 Introduction
Neural Network Abstractions Abstraction is a key instrument for under-
standing complex systems and analyzing complex problems across all disciplines,
including computer science. Abstraction of complex systems, such as neural
networks (NN), results in smaller systems, which are not only producing equiv-
alent outputs (such as in distillation [12]), but additionally can be mapped to
the original system, providing a strong link between the individual parts of the
two systems. Consequently, abstraction find various applications. For instance,
the smaller (abstract) networks are more understandable and the strong link
between the behaviours of the abstract and the original network allows for better
⋆ This research was funded in part by the German Research Foundation (DFG) project

427755713 GoPro, the German Federal Ministry of Education and Research (BMBF)
within the project SEMECO Q1 (03ZU1210AG), and the DFG research training
group ConVeY (GRK 2428).

ar
X

iv
:2

30
7.

10
89

1v
1

 [
cs

.L
O

]
 2

0
Ju

l 2
02

3

2 Chau et al.

explainability of the original behaviour, too; smaller networks are more efficient
in resource usage during runtime; smaller networks are easier to verify. Again,
with no formal link between the original network and, say, a distilled or pruned
one, verifying the smaller one is of no use to verifying the original one. In contrast,
for abstractions, the verification guarantee can be in principle transfered to the
original network, be it via lifting a counterexample or a proof of correctness.

Altogether, abstractions of neural networks are a key concept worth investi-
gating eo ipso, subsequently offering various applications. However, currently it is
still very under-developed. For defining an abstraction, we need a transformation
linking the original neurons to those in the abstraction. Equivalently, we need a
notion of the similarity of neurons, to identify a good representative of a group
of neurons. The difficulty in contrast to, e.g., predicate abstraction of programs
is that neurons have no inner structure such as values of variables stored in a
state. On the one hand, approaches based on bisimilarity [21] offer a solution
focusing on the “syntax” of neurons: the weights of the incoming connections.
The quantities give rise to an equivalence akin to probabilistic bisimulation. On
the other hand, in search of a stronger tool, approaches such as [2] try to identify
“semantics” of the neurons. For instance, given a vector of inputs to the network,
the I/O semantics of a neuron [2] is the vector of activation values of this neuron
obtained on these inputs. This represents a finite-dimensional approximation of
the actual semantics of a neuron as a computational device. Either way, replacing
several neurons with one that is very similar yields only moderate savings on
size if the abstract network is supposed to be similar, i.e., yield mostly the same
predictions and ensure a tight connection between the similar neurons.

Our Contribution We focus on studying abstraction irrespective of the use
case (verification, smaller networks, explainability), to establish a better principal
understanding of this crucial, yet in this context underdeveloped technique.
First, we explore a richer abstraction scheme, where a group of neurons can be
represented not only by a chosen neuron but also by a linear combination of
neurons. Thus instead of keeping exactly one representative per group, we can
“reuse” the chosen representatives in many linear combinations; in other words, the
representatives can attain many roles, partially representing many groups, which
reduces their required count. We provide several algorithms to do so, ranging
from resource-intensive algorithms aiming to show the limits of the approach to
efficient heuristics approximating the former ones quite closely. We apply these
algorithms to the semantic approach of [2] as well as to the syntactic, bisimulation-
like approach similar to [21] not implemented previously. Experimental results
confirm the greater power of this linear-combination approach; further, they
provide insight into the advantages of semantic similarity over the syntactic one,
pointing out the more advantageous future research directions.

Further, we provide a formal link between the concrete and abstract neurons
by proving an error bound induced by the abstraction, showing the abstraction
is valid and (approximately) simulates the original network. We show the bound
is better than the one based on bisimulation. While still not very practical, the
experiments show that even on unseen data, the error is always closely bounded

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 3

by the error on the data used for generating the abstraction, and mostly even a
lot smaller. This empirical version of the concept of error could thus enable the
transfer of reasoning about the abstraction to the original network in a yet much
tighter way.

In addition, we suggest abstraction-refinement procedures to better fine-
tune the trade-off between the precision and the size of the abstraction. The
experiments reveal that a more aggressive abstraction followed by a refinement
provides better results than a direct, moderate abstraction. Hence involving our
refinement in the abstraction process improves the resulting quality, opening new
lines of attack on efficient neural network abstractions.
Summary Our contribution can be summarized as follows:

– We define abstractions of neural networks with (approximate) equivalences
being linear equations over semantics of neurons. We provide a theoretical
bound on the induced error, see Thm. 1. We reflect this idea also on the
syntactic, bisimulation-based abstraction.

– We implement both approaches and compare them mutually as well as to
their previous, special cases with equivalences being (approximate) identities.
We perform the experiments on a number of standard benchmarks, such as
MNIST, CIFAR, or FashionMNIST, concluding advantages of semantic over
syntactic approaches and of linear over identity-based ones.

– We introduce an abstraction-refinement procedure and also evaluate its
benefits experimentally.

Related Work There are various approaches for verification of NN, however,
we are not presenting another verifier. Instead, we introduce an approach that is
orthogonal to verification and could be integrated with an existing verifier.
Therefore, we do not compare our approach to any verification tool and refer the
interested reader to the Verification of Neural Networks Competition [4] for an
overview of existing approaches [15, 25, 33, 31].

Network compression techniques share many similarities with abstraction [6]
and either focus on reducing the memory footprint [14, 13] or computation time
of the model [11], but in contrast, do not provide any formal relation to the
original network, rendering them inappropriate for understanding redundancies
or verification. Knowledge distillation is a prominent technique, which can reduce
networks by a significant amount, but completely loses any connection to the
original network [12], and can thus not be used in verification. There is some
progress in using abstract domains for scalable verification, like [25, 26, 28],
but they do not produce an abstracted NN for verification. Instead, they apply
abstraction only tightly entangled together with the verification algorithm. These
approaches also try to generate a more scalable verification, however, the key
difference is that they do not return an actual abstracted network that could be
reused or manually inspected. Katz et al. [7] introduce an abstraction scheme
for NN, in which they decompose neurons into several parts, before merging
them again to obtain an over-approximation of the original network. However,
their approach is limited to networks with one output neuron. For networks with

4 Chau et al.

more output neurons, the property to be verified needs to be baked into the
network, making the approach significantly less flexible. Additionally, this tight
entanglement of specification and neural network does not allow for retrieving
the abstraction later and reusing it for anything else than to verify that specific
property. This strongly contrasts our generic and usage-agnostic abstraction and
their property-restricted abstractions.

Some other works use abstraction after representing a neural network as an
interval neural network [22], or more generally, by using more complex abstract
domains [27]. While theoretically interesting, the practicality of these works has
not been investigated. There are two approaches that we consider to be the
closest to our work: a bisimulation-based approach [21], and DeepAbstract [2],
which we will more closely introduce in the preliminaries, and compare to in the
experiments.

2 Preliminaries
In this work, we focus on classification feedforward neural networks. Such a neural
network N consists of several layers 1, 2, . . . , L, with 1 being the input layer, L
being the output layer and 2, . . . , L − 1 being the hidden layers. Each layer ℓ
contains nℓ neurons. Neurons of one layer are connected to neurons of the previous
and next layers by means of weighted connections. Associated with every layer ℓ
that is not an output layer is a weight matrix W (ℓ) = (w(ℓ)(i, j)) ∈ Rnℓ+1×nℓ where
w(ℓ)(i, j) gives the weights of the connections to the ith neuron in layer ℓ + 1 from
the jth neuron in layer ℓ. We use the notation W

(ℓ)
i,∗ = [w(ℓ)(i, 1), . . . , w(ℓ)(i, nℓ)]

to denote the incoming weights of neuron i in layer ℓ + 1 and
W

(ℓ)
∗,j = [w(ℓ)(1, j), . . . , w(ℓ)(nℓ+1, j)]⊺ to denote the outgoing weights of neu-

ron j in layer ℓ. Note that W
(ℓ)
i,∗ and W

(ℓ)
∗,j correspond to the ith row and jth

column of W (ℓ) respectively. A vector b(ℓ) = [b(ℓ)
1 , . . . , b

(ℓ)
nℓ] ∈ Rnℓ called bias is

also associated with each hidden layer ℓ. The input and output of a neuron i

in layer ℓ is denoted by h
(ℓ)
i and z

(ℓ)
i respectively. We call hℓ = [h(ℓ)

1 , . . . , h
(ℓ)
nℓ]⊺

the vector of pre-activations and zℓ = [z(ℓ)
1 , . . . , z

(ℓ)
nℓ]⊺ the vector of activations

of layer ℓ. The neuron takes the input hℓ, and applies an activation function
ϕ : R → R element-wise on it. The output is then calculated as zℓ = ϕ(hℓ), where
standard activation functions include tanh, sigmoid, or ReLU [20]. We assume
that the activation function is Lipschitz continuous, which in particular holds for
the aforementioned functions [29]. In a feedforward neural network, information
flows strictly in one direction: from layer ℓm to layer ℓn where ℓm < ℓn. For an
n1-dimensional input x ∈ X from some input space X ⊆ Rn1 , the output y ∈ RnL

of the neural network N , also written as y = N(x) is iteratively computed as:

h(0) = z(0) = x
h(ℓ+1) = W (ℓ)z(ℓ) + b(ℓ+1) (1)
z(ℓ+1) = ϕ(h(ℓ+1)) (2)

y = z(L)

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 5

where ϕ(x) is the column vector obtained by applying ϕ component-wise to x.
We abuse the notation and write z(ℓ)(x), when we want to specify that the output
of layer ℓ is computed by starting with x as input to the network.

2.1 Syntactic and Semantic Abstractions

We are interested in a general abstraction scheme that is not only useful for
verification, but also for revealing redundancies, while keeping a formal link to
the original network. We distinguish between two types of abstraction: semantic
and syntactic. Syntactic abstraction makes use of the weights of the network,
the syntactic information, and allows for overapproximation guarantees that are
not restricted to specific inputs. However, as we shall see in the experiments, the
semantic abstraction can capture the behavior of the original network on typical
input data much more accurately than its syntactic counterpart. This comes at
the cost of a more challenging error analysis.
Semantic Information In line with DeepAbstract [2], we will create the
semantic information based on a set of inputs, the I/O set, X = {x1, . . . , xn} ⊆ X ,
which is typically a subset of the training dataset. We use the inputs xj ∈ X, feed
them to the network and store the output values {z(ℓ)(xj)}xj∈X of a layer ℓ in a
matrix Z(ℓ) = (z(ℓ)

i (xj))i,j . Note that the columns are the z(ℓ)(xj) and the rows,
denoted as Z(ℓ)

i,∗, correspond to the values one neuron i produces for all inputs
xj . We refer to the vector Z(ℓ)

j,∗ as the semantics of neuron i. This collection of
matrices Z(ℓ) for all layers contains the semantic information of the network.
DeepAbstract Since we will compare our approach to DeepAbstract [2], we
will give a concise description of the idea of their work. First, it generates the
semantic information Z. For one layer ℓ, it clusters the rows of the matrix by
using standard clustering techniques, e.g. k-means clustering [3]. Each cluster
is considered to be a group of neurons that have similar semantics and similar
behavior. Thus, only one group representative is chosen to remain and the rest is
replaced by the representatives.
Bisimulation The idea of [21] is to apply the notion of bisimulation to NN.
A bisimulation declares two neurons as equivalent if they agree on their incoming
weights, biases, and activation functions. Additionally, the paper introduces a
δ-bisimulation that allows neurons to be equivalent only up to δ, i.e. two neurons
i, j of layer ℓ with the same activation function are considered to be δ-bisimilar,
if for all k : |w(ℓ−1)(i, k) − w(ℓ−1)(j, k)| ≤ δ and |b(ℓ)

i − b
(ℓ)
j | ≤ δ.

