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Abstract. Event-driven multi-threaded programming is an important
idiom for structuring concurrent computations. Stateless Model Checking
(SMC) is an effective verification technique for multi-threaded programs,
especially when coupled with Dynamic Partial Order Reduction (DPOR).
Existing SMC techniques are often ineffective in handling event-driven
programs, since they will typically explore all possible orderings of event
processing, even when events do not conflict. We present Event-DPOR,
a DPOR algorithm tailored to event-driven multi-threaded programs.
It is based on Optimal-DPOR, an optimal DPOR algorithm for multi-
threaded programs; we show how it can be extended for event-driven
programs. We prove correctness of Event-DPOR for all programs, and
optimality for a large subclass. One complication is that an operation
in Event-DPOR, which checks for redundancy of new executions, is NP-
hard, as we show in this paper; we address this by a sequence of inex-
pensive (but incomplete) tests which check for redundancy efficiently.
Our implementation and experimental evaluation show that, in com-
parison with other tools in which handler threads are simulated using
locks, Event-DPOR can be exponentially faster than other state-of-the-
art DPOR algorithms on a variety of programs and

1 Introduction

Event-driven multi-threaded programming is an important idiom for structuring
concurrent computations in distributed message-passing applications, file sys-
tems [31], high-performance servers [10], systems programming [11], smartphone
applications [33], and many other domains. In this idiom, multiple threads ex-
ecute concurrently and can communicate through shared objects. In addition,
some threads, called handler threads, have an associated event pool to which all
threads can post events. Each handler thread executes an event processing loop
in which events from its pool are processed sequentially, one after the other, in-
terleaved with the execution of other threads. An event is processed by invoking
an appropriate handler, which can be, e.g., a callback function.

Testing and verification of event-driven multi-threaded programming faces all
the usual challenges of testing and verification for multi-threaded programs, and
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furthermore suffers from additional complexity, since the order of event execu-
tion is determined dynamically and non-deterministically. A successful and fully
automatic technique for finding concurrency bugs in multithreaded programs
(i.e., defects that arise only under some thread schedulings) and for verifying
their absence is stateless model checking (SMC) [15]. Given a terminating pro-
gram and fixed input data, SMC systematically explores the set of all thread
schedulings that are possible during program runs. A special runtime scheduler
drives the SMC exploration by making decisions on scheduling whenever such
choices may affect the interaction between threads. SMC has been implemented
in many tools (e.g., VeriSoft [16], Chess [34], Concuerror [9], Nidhugg [2], rIn-
spect [42], CDSChecker [35], RCMC [22], and GenMC [26]), and successfully
applied to realistic programs (e.g., [17] and [25]). To reduce the number of ex-
plored executions, SMC tools typically employ dynamic partial order reduction
(DPOR) [12,1]. DPOR defines an equivalence relation on executions, which pre-
serves relevant correctness properties, such as reachability of local states and as-
sertion violations, and explores at least one execution in each equivalence class.

Existing DPOR techniques for multi-threaded programs lack effectiveness in
handling the complications brought by event-driven programming, as has been
observed by e.g., Jensen et al. [20] and Maiya et al. [28]. A naïve way to handle
such a program is to consider all pairs of events as conflicting, implying that
different orderings of event executions by a handler thread will be considered in-
equivalent. A major drawback is then that a DPOR algorithm cannot exploit the
fact that different orderings of event executions by a single handler thread can
be considered equivalent in the case that events are non-conflicting. In this way,
a program in which n non-conflicting events are posted to a handler thread by
n concurrent threads can give rise to n! explorations by a standard DPOR algo-
rithm, whereas all of them are in fact equivalent. On the other hand, some events
may be conflicting, so a DPOR algorithm for event-driven programs should ex-
plore only the necessary inequivalent orderings between conflicting events. This
can be achieved by defining an equivalence on executions, which respects only
the ordering of conflicting accesses to shared variables, irrespective of the order
in which events are executed. For plain multi-threaded programs, this equiva-
lence is the basis for several effective DPOR algorithms [12,1]. The challenge is
to develop an effective DPOR algorithm also for event-driven programs.