3 Linear Abstraction
Our abstraction of a NN is based on the idea that huge NN in their practical
application are usually trained with more neurons than necessary. Since there
are techniques to avoid “overfitting”, users of machine learning tend to use NN
that are bigger than necessary for their task [18]. Intuitively, such networks thus
contain redundancies. We want to remove these redundancies to decrease the size
of the network and make it more scalable for verification.

6 Chau et al.

n0
2

n0
1

n1
1

n1
2

n1
3

n2
1

n2
2

1 + α
(1)
1,2 · 2

1
2

-1

3

-2

1

W (1) =
(

1 −1 −2
2 3 1

)

n0
2

n0
1

n1
1

n1
2

n1
3

n2
1

n2
2

1
2

−1 + α
(1)

1,1
· 1

3 + α
(1)
1,1 · 2

−2
+

α
(1

)
1,

2
· 1

1 + α
(1)
1,2 · 2

W̃ (1) =
(

0 −1 + α
(1)
1,1 · 1 −2 + α

(1)
1,2 · 1

0 3 + α
(1)
1,1 · 2 1 + α

(1)
1,2 · 2

)

Fig. 1: Linear Abstraction - On the left, the original network with the basis B in
blue. On the right, the abstracted network with the removed neuron n1

1 and the
changed output weights of the basis neurons n1

2, n1
3, where we assume that n1

1
can be simulated by α

(1)
1,1 · n1

2 + α
(1)
1,2 · n1

3.

Existing approaches group together similar neurons, and then choose a repre-
sentative. Instead, we propose to replace a neuron with a linear combination of
other neurons. More specifically, we want to replace a neuron i of layer ℓ, not by
one single neuron j, but rather by a clever combination of several neurons, called
the basis, B(ℓ) ⊂ {1, . . . , nℓ}\{i}, which is a subset of all neurons of this layer
and in this case given as their indices. We assume that the behavior of a neuron
can be simulated by a linear combination of the behavior of the basis neurons,
i.e. by

∑
j∈B(ℓ) α

(ℓ)
i,j · Z(ℓ)

j,∗ for some α
(ℓ)
i,j ∈ R.

Example Consider the neural network in Fig. 1. It has an input layer with
two neurons n0

1, n0
2, one hidden layer with three neurons n1

1, n1
2, n1

3, and an
output layer with two neurons n2

1, n2
2. We assume that we are given the basis

B(1) = {n1
2, n1

3}, marked with blue color in the figure, and the linear coeffi-
cients α

(1)
1,1, α

(1)
1,2. That is, we assume that n1

1 can be simulated by the linear
combination α

(1)
1,1 · n1

2 + α
(1)
1,2 · n1

3. We can remove neuron n1
1 and its outgoing

weights [1, 2]⊺, and add the outgoing weights scaled by the linear coefficients
to the basis neurons instead. We add α

(1)
1,1 · [1, 2]⊺ to the outgoing weights of

neuron n1
2, so we get [−1, 3]⊺ + α

(1)
1,1 · [1, 2]⊺ = [−1 + α

(1)
1,1 · 1, 3 + α

(1)
1,1 · 2]⊺, and

respectively, we get [−2+α
(1)
1,2 ·1, 1+α

(1)
1,2 ·2]⊺ as the outgoing weights of neuron n1

3.

The computational overhead to compute a linear combination compared to
finding a representative is negligible, as we will see in our experiments (see
Section 5.2). On the other hand, they provide more expressive power, subsuming
the aforementioned clustering-based approach [2]. In particular, we can detect
scaled weights that previous approaches failed to identify.

Please note that although it is possible to replace a neuron with a linear
combination of any other neurons in the network, we will only use neurons

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 7

from the same layer due to more efficient support by modern neural network
frameworks.

In the following sections, we will answer three questions: How can one find a
set of neurons that serves as a basis (3.1)? How to find the coefficients for the
linear combination (3.2)? How to replace a neuron, once its representation as a
linear combination is given (3.3)?

3.1 Finding the Basis

Our approach is meant to find a sufficient smaller subset of neurons in one layer,
which is enough to represent the behavior of the whole layer. We will make use
of the semantic information of a layer ℓ, given as Z(ℓ) = (z(ℓ)

i (xj))i,j (see 2.1).
Based on this, we try to find a basis of neurons, i.e. a set of indices for neurons in
this layer {j1, . . . jkℓ

} = B(ℓ) ⊂ {1, . . . , nℓ}, which can represent the whole space
as well as possible. To this end we want to find a subset of size k = |B(ℓ)| such
that ∥

∑
j∈B(ℓ) α

(ℓ)
i,j · Z(ℓ)

j,∗ − Zi,∗∥ is minimized. We denote with

AB =

 | |
Z(ℓ)

j1,∗ . . . Z(ℓ)
jkℓ

,∗
| |

 (3)

the matrix containing the activations Z(ℓ)
j,∗ of the neurons in the basis as columns.

Greedy Algorithm The problem of finding an optimal basis of size k w.r.t.
L2 distance can be seen as a variation of the column subset selection problem
which is known to be NP-complete [24]. As a consequence, we use a variant of a
greedy algorithm [1]. While it does not always yield the optimal solution, it has
been observed to work reasonably well in practice [9, 8].

It has already been observed that layers closer to the output usually contain
more condensed information and more redundancies, and can, thus, be compressed
more aggressively [2]. We present a greedy algorithm that chooses which layer
contains more information and needs a larger basis instead of decreasing the
basis sizes equally fast in each layer.

In Algorithm 1, we see that the procedure iteratively removes neurons from
the basis. To this end, it iterates over all layers l ∈ {1, . . . , L} in the network.
It tries to remove one neuron at a time from the basis. Then it computes the
projection error of the smaller basis, which is defined as ∥Z(ℓ)⊺ − ΠAB

Z(ℓ)⊺∥,
where ΠAB

is the matrix that projects the columns of Z(ℓ)⊺ onto the column
space of AB. The columns of AB are the rows of Z(ℓ) whose neurons belong to
B. It greedily evaluates all neurons in all layers and selects the best neuron of
the best layer to be removed. After checking every layer, the algorithm decides
on the best layer and neuron to be removed, i.e. the one with the smallest error.

Since the approach thoroughly evaluates all possibilities, its runtime depends
on both the number of layers and neurons. A natural alternative would be a
heuristic that guides us similarly well through the search space. We provide our
choice of heuristic below.

8 Chau et al.

Algorithm 1 Greedy algorithm over all layers
1: Given: k neurons to be removed
2: ∀l ∈ {1, . . . , L} : B(ℓ) ← {1, . . . , nl}
3: errormin ←∞, lbest ← −1, nbest ← −1
4: for i ∈ 1, . . . , k do
5: for l ∈ 1, . . . , L do
6: for j ∈ 0, . . . , nl do
7: Compute the projection error errorj of AB(ℓ)\{j}
8: if errorj < errormin then
9: lbest ← l

10: nbest ← j
11: errormin ← errorj

12: Blbest ← Blbest \ {nbest}
13: return B1, . . . , BL

Variance-based Heuristic Instead of a step-wise decision that takes a lot of
computation time, we propose to use a variance-based heuristic. We define the
variance of a vector v ∈ Rn in the usual way by Var(v) =

∑n
i=0(vi − Mean(v))2

where Mean(v) is the mean of the vector values. W.l.o.g. let the neurons be
numbered in such a way that Var(z(ℓ)

1) ≥ · · · ≥ Var(z(ℓ)
nℓ). We then choose the

basis to contain the neurons with the kℓ largest variances, i.e. B = {1, . . . , k}.
We assume that neurons with a higher variance in their output values carry
more information, and are, therefore, more relevant. Indeed, we can see in our
experiments, i.e. Fig. 2, that the heuristic-based approach can achieve similar
results, but in far less time.

3.2 Finding the Coefficients
Given a basis B(ℓ) for some layer ℓ, computed with the before-mentioned approach,
we want to find the coefficients that can be used to replace the remaining
neurons which are not part of the basis. We fix a neuron i in layer ℓ that we
want to replace and whose values are stored in Z(ℓ)

i,∗, and we want to minimize
∥
∑

j∈B(ℓ) α
(ℓ)
i,j · Z(ℓ)

j,∗ − Zi,∗∥ for α
(ℓ)
i,j .

Since we want to find a linear combination of vectors, a natural choice is
linear programming. The linear program is straightforward and can be found in
Appendix C. Note that with the linear program, we are minimizing the L1-distance
between the neuron’s values and its replacement, i.e. ∥

∑
j∈B(ℓ) α

(ℓ)
i,j · Z(ℓ)

j,∗ − Zi,∗∥1.
In a different way, we can also consider the vectors Z(ℓ)

j,∗ for j ∈ B(ℓ) to span a
vector space. If we are given a subset {Z(ℓ)

j,∗|j ∈ B(ℓ) ⊂ {1, . . . , nℓ}} that forms a ba-
sis for this space, i.e. span((Z(ℓ)

j,∗)j∈B(ℓ)) = span((Z(ℓ)
j,∗)j∈{1,...,nℓ}), we can represent

any other vector z(ℓ)
i in terms of this basis. However, we usually cannot represent

one neuron perfectly by a linear combination of other neurons. Orthogonal pro-
jection gives us the closest point in the subspace span((Z(ℓ)

j,∗)j∈B(ℓ)) for any vector,
in terms of L2-distance. Then, α = [α(ℓ)

i,j1
, . . . , α

(ℓ)
i,jkℓ

]⊺ := (A⊤
BAB)−1A⊤

BZ(ℓ)
i,∗ gives

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 9

us the coefficients for the orthogonal projection of Z(ℓ)
i,∗ on the linear space spanned

by the columns of AB . For a more detailed description of orthogonal projection
see e.g. [16, Chapter 6.8]. Note that we assume that the columns of AB are
linearly independent. If not we can simply replace the respective neurons directly.