In this paper, we present Event-DPOR, a DPOR algorithm for event-driven
multi-threaded programs where handlers can execute events from their event
pool in arbitrary order (i.e., the event pool is viewed as a multiset). The mul-
tiset semantics is used in many works [21,37,20], often with the significant re-
striction that there is only one handler thread; we consider the more general
situation with an arbitrary number of handler threads. Event-DPOR is based
on Optimal-DPOR [1,3], a DPOR algorithm for multi-threaded programs. The
basic working mode of Optimal-DPOR is similar to several other DPOR algo-
rithms: Given a terminating program, one of its executions is explored and then
analyzed to construct initial fragments of new executions; each fragment that is
not redundant (i.e., which can be extended to an execution that is not equivalent
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to a previously explored execution), is subsequently extended to a maximal exe-
cution, which is analyzed to construct initial fragments of new executions, and so
on. Event-DPOR employs the same basic mode of operation as Optimal-DPOR,
but must be extended to cope with the event-driven execution model. One com-
plication is that the constructed initial fragments must satisfy the constraints
imposed by the fact that event executions on a handler are serialized; this may
necessitate reordering of several events when constructing new executions from
an already explored one. Another complication is that the check whether a new
fragment is redundant is NP-hard in the event-driven setting, as we prove in this
paper. We alleviate this by defining a sequence of inexpensive but incomplete
rendundancy checks, using a complete decision procedure only as a last resort.

We prove that the Event-DPOR algorithm is correct (explores at least one
execution in each equivalence class) for event-driven programs. We also prove
that it is optimal (explores exactly one execution in each equivalence class) for
the class of so-called non-branching programs, in which the possible sequences
of shared variable accesses that can be performed during execution of an event,
whose handler also executes other events, does not depend on how its execution
is interleaved with other threads.

We have implemented Event-DPOR in an extension of the Nidhugg tool [2].
Our experimental evaluation shows that, when compared with other SMC tools
in which event handlers are simulated using locks, Event-DPOR incurs only
a moderate constant overhead, but can be exponentially faster than other
state-of-the-art DPOR algorithms. The same evaluation also shows that, un-
like other algorithms that can achieve analogous reduction, Event-DPOR man-
ages to completely avoid unnecessary exploration of executions that cannot be
serialized. Moreover, in all the programs we tried, also those that are not non-
branching, Event-DPOR explored the optimal number of traces, suggesting that
Event-DPOR is optimal not only for non-branching programs but also for a
good number of branching ones. Also, our sequence of inexpensive checks for
redundancy was sufficient in all tried programs, i.e., we never had to invoke the
decision procedure for this NP-hard problem.

2 Related Work

Stateless model checking has been implemented in many tools for analysis of
multithreaded programs (e.g., [16,34,9,2,42,35,22,26]). It often employs DPOR,
introduced by Flanagan and Godefroid [12] to reduce the number of schedulings
that must be explored. Further developments of DPOR reduce this number fur-
ther, by being optimal (i.e., exploring only one scheduling in each equivalence
class) [1,3,6,23] or by weakening the equivalence [6,5,8,4].

DPOR has been adapted to event-driven multi-threaded programs. Jensen et
al. [20] consider an execution model in which events are processed in arbitrary
order (multiset semantics) and apply it to JavaScript programs. Maiya et al. [28]
consider a model where events are processed in the order they are received (FIFO
semantics), and develop a tool, EM-Explorer, for analyzing Android applications
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which, given a particular sequence of event executions, produces a set of reorder-
ings of its events which reverses its conflicts. The above works are based on the
algorithm of Flanagan and Godefroid [12], implying that they do not take ad-
vantage of subsequent improvements in DPOR algorithms [1,3,23], nor do they
employ techniques such as sleep sets for avoiding redundant explorations. It is
known [3]that even with sleep sets, the algorithm of Flanagan and Godefroid [12]
can explore an exponential number of redundant execution compared to the algo-
rithms of [1,3,23]. Without sleep sets, the amount of redundant exploration will
increase further. Recently, Trimananda et al. [39] have proposed an adaptation
of stateful DPOR [41,40] to non-terminating event-driven programs, which has
been implemented in Java PathFinder. For analogous reason as for [20,28], also
this approach does not avoid to perform redundant explorations.