3.3 Replacement

Assuming, we have a basis B(ℓ) of this layer and we already know the coefficients
α

(ℓ)
i,j ∈ R for j ∈ B(ℓ) that we need to simulate the behavior of neuron i. This

means, we have a linear combination
∑

j∈B(ℓ) α
(ℓ)
i,j · Z(ℓ)

j,∗, which we want to use
instead of neuron i itself. We will replace the outgoing weights W (ℓ) of this layer,
such that for all j ∈ B(ℓ)

W̃
(ℓ)
∗,j = [w(ℓ)(1, j) + α

(ℓ)
i,j w(ℓ)(1, i), . . . , w(ℓ)(nℓ+1, j) + α

(ℓ)
i,j w(ℓ)(nℓ+1, i)]⊺ (4)

= W
(ℓ)
∗,j + α

(ℓ)
i,j W

(ℓ)
∗,i (5)

Furthermore, we set W̃
(ℓ)
∗,i = [0, . . . , 0]⊺, and W̃

(ℓ)
i,∗ = [0, . . . , 0]⊺. This means that

we will not use the output of neuron i anymore, but rather a weighted sum of
the outputs of neurons in B(ℓ), and that we will not even compute the value of i.
Additionally, we keep track of the changes we apply to the different neurons with
a matrix D(ℓ) = (d(ℓ)

j,i) ∈ Rnℓ×nℓ+1 . Initially, D(ℓ) is 0 and after each replacement,
we add α

(ℓ)
i,j ·w(ℓ)(i, i′) to d

(ℓ)
j,i′ for j ∈ B(ℓ) and i′ ∈ {1, . . . , nℓ+1}. This is necessary

for restoring neurons at a later point.
In the optimal case, the replacement will not change the overall behavior of

the neural network. We can derive a the same semantic equivalence from [21]
incorporated into our setting:

Proposition 1 (Semantic Equivalence). Let N be a neural network with L
layers, ℓ a layer of N , i a neuron of this layer, and B(ℓ) ⊂ {1, . . . , nℓ}\{i} a
chosen basis. Let Ñ be the NN after replacing neuron i by a linear combination
of basis vectors with coefficients α

(ℓ)
i,j , with the procedure as described above.

If for all inputs x ∈ X ⊂ X , z
(ℓ)
i (x) =

∑
j∈B(ℓ) α

(ℓ)
i,j z

(ℓ)
j (x), then N and Ñ

are semantically equal, i.e. for all inputs x ∈ X, Ñ(x) = N(x).

It is easy to see that this proposition is true, for a full proof see Appendix A.
However, the proposition assumes equality of z

(ℓ)
i (x) and

∑
j∈B(ℓ) α

(ℓ)
i,j z

(ℓ)
j (x) for

x ∈ X, which virtually never holds for real-world neural networks. Therefore,
we want to minimize the difference |z(ℓ)

i (x) −
∑

j∈B(ℓ) α
(ℓ)
i,j z

(ℓ)
j (x)|, which will not

yield a semantically equivalent abstraction, but an abstraction with very similar
behavior. We can then quantify the difference between the output of the
original network and the abstraction, i.e. the induced error with the following
Theorem.

10 Chau et al.

Theorem 1 (Over-approximation Guarantee). Let N be an NN with L
layers. For each layer ℓ, we have a basis of neurons B(ℓ), and a set of replaced
neurons I(ℓ). Then, let Ñ be the network after replacing neurons in I(ℓ) as
described above.

We can over-approximate the error between the output of the original network
NL and the output of the abstraction ÑL for x ∈ X ⊂ X by

∥ÑL(x) − NL(x)∥ ≤ b(1 − aL−1)/(1 − a)

with a = λ(∥W∥ + η), b = λ∥W∥ϵ, with λ(ℓ) being the Lipschitz-constant of
the activation function in layer ℓ, λ = maxℓ λ(ℓ), ∥W∥ = maxℓ ∥W (ℓ)∥1, η =
maxℓ η(ℓ), and ϵ = maxℓ ϵ(ℓ), assuming that for all layers ℓ ∈ {1, . . . , L} and for
all inputs x ∈ X, we have

– for i ∈ I(ℓ) : |z(ℓ)
i (x) −

∑
j∈B(ℓ) α

(ℓ)
i,j z

(ℓ)
j (x)| ≤ ϵ(ℓ)

– |
∑

i∈I(ℓ) W
(ℓ)
∗,i

∑
t∈B(ℓ) α

(ℓ)
i,t | ≤ η(ℓ)

In other words, we can over-approximate the difference in the output of the
original and the abstracted network by a value that depends on the weight
matrices, the activation function and the tightness of the abstracted neurons to
their replacements. The full proof can be found in Appendix B. This Theorem
provides us with the theoretical guarantee that, given our abstraction, we can
provide a valid over-approximation of the output of the original network.

Comparison to the δ-bisimulation Let us recap the error definition from
[21]. The difference of the bisimulation and the original network is bounded by
[(2a)k − 1]b/(2a − 1), where a = λ|S|∥W∥ and b = λ(|P |L(N)∥x∥ + 1)δ4. In this
notation, |S| is the maximum number of neurons per layer in the whole network,
|P | the maximum number of neurons in the bisimulation (can be understood
as the number of neurons in an abstraction), L(N) is the maximum Lipschitz-
constant of all layers, and δ is the maximum absolute difference of the bias and
sum of the incoming weights.

The drawbacks of that approach are twofold: (i) the error is based on one
specific input, and (ii) it makes use of the Lipschitz-constant of the whole network.
Calculating the Lipschitz constant of an NN is still part of ongoing research [10]
and not a trivial problem. In contrast, we improve on both. Our error calculation
generalizes over a set of inputs. Additionally, we use local information, stored in
the weight-matrices, to circumvent using the Lipschitz-constant of the NN.

4 Refinement
For certain inputs the abstraction might not reflect the behavior of the original
network. For these inputs, so-called counterexamples, we may want to refine the
abstraction, as opposed to starting the abstraction from the original network
4 Please note that this statement is slightly different from the paper ((2a)k instead of

(2/a)k), which we believe to be a typo in the paper.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 11

again. We consider an input to be a counterexample whenever the abstraction
assigns it a different label than the original network. However, a counterexample
can be any input that does not align with the specifications.

We propose to refine the abstraction by restoring some of the replaced neurons.
To do this, we need to know which neurons should be replaced and how. We first
briefly mention three heuristics to choose a neuron for restoration. Afterward,
we explain how to restore a neuron. Note that the refinement offers more than a
“roll-back” of the most recent step of the abstraction since it picks the step-to-be-
rolled-back in retrospect reflecting all other steps, leading to a more informed
choice. This could in principle be done directly in the abstraction phase, but at
an infeasible cost of a huge look-ahead.
Refinement Heuristics We propose three different heuristics: difference-
guided, gradient-guided, and look-ahead.

– The difference-guided refinement looks at the difference of a neuron in the
original and its representation as a linear combination in the abstraction. It
replaces the neuron with the largest difference.

– The gradient-guided refinement additionally takes the gradient of the NN
into account, that is computed as in the training phase of the NN. This
takes into account how the whole network would need to change to fix the
counterexample.

– The look-ahead is the most greedy method and would try out every replaced
neuron. It would check how much the network would improve if the neuron
was replaced and then chooses the neuron with the highest improvement.

More details on the approaches can be found in Appendix D.
Restoration of a Neuron The restoration principle can be seen as the
counterpart of the replacement. Let ˜̃N be the network obtained by replacing
several neurons in the original network N , where we want to restore a deleted
neuron i of layer ℓ. To do this, we need not only to get the original neuron back,
including its incoming and outgoing weights but also to remove the additional
outgoing weights from the basis neurons. Intuitively, the restoration removes the
linear combination, ensures that the original outgoing weights for the neuron are
used, and adjusts the incoming weights of the neuron. We may have changed
layer ℓ − 1, and thus we cannot restore the original incoming weights of neuron i,
but we have to adapt it to changes in the basis B(ℓ−1). This can be done with
the following changes:

– ∀j ∈ B(ℓ): W̃
(ℓ)
∗,j = ˜̃W (ℓ)

∗,j − αjW
(ℓ)
∗,j

– W̃
(ℓ)
∗,i = W

(ℓ)
∗,i

– ∀j ∈ B(ℓ−1): w̃(ℓ−1)(i, j) = w(ℓ−1)(i, j) + d
(ℓ−1)
j,i

Afterward, we subtract αj ·w(ℓ)(i, i′) from d
(ℓ)
j,i′ for i′ ∈ {1, . . . , nℓ+1} and j ∈ B(ℓ).

12 Chau et al.

5 Experimental Results
Our experimental section is divided into several parts: The first one covers
how the different methods for finding a basis and the coefficients compare, as
described in Section 3.2 and Section 3.1. The second part shows experiments on
our approach in comparison to existing works, namely DeepAbstract [2] and our
implementation of bisimulation [21] (which was not implemented before). The
third part contains the comparison between the abstraction based on syntactic and
semantic information. The fourth part describes our experiments on abstraction
refinement. Finally, the last part contains experiments on the error induced by our
abstraction. Note that supplemental experiments can be found in the Appendix.

Lastly, the work of Katz et al. [7] tightly couples the abstraction with the
subsequent particular verification, by integrating the specification as layers into
the network. It is, thus, not clear how an abstraction from [7] could be extracted
from the tool and reused for another purpose. Additionally, our abstraction would
have to be connected with some verification algorithm (DeepPoly, as done by
DeepAbstract, or some other) to compare. Any comparison of the two works would
then mostly compare the different verification tools, not really the abstractions.
Although a comparison of different verifiers linked to our LiNNA is an interesting
next step into one of the possible applications, it is out of the scope of this paper,
which examines the abstraction itself (see Introduction).
Implementation We implemented the approach in our tool LiNNA (Linear
N eural N etwork Abstraction)5. We used networks that were trained on MNIST
[19], CIFAR-10 [17], and FashionMNIST [32] for our experiments. In the following,
we refer to the corresponding trained networks with “L × n”, where L denotes
the number of hidden layers and n is the number of neurons in these hidden
layers. All experiments were conducted on a computer with Ubuntu 22.04 LTS
with 2.6 GHz Intel© Core™ i7 processors, and 32GB of RAM.
Performance Measures We will compare the approaches mostly on (i) the
reduction rate and (ii) the accuracy on a test set. Intuitively, the reduction rate
describes how much the NN was reduced by abstraction. If an NN N has in total
n neurons, but after reduction, there are m neurons left, then the reduction rate
is then defined as RR(N) = 1 − m

n . The accuracy of a NN on a test set is defined
as the ratio of how many inputs are predicted with the correct label. This is the
key performance indicator in machine learning and shows how well a network
generalizes to unseen data. In evaluating our abstraction, we follow the same
principle since we want to know how well the NN generalizes after abstraction.
Note that this test set was not used for training or computing the abstraction.