For actor-based programs, in which processes communicate by message-
passing, Aronis et al. [6] have presented an improvement of Optimal-DPOR in
which two postings of messages to a mailbox are considered as conflicting only if
their order affects the subsequent behavior of the receiver. Better reduction can
then be achieved if the receiver selects messages from its mailbox based on some
criterion, such as by pattern matching on the structure of the message. However,
this execution model differs from the one we consider.

Event-driven programs where handlers select messages in arbitrary order
from their mailbox can be analyzed by modeling messages (mini-)threads that
compete for handler threads by taking locks, and applying any SMC algorithm
for shared-variable programs with locks. Since typical SMC algorithms always
consider different lock-protected code sections as conflicting, this approach has
the drawback of exploring all possible orderings of events on a handler. There
exists a technique to avoid exploring of all these orderings in programs with locks,
in which lock sections can be considered non-conflicting if they do not perform
conflicting accesses to shared variables. This LAPOR technique [24] is based
on optimistically executing lock-protected code regions in parallel, and aborting
executions in which lock-protected regions cannot be serialized. This can led to
significant useless exploration, as also shown in our evaluation in Section 8.

The problem of detecting potentially harmful data races in single executions
of event-driven programs has been addressed by several works. The main chal-
lenge for data race detection is to capture the often hidden dependencies for
applications on Android [18,30,7,19] or on other platforms [36,37,38,29]. Detect-
ing data races is a different problem than exploring all possible executions of
a program, in that it considers only one (possibly long) execution, but tries to
detect whether it (or some other similar execution) exhibits data races.

3 Main Concepts and Challenges

In this section, we informally present core concepts of our approach by examples4

4 Note that in the remainder of the paper, we will use the term message to refer to
what was called event in Sections 1 and 2, for the reason that the literature on
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Writer-readers program.

s

x = 1

t
a = y;

b = x

u
c = z;

d = x
E1

u: d = x

u: c = z

t: b = x

t: a = y

s: x = 1

E2

s: x = 1

u: d = x

E3

u: d = x

s: x = 1

t: b = x

E4

t: b = x

s: x = 1

u: d = x

u: c = z

t: a = y

Fig. 1. A program and its execution tree with the four executions that Optimal-DPOR
will explore. In E1, the red arcs show the conflict order; the blue arrows the program or-
der. The first wakeup sequence is shown in green; the remaining two continue with blue.

3.1 Review of Optimal-DPOR

Our DPOR algorithm for event-driven programs is an extension of
Optimal-DPOR [1]. Let us illustrate Optimal-DPOR on the program snip-
pet shown in Fig. 1. In this code, three threads s, t, and u access three
shared variables x, y, and z,5 whereas a, b, c, and d are thread-local registers.
Optimal-DPOR first explores a maximal execution, which it inspects to detect
races. From each race, it constructs an initial fragment of an alternative execu-
tion which reverses the race and branches off from the explored execution just
before the race. Let us illustrate with the program in Fig. 1. Assume that the first
execution is E1 (cf. the tree in Fig. 1). The DPOR algorithm first computes its

happens-before order, denoted
hb
−→E1 , which is the transitive closure of the union

of: (i) the program order, which totally orders the events in each thread (small
blue arrows to the left of E1), and (ii) the conflict order which orders conflicting
events: two events are conflicting if they access a common shared variable and
at least one is a write (red arcs left of E1). A race consists of two conflicting

events in different threads that are adjacent in the
hb
−→E1-order. The execution

E1 contains two races (red arcs in Fig. 1). Let us consider the first race, in which
the first event is s: x=1 and the second event is t: b=x. The alternative execution
is generated by concatenating the sequence of events in E1 that do not succeed

the first event in the
hb
−→E1 order (i.e., t: a = y;u: c = z) with the second event of

the race t: b=x. This forms a wakeup sequence, which branches off from E1 just
before the race, i.e., at the beginning of the exploration (green in Fig. 1). The sec-
ond race, between s: x=1 and u: d=x induces the wakeup sequence t.u.u formed
from the sequence t: a = y;u: c = z and the second event u: d = x, also branching
off at the beginning (note that t.u.u does not contain the second event t: b=x of t

since it succeeds s: x=1 in the
hb
−→E1-ordering). When attempting to insert t.u.u,

the algorithm will discover that this sequence is redundant, since its events are

DPOR has reserved the term event to denote an execution of a program statement.
We will also use mailbox instead of event pool.

5 Throughout this paper, we assume that threads are spawned by a main thread, and
that all shared variables get initialized to 0, also by the main thread.
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s

post(p1, h)
t

post(p2, h)

h’s messages

p1: [x = 1]

p2: [y = 2]

s

post(p1, h)
t

post(p2, h)
h’s messages

p1:




u = 1;
x = 1;
y = 1





p2:




v = 2;
a = x;
b = y





E1

h: p2: b = y

h: p2: a = x

h: p2: v = 2

h: p1: y = 1

h: p1: x = 1

h: p1: u = 1

E2

h: p1: y = 1

h: p1: x = 1

h: p1: u = 1

h: p2: b = y

h: p2: a = x

h: p2: v = 2

t: post(p2,h)

s: post(p1,h)

Fig. 2. An event-driven program with non-conflicting messages (top left). A program
with non-atomic conflicting messages (bottom left) and its tree of executions (right).

consistently contained in a continuation (t.u.t.u) of the already inserted wakeup
sequence t.u.t, and it will therefore not insert t.u.u. After this, the algorithm will
reclaim the space for E1, extend t.u.t into a maximal execution E2, in which races
are detected that generate two new wakeup sequences (which start in green and
continue in blue), which are extended to two additional executions (cf. Fig. 1).

3.2 Challenges for Event-driven Programs

A naïve way in which existing DPOR algorithms can handle event-driven pro-
grams is to consider all pairs of messages as conflicting. However, such an ap-
proach is not effective, since it will lead to exploration of all different serialization
orders of the messages, even if they are non-conflicting, as is the case for the top
left program of Fig. 2 in which two threads s and t post two messages p1 and p2
to a handler thread h. (We show messages labeled by the message identifier and
wrapped in brackets.) Since the events of p1 and p2 are non-conflicting, exploring
only one execution suffices. In general, some messages of a program may be con-
flicting and some may not be, so a DPOR algorithm for event-driven programs
should explore only the necessary inequivalent orderings between conflicting mes-
sages. Event-DPOR achieves this by extending Optimal-DPOR’s technique for
reversing races between events in different threads to a mechanism for reversing
races between events in different messages.

We illustrate this mechanism on the program at the bottom left of Fig. 2.
Assume that the first explored execution is E1. It contains two races between
events in the two messages, one on x and one on y. According to Optimal-DPOR’s
principle for race reversal, the race on x should induce an alternative execution
composed of the sequence of events that do not happen-after the first event (i.e.,
h: p1: u = 1 h: p2: v = 2) and the second event h: p2: a = x (for brevity, we do not
show the two post events). However, since message execution is serialized, these
events cannot form an execution. Therefore, Event-DPOR forms the alternative



Tailoring Stateless Model Checking for Event-Driven Programs 7

s

post(p1, h);
x = 1

t

post(p2, h)
h’s messages
p1: [y = 2]

p2:




a = x;
if a == 0

b = y





E1

s: x = 1

p2: b = y

p2: a = x

E2

p2: a = x

s: x = 1

p1: y = 2

E3

p1: y = 2

p2: b = y

s: x = 1

p2: a = x

t: post(p2,h)

s: post(p1,h)

Fig. 3. A program with messages that branch on read values and its exploration tree.

execution (shown in blue) by appending the second event h: p2: a = x to a maxi-

mal subset of the events of E1 which is closed under
hb
−→E1-predecessors (i.e., if

it contains an event e then it also contains all its
hb
−→E1-predecessors), and which

can form an execution that does not contain the first event. Later, this wakeup
sequence is extended to execution E2. Let us then consider the race on y. The
constructed wakeup sequence should append the second event h: p2: b = y to a
maximal subset of events that do not happen-after the first event h: p1: y = 1.
However, there is no execution that satisfies these constraints, since it would

have to include h: p2: a = x before its
hb
−→E1-predecessor h: p1: x = 1. The conclu-

sion is that the race on y cannot (and should not) be considered for reversal,
whereas that on x should be reversed. More generally, if two messages executing
on the same handler thread are in conflict, then a wakeup sequence is constructed
consisting of only the second message up until and including its first conflicting
event.