5.1 Abstraction

Finding the Basis We have given two different methods in Section 3.1 to
find a good basis B. While the orthogonal projection yields an equally good
abstraction compared to linear programming, it outperforms the latter in terms
of runtime by magnitudes. Hence, we conducted the rest of the experiments with
5 https://github.com/cxlvinchau/LiNNA

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 13

(a) MNIST 3x100 (b) CIFAR-10 3x2500 (c) FashionMNIST 3x100
Fig. 2: Finding the basis for replacement - Evaluation on different datasets. The
plots contain a comparison of LiNNA while using the greedy variant (solid)
and the variance-based heuristic (dashed) for finding a basis with orthogonal
projection. Comparison of accuracy (blue) in percent and computation time (red)
in seconds.

orthogonal projection. The full comparison between orthogonal projection and
linear programming can be found in Fig. 14 in Appendix E.

When we compare the greedy and the heuristic-based approach, shown in
Fig. 2, we see that the former outperforms the latter in terms of accuracy on
MNIST and FashionMNIST. On CIFAR-10, the variance-based approach is
slightly better. However, the variance-based approach is always faster than the
greedy approach and scales better, as can be seen for all datasets. Unsurprisingly,
the greedy approach takes more time for higher reduction rates, because it
needs to evaluate many candidates. The variance-based approach just takes the
best neurons according to their variance, which has to be calculated only once.
Therefore, the calculation is constant in terms of removed neurons.

The plots show one more difference in the behavior: On MNIST and Fashion-
MNIST, we see a quite stable accuracy until a reduction rate of 60%. We cannot
see the same behavior on CIFAR-10. We believe this is due to the accuracy and
size of the networks. Whereas it is fairly easy to train a feedforward network
for MNIST and FashionMNIST on a regular computer, this is more challenging
for CIFAR-10. We plan to include more extensive experiments including more
involved NN architectures in future work. Finally, our abstraction relies on the
assumption that NNs contain a lot of redundant information.

We want to emphasize, that in machine learning, it is common to train a
huge network that contains many more neurons than necessary to solve the task
[35]. After the introduction of regularization techniques (e.g. [23]), the problem
of over-fitting (e.g. [5]) has become often negligible. Therefore, the automatic
response to a bad neural network is often to increase its size, either in depth or
in width. Our approach can detect these cases and abstract away the redundant
information.
Finding the Coefficients We have in total four different approaches to
finding the coefficients: greedy or heuristic-based linear programming, and greedy
or heuristic-based orthogonal projection. All four have similar accuracies for the
same reduction rate, whereas the heuristic ones are mostly just slightly worse
than the greedy ones. For a more detailed evaluation, please refer to Appendix G.
The runtimes of the four approaches, however, differ a lot. Take for example an

14 Chau et al.

Fig. 3: Comparison of LiNNA to related
work - LiNNA (greedy and heuristic-
based variant), DeepAbstract [2], and
our implementation of the bisimulation
[21] is evaluated in terms of accuracy on
the test set for a certain reduction rate.
The experiment was conducted on an
MNIST 3x100 network.

Fig. 4: Scalability of LiNNA - Average
runtime for 20 different reduction rates
on one network. The plot at the top de-
picts the runtime for MNIST networks
with 4 layers, w.r.t. number of neurons.
The plot at the bottom shows the run-
time for MNIST networks with 100 neu-
rons per layer, w.r.t. number of layers.

MNIST 3x100 network. We assume that the abstraction is performed by starting
with the full network and reducing up to a certain reduction rate. Thus, we have
runtimes for each of the approaches for each reduction rate. We take the average
over all the reductions and get 47s for the greedy orthogonal projection, 5130s
for the greedy linear programming, 1s for the heuristic orthogonal projection,
and 2s for the heuristic linear programming. Linear programming takes a lot
more time than orthogonal projection, and, as already seen before, the heuristic
approaches are much faster than the greedy ones. Please refer to Appendix J
for more experiments on the runtime. Therefore, we propose to use the heuristic
approach and the orthogonal projection.

Scalability We evaluate how our approach scales to networks of different
sizes. We evaluate (1) how our approach scales with an increasing number of
layers, and (2) how it scales with a fixed number of layers but an increasing
number of neurons. We show our experiments in Fig. 4. The runtime is the
average runtime over 20 different reduction rates on the same network. One can
imagine this as averaging the runtimes shown in Fig. 2. We can see that the
variance-based approach has almost constant runtime, whereas the runtime of
the greedy approach is increasing for both a higher number of layers and neurons.

Final Assessment We have four possibilities on how to abstract an NN: greedy
orthogonal projection, greedy linear programming, heuristic-based orthogonal
projection, and heuristic-based linear programming. Given that the orthogonal
projection outperforms linear programming in terms of accuracy and computation
time, we propose to use orthogonal projection. We believe that it is sufficient to
use the heuristic-based approach, thereby gaining faster runtimes and only barely

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 15

Fig. 5: Evolution of the accuracy on the test set for different reduction rates, for
an increasing number of layers, or neurons. We show LiNNA (blue-green) for
semantic abstraction, and for syntactic abstraction, bisimulation (red-yellow).
The networks were trained on MNIST and have a fixed number of neurons (100)
on the left, and a fixed number of layers (4) on the right.

sacrificing any accuracy. Whenever we refer to LiNNA from now on without any
additions, it will be the heuristic-based orthogonal projection.

5.2 Comparison to Existing Work

We want to show how our approach compares to existing works, i.e. DeepAbstract
and the bisimulation. Since there is no implementation available for the latter, we
implemented it ourselves. Please refer to Appendix F for the details. The results
of the comparison are shown in Fig. 3. It is evident that DeepAbstract achieves
higher accuracies than the bisimulation, but LiNNA outperforms DeepAbstract
and the bisimulation in terms of accuracy for all reduction rates.

Concerning the runtime, we measure the runtime of each approach for a
certain reduction rate, starting from the full network. We find that (in the
median) LiNNA (greedy) needs 55s up to 199s, LiNNA (heuristic) 2s up to 3s,
DeepAbstract 187s up to 2420s, and the bisimulation 1s up to 2s, on MNIST
networks of different sizes (starting from 4x50 up to 11x100). The details can
be found in Appendix J. The bisimulation performs best, however just slightly
ahead of the heuristic-based LiNNA. The greedy LiNNA, as well as DeepAbstract
both have a much higher computation time.

However, in terms of accuracy, greedy LiNNA seems to be the best-performing
approach, given sufficient time. Due to efficiency, we suggest using heuristic-based
LiNNA, as it is as fast as the bisimulation, but its accuracy is a lot better and
even close to greedy LiNNA.

Since we are interested in the general behavior of the abstraction, we want to
see how the methods work for varying sizes of networks, but not only in terms
of scalability. In Fig. 5, we show the trend for bisimulation and LiNNA for an
increasing number of layers resp. neurons per layer. On the left, we fix the number
of neurons per layer to 100 and incrementally increase the number of layers. On
the right, we fix the number of layers to four and increase the number of neurons.

We can see that the performance of the networks from the bisimulation varies
a lot and gets slightly worse when there are more layers, whereas LiNNA has a

16 Chau et al.

Fig. 6: Syntactic VS. Semantic - This
plot shows the difference between using
semantic resp. syntactic information for
the abstraction on an MNIST 5x100
network. Semantic: LiNNA (semantic)
and DeepAbstract. Syntactic: LiNNA
(syntactic) and the bisimulation.

Fig. 7: Refinement - This plot shows the
accuracy of an MNIST 5x100 network
that was abstracted and refined to a
certain reduction rate R. There is also
a plot for an abstraction to the same
reduction rate as after the refinement
but without refining.

very small variation and the performance of the abstractions increases slightly
for more layers. Both approaches compute abstractions that perform better the
more neurons are in a layer, but LiNNA converges to a much steeper curve at
high reduction rates.

For NNs with 400 or more neurons, LiNNA can reduce 80% of the neurons
without a significant loss in accuracy, whereas the bisimulation can do the same
only for up to a reduction rate of 55%.

5.3 Semantic vs Syntactic
In the following, we want to show the differences between semantic and syntactic
abstractions. Recall that syntactic abstraction makes use of the weights of the
network, the syntactic information, with no consideration of the actual behavior
of the NN on the inputs. Semantic abstraction, on the other hand, focuses on the
values of the neurons on an input dataset, which also incorporates information
about the weights. DeepAbstract and LiNNA, both use semantic information,
whereas bisimulation uses syntactic information. We additionally evaluate the
performance of LiNNA on syntactic information.

Which type of information is better for abstraction: semantic or syntactic?
Note that both DeepAbstract and the bisimulation represent a group of neurons
by one single representative, whereas LiNNA makes use of a linear combination.

We summarize our results in Fig. 6. For smaller reduction rates, the bisimula-
tion performs better than LiNNA on syntactic information; for higher reduction
rates it is reversed. In general, the approaches based on semantics (DeepAbstract
and LiNNA - semantic) outperform the other two approaches w.r.t. accuracy.
While abstraction based on syntactic information can provide global guarantees
for any input, abstraction based on semantic information relies on the fact that
its inputs during abstraction are similar to the ones it will be evaluated on
later. However, we see that still the semantic information is more appropriate for
preserving accuracy because it combines the knowledge about possible inputs
with the knowledge about the weights.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 17

Fig. 8: Comparison of refinement
techniques on different architec-
tures for MNIST. The respective
networks were abstracted with a
reduction rate of 50%. The lines
show the variance, the box rep-
resents 50% of the data, the line
in the box shows the median.

Fig. 9: Refinement on different layers - We
considered abstractions that were obtained
with a 50% reduction rate and fixed 1000
counterexamples. The plots depict the per-
centage of restored neurons in the layers of
the different MNIST networks.

5.4 Refining the Network

We propose refinement of the abstraction in cases where it does not capture all
the behavior anymore, instead of restarting the abstraction process. We consider
networks that are abstracted up to certain reduction rates, i.e. 20%, 30%, . . . ,
90%, and use the refinement to regain 10% of the neurons. For example, we
reduce the network by 90% and then use refinement to get back to a reduction
rate of 80%. We evaluate this refined network on the test dataset and plot its
accuracy. Additionally, we show the accuracy of the same NN which is directly
reduced to an 80% reduction rate, without refinement. This plot is shown in
Fig. 7 for a 5x100 network, trained on MNIST.