When messages can branch on values read from shared variables, reversing
the order of two messages may change the control flow of each involved message.
Also in this case, Event-DPOR’s principles for reversing races work fine. We
illustrate this on the program in Fig. 3, consisting of two threads s and t and a
handler thread h. Thread s posts a message p1 to h and thereafter writes to x.
Thread t posts message p2 to h that reads from x and may then read from y.

Assume that the first execution is E1, where s’s access to x goes last. The
execution has two races: one on y between p1: y = 2 and p2: b = y, and one on x

between p2: a = x and s: x = 1. The race on x can be handled in the same way as in
Optimal-DPOR: the wakeup sequence is s: x = 1, which branches off after the pre-
fix s.t.p1 (green in Fig. 3), and will subsequently be extended to execution E2.
The race on y is a race between events in two messages on the same handler
thread. As in the previous example, the wakeup sequence will include the second
message up until and including the first racing event, which is p2: b = y. Included
in the events that do not happen-after the first event is also s: x = 1, which must
be placed after its predecessor p2: a = x, yielding the wakeup sequence p2: a = x;
s: x = 1; p2: b = y, which branches off after s: post(p1,h), t: post(p2,h). This
is the blue rightmost branch of the tree in Fig. 3, and is later extended into the
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t

post(p1, h)
post(p2, h)
post(q1, k)
post(q2, k)

h’s messages

p1:

[
d = 1;
a = y

]

p2: [z = 1]

k’s messages

q1:

[
y = 1;
x = 1

]

q2:

[
b = z;
c = x

]

E1

k: q2: c = x

k: q2: b = z

h: p2: z = 1

k: q1: x = 1

h: p1: a = y

k: q1: y = 1

h: p1: d = 1

E2

k: q1: x = 1

h: p1: a = y

k: q1: y = 1

k: q2: c = x

h: p1: d = 1

k: q2: b = z

h: p2: z = 1

Fig. 4. A program in which a reversal of the race on x will reorder messages on the
handler k, and two executions that will be explored.

execution E3. Execution E3 has a race on x. Its reversal produces the wakeup
sequence s: x = 1, which is a tentative branch next to p2: a = x. However, this
wakeup sequence is not in conflict with the left branch labeled p1: b = y, which
means that it will not be inserted for the reason that it is equivalent to a subse-
quence of an execution starting with p1: b = y, namely E2.

Reordering Messages when Reversing Races Event-DPOR’s principles for re-
versing races may necessitate reordering of messages on handlers that are not
involved in the race. Consider the program in Fig. 4. Assume that the first ex-
plored execution is E1, where we have omitted the initial sequence of post events
of thread t for succinctness. In E1, message p1 is processed before p2, and q1 is
processed before q2. There are three races in E1, one on each of the shared vari-
ables x, y, z. Let us consider the race on x, shown by the red arrow. A wakeup
sequence which reverses this race must include all events of q2, since these are

the
hb
−→E1-predecessors of q2: c = x. It must also include the write to z by p2 since

it is a
hb
−→E1-predecessor of events in q2. On the other hand, it cannot include

any part of the message q1, since q1 must now occur after q2, and therefore it
also cannot include the read of y by p1 since its predecessor in q1 is missing. In
summary, the wakeup sequence contains two fully processed messages p2 and q2,
the event h: p1: d = 1 of p1, but no events from q1. Such a wakeup sequence must
branch off after the post events of t, i.e., from the root of the tree to the right
in Fig. 4. Later, this wakeup sequence is extended to a full execution E2. In total,
the program of Fig. 4 has eight inequivalent executions (the other six are not
shown).