The gradient and look-ahead refinement have a similar performance. However,
the difference-based approach even outperforms the direct reduction itself. This
behavior can be explained by the fact that the refinement and the abstraction
look at different metrics for removing/restoring neurons. The refinement can
focus directly on optimizing for the inputs at hand, whereas the abstraction was
generated on the training set. In conclusion, the refinement can even improve
the abstraction and it is beneficial to abstract slightly more than required, and
refine for the relevant inputs, rather than having a finer abstraction directly.
Comparison of the Different Approaches We collect images that are
labeled differently by the abstraction and observe the number of neurons that are
restored in order to fix the classification of each image. We ran the experiment on
different networks that were abstracted with a 50% reduction rate and considered
1000 counterexamples for each network. The results are summarized in Fig. 8,
where we have boxplots for each refinement method on four different network
architectures. The look-ahead approach is the most effective technique since it
requires the smallest number of restored neurons. In the median, it only requires

18 Chau et al.

1 to 2 operations. The gradient-based approach performs noticeably worse but
outperforms the difference-based approach on all networks. The computation time,
however, gives a different perspective: Repairing one counterexample takes on
average <1s for the difference-based approach, 1s for the gradient-based, but the
look-ahead approach takes on average 4s. Interestingly, the look-ahead approach
restores fewer neurons but performs worse in accuracy. The difference-based
performs better in terms of accuracy while restoring more neurons.
Insight on the Relevance of Layers We also investigated in which layers
the different refinement techniques tend to restore the neurons. The plots in
Fig. 9 illustrate the percentage of restored neurons in each layer. Notably, the
look-ahead approach restores most neurons in the first layer, and very few or
none in the later layers, whereas the other approaches have a more uniform
behavior. However, the more layers the network has, the more the gradient- and
difference-based approaches tend to restore more neurons in the first layer. As
reported already by [2], the first layers seem to have a larger influence on the
network’s output and hence should be focused on during refinement. It is even
more interesting that the difference-based approach does not focus on the first
layers as much as the look-ahead approach, but it is better in terms of accuracy.

5.5 Error Calculation

We want to show how the abstraction simulates the original network on unseen
data not only w.r.t. the output but on every single neuron. In other words, is
the discrepancy between the concrete and abstract network higher on the test
data than on the training data that generate the abstraction, or does the link
between the neuron and its linear abstraction generalize well?

In Fig. 10, we look at this ratio (“relative error of the abstraction”), i.e. the
absolute difference of (activation values of) a simulated abstract neuron to the
original neuron, once on the test dataset divided by the maximum value on the
training dataset. We can see that there are cases where the error can be greater
than one (meaning “larger than on the training set”), see the first row of the
plot. However, the geometric mean, defined as

(
ΠN

i=1ai

) 1
N , calculated over all

images is very small. Note that more experiments can be found in Appendix L.
In conclusion, we can say that our abstraction is close to the original also on
the test dataset, although the theoretical error calculation does not guarantee so
tight a simulation. Future work should reveal how to further utilize the empirical
proximity in transferring the reasoning from the abstraction to the original.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 19

Fig. 10: Histograms of the relative error of the values of the neurons in an MNIST
3x100 network and its abstraction (reduced by 30%). The first row shows the
maximum relative error of each neuron in the NN, that occurred for some input
from the test set. The second row shows the geometric mean of the relative error
of each neuron over 100 images of the test set.

6 Conclusions
The focus of this work was to examine abstraction not as a part of a verification
procedure, but rather as a stand-alone transformation, which can later be used in
different ways: as a preprocessing step for verification, as means of obtaining an
equivalent smaller network, or to gain insights about the network and its training,
such as identifying where redundancies arise in trained neural networks. (This is
analogous to the situation of bisimulation, which has been largely investigated
on its own not necessarily as a part of a verification procedure, and its use in
verification is only one of the applications.)

We have introduced LiNNA, which abstracts a network by replacing neurons
with linear combinations of other neurons and also equip it with a refinement
method. We bound the error and thus the difference between the abstraction and
the original network in Theorem 1. The theorem yields a lower and an upper
bound on the network’s output, thereby providing its over-approximation.

We showed that the linear extension provides better performance than existing
work on abstraction for classification networks, both DeepAbstract, and the
bisimulation-based approach. We focused our experimental evaluation on accuracy,
since the aim of the abstraction is to faithfully mimic the whole classification
process in the smaller, abstract network, not just one concrete property to be
verified, which describes only a very specific aspect of the network. Interestingly,
the practical error is dramatically smaller than the worst-case bounds. We hope
this first, experimental step will stimulate interest in research that could utilize
this actual advantage, which is currently not supported by any respective theory.

Furthermore, we show that the use of semantic information should be pre-
ferred over syntactic information because it allows for higher reductions while
preserving similar behavior and being cheap since the I/O sets can be quite small.
Bringing back semantics could take us closer to the efficiency of classical software
abstraction, where the semantics of states is the very key, going way beyond
bisimulation.

20 Chau et al.

References
[1] J. Altschuler et al. “Greedy Column Subset Selection: New Bounds and

Distributed Algorithms”. In: Proceedings of the 33nd International Con-
ference on Machine Learning, ICML, New York City, NY, USA. Ed. by
M. Balcan and K. Q. Weinberger. Vol. 48. JMLR Workshop and Conference
Proceedings. JMLR.org, 2016, pp. 2539–2548.

[2] P. Ashok, V. Hashemi, J. Křet́ınskỳ, and S. Mohr. “DeepAbstract: Neu-
ral Network Abstraction for Accelerating Verification”. In: Automated
Technology for Verification and Analysis - 18th International Symposium,
ATVA, Hanoi, Vietnam, Proceedings. Ed. by D. V. Hung and O. Sokolsky.
Vol. 12302. Lecture Notes in Computer Science. Springer, 2020, pp. 92–107.
doi: 10.1007/978-3-030-59152-6_5.

[3] C. M. Bishop. Pattern recognition and machine learning, 5th Edition.
Information science and statistics. Springer, 2007.

[4] C. Brix et al. “First Three Years of the International Verification of Neu-
ral Networks Competition (VNN-COMP)”. In: International Journal on
Software Tools for Technology Transfer (2023), pp. 1–11. doi: https :
//doi.org/10.1007/s10009-023-00703-4.

[5] R. Caruana, S. Lawrence, and C. Giles. “Overfitting in Neural Nets: Back-
propagation, Conjugate Gradient, and Early Stopping”. In: Advances in
Neural Information Processing Systems. Ed. by T. Leen, T. Dietterich, and
V. Tresp. Vol. 13. MIT Press, 2000.

[6] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. “A survey of model compression
and acceleration for deep neural networks”. In: preprint arXiv:1710.09282
(2017).

[7] Y. Y. Elboher, J. Gottschlich, and G. Katz. “An Abstraction-Based Frame-
work for Neural Network Verification”. In: Computer Aided Verification -
32nd International Conference, CAV 2020, Los Angeles, CA, USA, Pro-
ceedings, Part I. Ed. by S. K. Lahiri and C. Wang. Vol. 12224. Lecture
Notes in Computer Science. Springer, 2020, pp. 43–65. doi: 10.1007/978-
3-030-53288-8_3.

[8] A. K. Farahat, A. Ghodsi, and M. S. Kamel. “A fast greedy algorithm for
generalized column subset selection”. In: preprint arXiv:1312.6820 (2013).

[9] A. K. Farahat, A. Ghodsi, and M. S. Kamel. “An efficient greedy method
for unsupervised feature selection”. In: 11th International Conference on
Data Mining. IEEE. Vancouver, BC, Canada, 2011, pp. 161–170.

[10] M. Fazlyab et al. “Efficient and Accurate Estimation of Lipschitz Constants
for Deep Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[11] Y. Gong, L. Liu, M. Yang, and L. Bourdev. “Compressing deep convolutional
networks using vector quantization”. In: preprint arXiv:1412.6115 (2014).

[12] G. Hinton, O. Vinyals, J. Dean, et al. “Distilling the knowledge in a neural
network”. In: NeurIPS Deep Learning Workshop (2014).

https://doi.org/10.1007/978-3-030-59152-6_5
https://doi.org/https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/https://doi.org/10.1007/s10009-023-00703-4
https://doi.org/10.1007/978-3-030-53288-8_3
https://doi.org/10.1007/978-3-030-53288-8_3

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 21

[13] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. “Densely Con-
nected Convolutional Networks”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2017, pp. 4700–4708.

[14] X. Jian, L. Jinyu, and G. Yifan. “Restructuring of deep neural network
acoustic models with singular value decomposition””. In: Interspeech (2013),
pp. 2365–2369. doi: 10.21437/interspeech.2013-552.

[15] G. Katz et al. “The Marabou Framework for Verification and Analysis of
Deep Neural Networks”. In: Computer Aided Verification - 31st Interna-
tional Conference, CAV, New York City, NY, USA, Proceedings, Part I. Ed.
by I. Dillig and S. Tasiran. Vol. 11561. Lecture Notes in Computer Science.
Springer, 2019, pp. 443–452. doi: 10.1007/978-3-030-25540-4_26.

[16] J. R. Kirkwood and B. H. Kirkwood. Elementary Linear Algebra. Chapman
and Hall/CRC, 2017.

[17] A. Krizhevsky, G. Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

[18] S. Lawrence, C. Giles, and A. Tsoi. “Lessons in neural network training:
overfitting may be harder than expected”. In: Proceedings of the National
Conference on Artificial Intelligence. Ed. by Anon. AAAI, 1997, pp. 540–
545.

[19] Y. LeCun. “The MNIST database of handwritten digits”. In: http://yann.lecun.com/
exdb/mnist/ (1998).

[20] A. L. Maas, A. Y. Hannun, and A. Y. Ng. “Rectifier nonlinearities improve
neural network acoustic models”. In: url: http://robotics.stanford.
edu/˜amaas/papers/relu_hybrid_icml2013_final.pdf.

[21] P. Prabhakar. “Bisimulations for Neural Network Reduction”. In: Verifica-
tion, Model Checking, and Abstract Interpretation. Ed. by B. Finkbeiner
and T. Wies. Cham: Springer International Publishing, 2022, pp. 285–300.

[22] P. Prabhakar and Z. Rahimi Afzal. “Abstraction based Output Range Anal-
ysis for Neural Networks”. In: Advances in Neural Information Processing
Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates, Inc., 2019.

[23] J. Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural Networks 61 (2015), pp. 85–117. doi: 10.1016/j.neunet.2014.09.
003.