4 Computation Model

4.1 Programs

We consider programs consisting of a finite set of threads that interact via a fi-
nite set of (shared) variables. Each thread is either a normal thread or a handler
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thread. A normal thread has a finite set of local registers and runs a determin-
istic code, built in a standard way from expressions and atomic statements,
using standard control flow constructs (sequential composition, selection and
bounded iteration). Atomic statements read or write to shared variables and lo-
cal registers, including read-modify-write operations, such as compare-and-swap.
A handler thread has a mailbox to which all threads (also handler threads) can
post messages. A mailbox has unbounded capacity, implying that the posting of
a message to a mailbox can never block. A message consists of a deterministic
code, built in the same way as the code of a thread. We let post(p, h) denote
the statement which posts the message p into the mailbox of handler thread h.
A handler thread repeatedly extracts a message from its mailbox, executes the
code of the message to completion, then extracts a next message and executes
its code, and so on. Messages are extracted from the mailbox in arbitrary order.
The execution of a message is interleaved with the statements of other threads.

The local state of a thread is a valuation of its local registers together with
the contents of its mailbox. A global state of a program consists of a local state
of each thread together with a valuation of the shared variables. The program
has a unique initial state, in which mailboxes are empty.

Recall that we use message to denote what is called event in Section 1.

4.2 Events, Executions, Happens-before Ordering, and Equivalence

We use s, t, . . . for threads, p, q, . . . for messages and non-handler threads, x, y,
z for shared variables, and a, b, c, d for local registers. We assume, wlog, that
the first event of a message does not access a shared variable, but only performs
a local action, e.g., related to initialization of message execution. In order to
simplify the presentation, we henceforth extend the term message to refer not
only to a message but also to a non-handler thread.

The execution of a program statement is an event, which affects the global
state of the program. An event is denoted by a pair 〈p, i〉, where p denotes the
message containing the event and i is a positive integer, denoting that the event
results from the i-th execution step in message p. An execution sequence E is
a finite sequence of events, starting from the initial state of the program. Since
thread and message codes are deterministic, an execution sequence E can be
uniquely characterized by the sequence of messages (and non-handler threads)
that perform execution steps in E, where we use dot(.) as concatenation operator.
Thus p.p.q denotes the execution sequence consisting first of two events of p,
followed by an event of q.

We let enabled(E) denote the set of messages that can perform a next event
in the state to which E leads. A sequence E is maximal if enabled(E) = ∅.
We use u, v, w, . . . to range over sequences of events. We introduce the following
notation, where E is an execution sequence and w is a sequence of events.

- 〈〉 denotes the empty sequence.
- E⊢w denotes that E.w is an execution sequence.
- w\p denotes the sequence w with its first occurrence of p (if any) removed.
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- dom(E) denotes the set of events 〈p, i〉 in E, that is, 〈p, i〉 ∈ dom(E) iff E
contains at least i events of p. We also write e ∈ E to denote e ∈ dom(E).

- next[E](p) denotes the next event to be performed by the message p after
the execution E if p ∈ enabled(E), otherwise next[E](p) is undefined.

- ê denotes the message that performs e, i.e., e is of form e = 〈ê, i〉 for some i.

- E′ ≤ E denotes that E′ is a (not necessarily strict) prefix of E.

We say that p starts after E if p has been posted in E, but not yet performed
any events in E. We say that p is active after E if p has been posted in E, but
not finished its execution in E.

Definition 1 (Happens-before). Given an execution sequence E, we define

the happens-before relation on E, denoted
hb
−→E, as the smallest irreflexive partial

order on dom(E) such that e
hb
−→E e′ if e occurs before e′ in E and either

– e and e′ are performed by the same message p,

– e and e′ access a common shared variable x and at least one writes to x, or

– ê′ is the message that is posted by e and e′ is the first event of ê′. ⊓⊔

The hb-trace (or trace for short) of E is the directed graph (dom(E),
hb
−→E).