[24] Y. Shitov. “Column subset selection is NP-complete”. In: Linear Algebra
and its Applications 610 (2021), pp. 52–58. doi: https://doi.org/10.
1016/j.laa.2020.09.015.

[25] G. Singh, T. Gehr, M. Püschel, and M. Vechev. “An Abstract Domain
for Certifying Neural Networks”. In: Proc. ACM Program. Lang. 3.POPL
(2019). doi: 10.1145/3290354.

[26] G. Singh, T. Gehr, M. Püschel, and M. T. Vechev. “Boosting Robustness
Certification of Neural Networks”. In: 7th International Conference on
Learning Representations, ICLR, New Orleans, LA, USA. OpenReview.net,
2019.

[27] M. Sotoudeh and A. V. Thakur. “Abstract Neural Networks”. In: Static
Analysis - 27th International Symposium, SAS 2020, Virtual Event, Novem-

https://doi.org/10.21437/interspeech.2013-552
https://doi.org/10.1007/978-3-030-25540-4_26
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
http://robotics.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.laa.2020.09.015
https://doi.org/https://doi.org/10.1016/j.laa.2020.09.015
https://doi.org/10.1145/3290354

22 Chau et al.

ber 18-20, 2020, Proceedings. Ed. by D. Pichardie and M. Sighireanu.
Vol. 12389. Lecture Notes in Computer Science. Springer, 2020, pp. 65–88.
doi: 10.1007/978-3-030-65474-0_4.

[28] H. Tran et al. “Robustness Verification of Semantic Segmentation Neural
Networks Using Relaxed Reachability”. In: Computer Aided Verification -
33rd International Conference, CAV, Virtual Event, Proceedings, Part I.
Ed. by A. Silva and K. R. M. Leino. Vol. 12759. Lecture Notes in Computer
Science. Springer, 2021, pp. 263–286. doi: 10.1007/978-3-030-81685-
8_12.

[29] A. Virmaux and K. Scaman. “Lipschitz regularity of deep neural networks:
analysis and efficient estimation”. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Process-
ing Systems, NeurIPS, Montréal, Canada. Ed. by S. Bengio et al. 2018,
pp. 3839–3848.

[30] Q. Wang, Y. Ma, K. Zhao, and Y. Tian. “A Comprehensive Survey of Loss
Functions in Machine Learning”. In: Annals of Data Science (2020). doi:
10.1007/s40745-020-00253-5.

[31] S. Wang et al. “Beta-CROWN: Efficient Bound Propagation with Per-
neuron Split Constraints for Neural Network Robustness Verification”. In:
Advances in Neural Information Processing Systems. Ed. by M. Ranzato
et al. Vol. 34. Curran Associates, Inc., 2021, pp. 29909–29921.

[32] H. Xiao, K. Rasul, and R. Vollgraf. “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms”. In: preprint arXiv:1708.07747
(2017).

[33] K. Xu et al. “Fast and Complete: Enabling Complete Neural Network
Verification with Rapid and Massively Parallel Incomplete Verifiers”. In:
International Conference on Learning Representations. 2021.

[34] M. L. Zepeda-Mendoza and O. Resendis-Antonio. “Hierarchical Agglomer-
ative Clustering”. In: vol. 43. 1. Springer New York, 2013, pp. 886–887.

[35] C. Zhang et al. “Understanding deep learning requires rethinking gen-
eralization”. In: CoRR abs/1611.03530 (2016). arXiv: 1611.03530. url:
http://arxiv.org/abs/1611.03530.

https://doi.org/10.1007/978-3-030-65474-0_4
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/978-3-030-81685-8_12
https://doi.org/10.1007/s40745-020-00253-5
https://arxiv.org/abs/1611.03530
http://arxiv.org/abs/1611.03530

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 23

Appendix
A Proof of Proposition 1
Proof. We show that z(ℓ+1)(x) = z̃(ℓ+1)(x) for all x ∈ X. After this, it follows
immediately that Ñ(x) = N(x).

Let x ∈ X be fixed. We write z(ℓ+1) instead of z(ℓ+1)(x) to abbreviate. We
have z(ℓ+1) = ϕ(W (ℓ)z(ℓ) + b(ℓ+1)) and z̃(ℓ+1) = ϕ(W̃ (ℓ)z(ℓ) + b(ℓ+1)), since z(ℓ)

has not changed.
For each neuron s of layer ℓ + 1, we have:

z̃(ℓ+1)
s = ϕ

(
W̃

(ℓ)
s,∗ z(ℓ) + b(ℓ+1)

s

)
= ϕ

(∑
t∈{1,...,nℓ}

w̃(ℓ)(s, t)z(ℓ)
t + b(ℓ+1)

s

)
(6)

= ϕ

(∑
t/∈B(ℓ),t̸=i

w(ℓ)(s, t)z(ℓ)
t (7)

+
∑

t∈B(ℓ)

w̃(ℓ)(s, t)z(ℓ)
t + w̃(ℓ)(s, i)z(ℓ)

i + b(ℓ+1)
s

)

= ϕ

(∑
t/∈B(ℓ),t̸=i

w(ℓ)(s, t)z(ℓ)
t (8)

+
∑

t∈B(ℓ)

(w(ℓ)(s, t) + αtw
(ℓ)(s, i))z(ℓ)

t + w̃(ℓ)(s, i)z(ℓ)
i + b(ℓ+1)

s

)

= ϕ

(∑
t/∈B(ℓ),t̸=i

w(ℓ)(s, t)z(ℓ)
t +

∑
t∈B(ℓ)

w(ℓ)(s, t)z(ℓ)
t (9)

+
∑

t∈B(ℓ)

αtw
(ℓ)(s, i)z(ℓ)

t + b(ℓ+1)
s

)

= ϕ

(∑
t/∈B(ℓ),t̸=i

w(ℓ)(s, t)z(ℓ)
t +

∑
t∈B(ℓ)

w(ℓ)(s, t)z(ℓ)
t (10)

+ w(ℓ)(s, i)z(ℓ)
i + b(ℓ+1)

s

)

= ϕ

(∑
t∈{1,...,nℓ}

w(ℓ)(s, t)z(ℓ)
t + b(ℓ+1)

s

)
(11)

= z(ℓ+1)
s

where

– Eq. (6) is taking apart the matrix multiplication.

24 Chau et al.

– Eq. (7) splits the neurons of layer ℓ into three classes: neuron i itself, neurons
within the basis t ∈ B(ℓ), and neurons not in the basis. Neurons that are not
part of the basis don’t change their weights in the replacement process (3.3)
(usually they would be removed in a later stage).

– Eq. (8) replaces w̃(ℓ)(s, t) by the original weights w(ℓ)(s, t) plus the additional
weights from neuron i, i.e. αtw

(ℓ)(s, i).
– Eq. (9) is just sorting the weights in anoter way
– Eq. (10) uses the equality z

(ℓ)
i (x) =

∑
j∈B(ℓ) α

(ℓ)
i,j z

(ℓ)
j (x).

– Eq. (11) gathers all sums in one sum again. This works now because we have
a sum over all three classes (neuron i itself, neurons within the basis t ∈ B(ℓ),
and neurons not in the basis) only over the original weights.

⊓⊔

B Proof of Theorem 1
Following the idea of [21], we first introduce a lemma that shows the difference
of the abstraction to the original for one layer and then show how the theorem
follows from that.

Lemma 1 (Replacement Error of One Layer). Let N be a neural network
with L layers. For one layer ℓ, we have a basis of neurons B(ℓ), and a set of
replaced neurons I(ℓ). Then, let Ñ be the network after replacing neurons in I(ℓ)

as described in Section 3.3. Furthermore, let λ(ℓ) be the Lipschitz constant of the
activation function of that layer. If for all inputs x ∈ X ⊂ X , we have

1. for i ∈ I(ℓ) : |z(ℓ)
i (x) −

∑
j∈B(ℓ) α

(ℓ)
i,j z

(ℓ)
j (x)| ≤ ϵ(ℓ)

2. |
∑

i∈I(ℓ) W
(ℓ)
∗,i

∑
t∈B(ℓ) α

(ℓ)
i,j | ≤ η(ℓ)

3. ∥z̃(ℓ)(x) − z(ℓ)(x)∥ ≤ δ(ℓ)

then, we get ∥z̃(ℓ+1) − z(ℓ+1)∥ ≤ λ(ℓ)(∥W (ℓ)∥1δ(ℓ) + ∥W (ℓ)∥1ϵ(ℓ) + η(ℓ)δ(ℓ))

Note that the error value ϵ talks about the differences in the values of the neurons
before and after replacement, but without any change to any other layer. In
constrast, the term δ references the difference between the values of the neurons
before and after changing layers before layer ℓ.

Proof (of Lemma 1). Let x ∈ X be fixed. We write z(ℓ+1) instead of z(ℓ+1)(x) to
abbreviate. We have z(ℓ+1) = ϕ(h(ℓ+1)) and similarly z̃(ℓ+1) = ϕ(h̃(ℓ+1)). It is

∥h̃(ℓ+1) − h(ℓ+1)∥ = ∥W̃ (ℓ)z̃(ℓ) + b(ℓ+1) − (W (ℓ)z(ℓ) + b(ℓ+1))∥

= ∥
∑

t∈B(ℓ)

(
W̃

(ℓ)
∗,t z̃

(ℓ)
t

)
+ b(ℓ+1)

−
∑

t∈B(ℓ)∪I(ℓ)

(
W

(ℓ)
∗,t z

(ℓ)
t

)
− b(ℓ+1)∥

= ∥
∑

t∈B(ℓ)

(
W̃

(ℓ)
∗,t z̃

(ℓ)
t − W

(ℓ)
∗,t z

(ℓ)
t

)
−
∑

t∈I(ℓ)

(
W

(ℓ)
∗,t z

(ℓ)
t

)
∥

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 25

Using the replacement W̃
(ℓ)
∗,j = W

(ℓ)
∗,j + α

(ℓ)
i,j W

(ℓ)
∗,i from (5)

= ∥
∑

t∈B(ℓ)

W
(ℓ)
∗,t +

∑
i∈I(ℓ)

α
(ℓ)
i,t W

(ℓ)
∗,i

 z̃
(ℓ)
t − W

(ℓ)
∗,t z

(ℓ)
t

−
∑

t∈I(ℓ)

(
W

(ℓ)
∗,t z

(ℓ)
t

)
∥

= ∥
∑

t∈B(ℓ)

W
(ℓ)
∗,t (z̃(ℓ)

t − z
(ℓ)
t) +

∑
i∈I(ℓ)

α
(ℓ)
i,t W

(ℓ)
∗,i z̃

(ℓ)
t

−
∑

t∈I(ℓ)

(
W

(ℓ)
∗,t z

(ℓ)
t

)
∥

with 3., we get

≤ ∥
∑

t∈B(ℓ)

(
W

(ℓ)
∗,t δ(ℓ)

)
+
∑

i∈I(ℓ)

∑
t∈B(ℓ)

(
α

(ℓ)
i,t W

(ℓ)
∗,i z̃

(ℓ)
t − W

(ℓ)
∗,i z

(ℓ)
i

)
∥

≤ ∥
∑

t∈B(ℓ)

(
W

(ℓ)
∗,t δ(ℓ)

)
+
∑

i∈I(ℓ)

∑
t∈B(ℓ)

(
α

(ℓ)
i,t W

(ℓ)
∗,i (z(ℓ)

t + δ(ℓ)) − W
(ℓ)
∗,i z

(ℓ)
i

)
∥

≤ ∥
∑

t∈B(ℓ)

(
W

(ℓ)
∗,t δ(ℓ)

)
+
∑

i∈I(ℓ)

(
W

(ℓ)
∗,i

∑
t∈B(ℓ)

(
α

(ℓ)
i,t z

(ℓ)
t

)
− z

(ℓ)
i

+
∑

t∈B(ℓ)

(
α

(ℓ)
i,t W

(ℓ)
∗,i δ(ℓ)

))
∥

with 1., we get

≤ ∥δ(ℓ)
∑

t∈B(ℓ)

(
W

(ℓ)
∗,t

)
+ ϵ(ℓ)

∑
i∈I(ℓ)

(
W

(ℓ)
∗,i

)
+ δ(ℓ)

∑
i∈I(ℓ)

∑
t∈B(ℓ)

(
α

(ℓ)
i,t W

(ℓ)
∗,i

)
∥

with 2., we get

≤ ∥δ(ℓ)
∑

t∈B(ℓ)

(
W

(ℓ)
∗,t

)
+ ϵ(ℓ)

∑
i∈I(ℓ)

(
W

(ℓ)
∗,i

)
+ η(ℓ)δ(ℓ)∥

≤ ∥W (ℓ)∥1δ(ℓ) + ∥W (ℓ)∥1ϵ(ℓ) + η(ℓ)δ(ℓ)

26 Chau et al.

From the Lipschitz-continuity of ϕ, we get

∥z̃(ℓ+1) − z(ℓ+1)∥ ≤ λ(ℓ)(∥W (ℓ)∥1δ(ℓ) + ∥W (ℓ)∥1ϵ(ℓ) + η(ℓ)δ(ℓ))

⊓⊔

Given the proof of Lemma 1, we can now easily give the proof for Theorem 1.

Proof (of Theorem 1). We define λ = maxℓ λ(ℓ), ∥W∥ = maxℓ ∥W (ℓ)∥1, η =
maxℓ η(ℓ), and ϵ = maxℓ ϵ(ℓ). The first layer, the input layer, cannot be changed,
thus we have δ(1) = 0.

We set a = λ(∥W∥ + η) and b = λ∥W∥ϵ.
By Lemma 1, we have for the last layer L that

∥z̃(L) − z(L)∥ ≤ λ(L−1)(∥W (L−1)∥1δ(L−1) + ∥W (L−1)∥1ϵ(L−1) + η(L−1)δ(L−1))

It holds that ∥z̃(L) − z(L)∥ ≤ aδ(L−1) + b, since a and b consist of the maxima
over all layers. Unrolling this leads to

aδ(L−1) + b ≤ a(aδ(L−2) + b) + b ≤ ... ≤ aLδ(1) +
L−2∑
i=0

bai

and from δ(1) = 0, we remain with
∑L−2

i=0 bai = b(1 − aL−1)/(1 − a). ⊓⊔

C Linear Program for Finding the Coefficients
We want to minimize ∥

∑
j∈B(ℓ) α

(ℓ)
i,j · Z(ℓ)

j,∗ − Zi,∗∥ for α
(ℓ)
i,j . In the following, we

describe the linear program for computing optimal coefficients α
(ℓ)
i,j .

minimize 1⊤β+ + 1⊤β−

subject to
∑

j∈B z(ℓ)
j α

(ℓ)
i,j − Idβ+ + Idβ− = z(ℓ)

i

α
(ℓ)
i,j ∈ R for j ∈ B, β+, β− ∈ Rd, β+, β− ≥ 0

(12)

We use 1 to denote a vector containing only ones and Id to denote the identity
matrix with d rows and columns. Since the equation ∥

∑
j∈B(ℓ) α

(ℓ)
i,j · Z(ℓ)

j,∗ − Zi,∗∥
typically does not have an exact solution, we introduce the slack variables β+

and β−. This is a common method to create a relaxed optimization problem for
which solutions exist. Note that the sum of the two slack variables gives us the
L1 distance between the obtained linear combination and the actual activation.
Particularly, this means that the optimal coefficients α

(ℓ)
i,j give us the best solution

w.r.t. L1 distance.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 27

D Refinement Heuristics
Difference-guided Refinement Let x be a counterexample. The difference
guided refinement considers the difference between a neuron z(ℓ)

i (x) in the original
network and the linear combination

∑
j∈B(ℓ) αjz(ℓ)

j (x) with which it was replaced
in the abstracted network. We evaluate this for all neurons and restore the neuron
with the largest difference. Intuitively, a large difference suggests that the linear
combination does not accurately capture the behavior of the neuron on the given
counterexample.
Gradient-guided Refinement The gradient-guided refinement follows a
similar approach, but additionally, we take the gradient into account. Suppose
the original network outputs y and the reduced network ⃗̃y. We can quantify the
error with a typical loss function g(y, ỹ) for NN outputs , e.g. mean-squared
error or cross-entropy loss [30]. For the neurons in the basis j ∈ B(ℓ) and all
neurons of the layers before, j′ ∈ {1, . . . , nℓ−1}, we then compute the gradient of
the loss function w.r.t. their incoming weights. That is we compute the gradient

dg

dw(ℓ)(j, j′) , which can be done with the back-propagation algorithm as generally

used for training a NN [3]. Afterward, we simulate a single optimization step with
gradient descent. Consequently, the values of the neurons in the basis change
and, thus, also the value of the linear combination of a replaced neuron i. Let us
denote the new value of the linear combination for neuron i by z̄i. We evaluate
(z̄i − zℓ

i) · (
∑

j∈B(ℓ) αjzℓ
j − zℓ

i) on the counterexample. The first factor z̄i − zℓ
i

describes the difference between the updated linear combination and the actual
output and it indicates whether a neuron’s output value needs to be decreased
or increased to minimize the loss function. The second factor

∑
j∈B(ℓ) αjzℓ

j − zℓ
i

shows how the value would change if we were to restore the neuron. Therefore,
we choose the neuron with the largest value and restore it.

While the difference-guided refinement only considers the local behavior of a
neuron, the gradient-guided refinement also takes the influence of a neuron on
the network’s output into account.
Look-ahead Refinement The look-ahead refinement is the most greedy
approach for refinement, where we simulate the restoration of each replaced
neuron and observe how it changes the difference between the output ỹ of the
abstraction and y of the original network. We then choose to restore the neuron
that minimizes this difference. Again, we can quantify the difference with an
appropriate loss function, as we have done in the gradient-guided refinement.

28 Chau et al.

E Supplemental Experiments on Finding a Basis

In this section, we provide more experiments on how to find a basis, similar to
Fig. 2. We can see the results in Figs. 11 and 12. The x-axis shows the reduction

Fig. 11: Comparison of how to find a basis on MNIST - These plots show the
accuracy and runtime for the greedy and variance-based LiNNA with orthogonal
projection.

rate. On the left (blue), the y-axis of the plots shows the accuracy of the network
on the test data set, which was not used for generating the abstraction, and on
the right (red) the time for the reduction, where the time is measured in seconds.
The title of each plot indicates the architecture. On MNIST, Fig. 11, we can see
that the greedy approach outperforms the variance-based approach in terms of

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 29

Fig. 12: Comparison of how to find a basis on CIFAR-10 - These plots show the
accuracy and runtime for the greedy and variance-based LiNNA with orthogonal
projection.

30 Chau et al.

accuracy, but it performs much worse in terms of runtime. The latter can also be
seen on CIFAR-10. However, the accuracies of the greedy and the variance-based
approach are much more similar on this benchmark.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 31

F Supplemental Details on the Implementation of the
Bisimulation

The bisimulation chooses a random neuron as representative of a group, where
all neurons of the group agree on their incoming weights up to a deviation of
δ. We start by calculating the distance of two neurons i, j as follows: d(i, j) =
maxk{|w(ℓ−1)(i, k) − w(ℓ−1)(j, k)|, |b(ℓ)

i − b
(ℓ)
j |}. Note that the neurons i, j are

δ-bisimilar if and only if d(i, j) ≤ δ. Afterward, we use agglomerative cluster-
ing [34] to find groups of neurons that have δ-similar incoming weights. Since
agglomerative clustering belongs to the methods of hierarchical clustering, it
is somewhat similar to the minimization approach as described in [21] for the
exact bisimulation without δ-deviation, and we hope that it captures the same
intended behavior.

G Supplemental Experiments on Comparing Our
Approaches

Fig. 13: Comparison of Our Approaches - On MNIST 3x100. This plot contains
the comparison of all four possible approaches: orthogonal projection (blue) and
linear programming (orange), each either greedy (solid) or based on a heuristic
(dashed).

In Fig. 13, we have four plots in total. Each two for linear programming and
orthogonal projection, and the greedy and the heuristic-based approach. The
results for the linear programming are shown in green, and the results for the
orthogonal projection are in blue. The greedy approaches are shown with a solid
line and the heuristic-based approaches with a dashed line. As already seen,
the greedy approach outperforms the heuristic-based approach. This also holds
for linear programming. However, we can also see, that the greedy orthogonal
projection always outperforms all other approaches, except for reduction rates
close to 90%. Additionally, and more importantly, the heuristic-based orthogonal
projection is almost as good as the greedy linear programming; for high reduction
rates, it is even better. Fig. 14 shows on the left a plot for the orthogonal

32 Chau et al.

Fig. 14: Comparison of Linear Programming to Orthogonal Projection - Plots for
the orthogonal projection (left) and linear programming (right) on MNIST 3x100.
Each is either greedy (solid) or based on a heuristic (dashed). The accuracy is
shown in blue (left y-axis), and the computation time is in red (right y-axis).

projection. It shows the accuracy (blue) and the time (red) of the greedy (solid)
against the variance-based (dashed) method. On the right, we have the same plot
for the linear programming. Note here that the time for the linear programming
is 100 times as much as for the orthogonal projection.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 33

H Supplemental Experiments on Comparison to Related
Works

We have some more experiments in this section on the comparison of LiNNA to
related works, i.e. DeepAbstract and bisimulations. We performed the experiments
from Fig. 3 on some more architectures of the MNIST. We have also conducted

Fig. 15: Comparison on MNIST - There are plots for different architectures. Each
plot contains four graphs: Greedy LiNNA, Heuristic LiNNA, DeepAbstract [2],
and the bisimulation [21].

some experiments on another dataset: FashionMNIST. In contrast to MNIST,
which contains digits from zero to 10, FashionMNIST contains images of different
clothes. Note that the results are very similar to the ones that we generated on
MNIST.

In Fig. 16, we show the comparison of LiNNA, greedy and variance-based,
in comparison with DeepAbstract and the bisimulation on a FashionMNIST
3x100 network in terms of accuracy. We can see that it looks very similar to the
MNIST plots: LiNNA greedy outperforms all other approaches, closely followed
by LiNNA with heuristic. DeepAbstract performs better than the bisimulation,

34 Chau et al.

Fig. 16: Comparison of all related work on FashionMNIST

which shows a rapid decrease in the accuracy already at 40% reduction rate,
whereas LiNNA can keep the accuracy stable up until 60%.

Since the greedy approach of LiNNA and DeepAbstract can take quite long,
we performed only a comparison of the bisimulation and the heuristic based
LiNNA on more networks, see Fig. 17. The plots differ slightly, but their overall
message is the same: LiNNA performs better in terms of accuracy. Additionally,
we can see that it is easier to reduce networks that were bigger to begin with.
Take, for example, the 6x50 and the 6x200 network in comparison. LiNNA can
reduce up to 50% on the first without a relevant decrease in the accuracy, but
up to 70% on the bigger network. This can be explained by the fact that bigger
networks can contain more redundant information that our approach can detect
and remove.

In Fig. 18, we provide a comparison of the bisimulation and LiNNA based on
the variance heuristic on some more networks that were trained on CIFAR-10.
Some values for the bisimulation were not possible to provide, because it was
difficult to find suitable δ-values for the bisimulation. Nevertheless, we can still
see that LiNNA performs much better than the bisimulation. Its abstractions
have always a higher accuracy as the ones resulting from the bisimulation.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 35

Fig. 17: Comparison of bisimulation and heuristic LiNNA on FashionMNIST

36 Chau et al.

Fig. 18: Comparison of bisimulation and heuristic LiNNA on CIFAR-10

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 37

I Supplemental Experiments on Syntactic VS Semantic
This section contains more plots on the comparison of the syntactic- and semantic-
based abstraction, similar to Fig. 6.

Fig. 19: Syntactic VS. Semantic - These plots show the difference of using semantic
resp. syntactic information for the abstraction on different networks, trained on
MNIST

38 Chau et al.

J Time Comparison of the Different Approaches
This section contains tables with the runtimes of the approaches. Each neural
network was abstracted with increasing reduction rates. In the tables, we report
the mean, median, minimum and maximum runtimes for the different approaches
over all reduction rates. This should offer the possibility to have a more detailed
insight into the computation times.

Table 1: MNIST3x100 - Comparison of computation times [s]
type median mean min max

LiNNA greedy (OP) 55.70 47.03 12.87 64.47
LiNNA heuristic (OP) 1.48 1.47 1.32 1.53
LiNNA greedy (LP) 5807.21 5129.88 774.40 7420.29
LiNNA heuristic (LP) 17.50 16.49 2.42 27.90
Bisimulation 1.07 1.10 1.00 1.44
DeepAbstract 187.03 183.30 147.54 208.97

Table 2: MNIST4x100 - Comparison of computation times [s]
type median mean min max

LiNNA greedy (OP) 92.21 77.93 20.30 102.08
LiNNA heuristic (OP) 1.81 1.84 1.70 2.05
Bisimulation 1.25 1.27 1.12 1.43
DeepAbstract 335.73 329.88 223.52 367.45

Table 3: MNIST5x100 - Comparison of computation times [s]
type median mean min max

LiNNA greedy (OP) 120.41 106.81 25.76 140.67
LiNNA heuristic (OP) 2.21 2.20 1.97 2.35
Bisimulation 1.38 1.42 1.23 1.73
DeepAbstract 1142.42 1269.52 541.95 2205.43

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 39

Table 4: MNIST6x100 - Comparison of computation times [s]
type median mean min max

LiNNA greedy (OP) 166.15 146.38 35.42 201.71
LiNNA heuristic (OP) 2.55 2.51 2.24 2.66
Bisimulation 1.61 1.66 1.41 2.18
DeepAbstract 756.35 695.91 64.04 832.05

Table 5: MNIST7x100 - Comparison of computation times [s]
type median mean min max

LiNNA greedy (OP) 229.85 199.01 48.14 257.41
LiNNA heuristic (OP) 3.01 3.00 2.60 3.54
Bisimulation 1.84 1.86 1.60 2.17
DeepAbstract 2418.94 2181.16 151.61 2626.65

Table 6: MNIST4x50 - Comparison of computation times [s]
type median mean min max

Bisimulation 0.86 0.87 0.82 0.93
LiNNA heuristic (OP) 1.44 1.47 1.33 2.00

Table 7: MNIST4x150 - Comparison of computation times [s]
type median mean min max

Bisimulation 2.02 2.04 1.74 2.37
LiNNA heuristic (OP) 1.74 1.77 1.52 2.31

Table 8: MNIST4x200 - Comparison of computation times [s]
type median mean min max

Bisimulation 2.53 2.48 2.10 2.65
LiNNA heuristic (OP) 1.95 2.05 1.79 2.61

Table 9: MNIST4x250 - Comparison of computation times [s]
type median mean min max

Bisimulation 3.12 3.04 2.56 3.28
LiNNA heuristic (OP) 2.18 2.09 1.77 2.52

40 Chau et al.

Table 10: MNIST4x300 - Comparison of computation times [s]
type median mean min max

Bisimulation 4.08 4.05 3.48 4.72
LiNNA heuristic (OP) 2.07 2.09 1.70 2.38

Table 11: MNIST4x350 - Comparison of computation times [s]
type median mean min max

Bisimulation 5.26 5.21 4.52 5.62
LiNNA heuristic (OP) 2.56 2.59 1.90 3.22

Table 12: MNIST4x400 - Comparison of computation times [s]
type median mean min max

Bisimulation 5.84 5.91 5.31 6.54
LiNNA heuristic (OP) 2.55 2.46 1.62 2.89

Table 13: MNIST4x450 - Comparison of computation times [s]
type median mean min max

Bisimulation 7.38 7.30 6.51 8.11
LiNNA heuristic (OP) 2.79 2.66 1.72 2.90

Table 14: MNIST4x500 - Comparison of computation times [s]
type median mean min max

Bisimulation 8.29 8.52 7.39 9.39
LiNNA heuristic (OP) 3.10 2.95 1.81 3.28

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 41

K Details on Refinement

This section contains some more supplementary material for the refinement. We
have a table to give a more detailed insight into the computation time. Note,
however, that there appeared to be a malfunction in the difference-based approach
on the 3x100 network. The high maximum number most likely occurred due to
some issues with the machine it was run on.

Table 15: Refinement - Comparison of computation times [s]
NN method mean median min max

3x100 Difference 0.77 0.02 0.02 7901.53
Gradient 0.45 0.05 0.04 11.27
Lookahead 5.19 1.11 0.16 8724.71

4x100 Difference 0.20 0.02 0.02 8.13
Gradient 0.56 0.07 0.02 13.45
Lookahead 6.85 1.53 0.22 10719.30

5x100 Difference 0.21 0.03 0.02 9.87
Gradient 1.93 0.07 0.02 11499.10
Lookahead 1.32 1.94 0.30 9.31

6x100 Difference 0.24 0.03 0.03 7.14
Gradient 2.91 0.08 0.02 16172.10
Lookahead 1.56 2.37 0.34 5.45

Additionally, we have the plot from Fig. 9 with two more networks to show
more on the evolution of the refinement approaches.

Fig. 20: We considered abstractions that were obtained with a 50% reduction
rate and fixed 1000 counterexamples. The plots depict the percentage of restored
neurons in the layers of the different MNIST networks.

42 Chau et al.

Fig. 21: Histograms of the relative error of a MNIST5x100 network that was
reduced by 30%. The first row depicts a histogram over all relative errors for
all replaced neurons on 1000 images of the test set. The second row shows the
maximum relative error of each neuron that occurred for some input from the
test set. The las row plots the geometric mean of the relative error of each neuron
over 100 images of the test set.

Fig. 22: Histograms of the relative error of a MNIST3x100 network that was
reduced by 30%. The first row depicts a histogram over all relative errors for
all replaced neurons on 1000 images of the test set. The second row shows the
maximum relative error of each neuron that occurred for some input from the
test set. The las row plots the geometric mean of the relative error of each neuron
over 100 images of the test set.

L Experiments on the Error

In addition to the plots that we have already seen in Fig. 10, we have a plot the
shows the histogram over all errors of all replaced neurons in a layer. The values
are usually very close to 0.

Additionally, we show how the error evolves when reducing the network more.
To this end, we have in Fig. 23, boxplots for a) all appearing relative errors, b)

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 43

the maximum relative error, c) the geometric mean of the relative error on a
MNIST network with 3x100 neurons for different reduction rates. We can see
that the error looks most stable in the first layer and least stable in the last layer.
However, even for a reduction of 90%, the geometric mean of the relative error is
still below 0.3 for all cases but one. This could indicate that the number of cases
where the abstraction fails increase only slightly. The maximum relative error
seems to increase steadily, which could mean that whenever the abstraction fails,
it fails even more.

44 Chau et al.

(a) .

(b) .

(c) .
Fig. 23: Evolution of the relative error for different reduction rates. The network
is MNIST3x100 and the zeroth layer. We see for each reduction rate in [10-90] a
boxplot for a) all errors, b) the geometric mean, c) the maximum error.

Syntactic vs Semantic Abstraction and Refinement of Neural Networks 45

(a) .

(b) .

(c) .
Fig. 24: Evolution of the relative error for different reduction rates. The network
is MNIST3x100 and the first layer. We see for each reduction rate in [10-90] a
boxplot for a) all errors, b) the geometric mean, c) the maximum error.

46 Chau et al.

(a) .

(b) .

(c) .
Fig. 25: Evolution of the relative error for different reduction rates. The network
is MNIST3x100 and the second layer. We see for each reduction rate in [10-90] a
boxplot for a) all errors, b) the geometric mean, c) the maximum error.

	Syntactic vs Semantic Linear Abstraction and Refinement of Neural Networks