Definition 2 (Equivalence). Two execution sequences E and E′ are equiv-
alent, denoted E ≃ E′, if they have the same trace. We let [E]≃ denote the
equivalence class of E. ⊓⊔

Note that for programs that do not post or process messages, ≃ is the standard
Mazurkiewicz trace equivalence for multi-threaded programs [32,14,12,1]. We say
that two sequences of events, w and w′, with E ⊢w and E ⊢w′, are equivalent
after E, denoted w ≃[E] w

′ if E.w ≃ E.w′.

5 The Event-DPOR Algorithm

In this section, we present Event-DPOR, a DPOR algorithm for event-driven
programs. Given a terminating program on given input, the algorithm explores
different maximal executions resulting from different thread interleavings.

5.1 Central Concepts in Event-DPOR

Definition 3 (Happens-before Prefix). Let E and E′ be execution se-
quences. We say that E′ is a happens-before prefix of E, denoted E′ ⊑ E, if

(i) dom(E′) ⊆ dom(E), (ii)
hb
−→E′ is the restriction of

hb
−→E to E′, and (iii) when-

ever e
hb
−→E e′ for some e′ ∈ dom(E′), then e ∈ dom(E′). We let w′ ⊑[E] w denote

that E.w′ ⊑ E.w. ⊓⊔
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Intuitively, E′ ⊑ E denotes that the execution E′ is “contained” in the execution
E in such a way that it is not affected by the events in E that are not in E′. 6

To illustrate, for the top left program of Fig. 2, the execution E′ consisting of
t: post(p2,h) h: p2: y = 2 is a happens-before prefix of any maximal execution
of the program, since the event of p2 cannot happen-after any other event than
the event that posts p2, which is already in E′.

Definition 4 (Weak Initials). Let E be an execution sequence, and w be a
sequence with E ⊢w. The set WI[E](w) of weak initials of w after E is the set
of messages p such that E⊢p.w′ for some w′ with w ⊑[E] p.w

′. ⊓⊔

Intuitively, p is in WI[E](w) if p can execute the first event in a continuation of
E which “contains” w, in the sense of ⊑. In Event-DPOR, the concept of weak
initials is used to test whether a new sequence is redundant, i.e., is “contained in”
an execution that have been explored or in a wakeup sequence that is scheduled
for exploration. Note that in Definition 4, we can generally not choose w′ as
w\p. This happens, e.g., if p does not occur in w but instead w contains another
message p′ which executes on the same handler as p and does not conflict with
p; in this case w′ must contain a completed execution of p inserted before p′.

s

post(p1, h)
t

post(p2, h)

h’s messages

p1: [x = 1]

p2:

[
y = 2;
z = 2

]

Fig. 5. Illustrating weak initials

We illustrate using the program shown
on the right. If we let E be the execution
s.t and w be the sequence p1, we have
p2 ∈ WI[E](w), since w ⊑[E] p2.p2.p1.
This illustration shows that in order to
determine whether p ∈ WI[E](w) for a
message p, one must know which shared-
variable access will be performed by next[E](p), and, in case p starts after E
but will execute after some other message on its handler, also the sequences of
shared-variable accesses that p will perform when executing to completion.

The weak initial check problem consists in checking whether p ∈ WI[E](w).

Theorem 1. The weak initial check problem is NP-hard.

The proof of the above theorem can be found in Appendix B.1. In Ap-
pendix A.3, we propose a sequence of inexpensive rendundancy checks, which
have shown to be sufficient for all our benchmarks.

Definition 5 (Races). Let E be a maximal execution sequence. Two events e

and e′ in different messages are in a race, denoted e .E e′, if e
hb
−→E e′ and

(i) e and e′ access a common shared variable and at least one is a write, and

(ii) there is no event e′′ with e
hb
−→E e′′ and e′′

hb
−→E e′. ⊓⊔

Intuitively, a race arises between conflicting accesses to a shared variable, by

events which are in different messages but adjacent in the
hb
−→E order.

6 The relation w′ ⊑[E] w is also introduced in [28], as “w is a dependence-covering
sequence of w′.”
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5.2 The Event-DPOR Algorithm

The Event-DPOR algorithm, shown as pseudocode in Algorithm 1, performs a
depth-first exploration of executions using the recursive procedure Explore(E),
where E is the currently explored execution, which also serves as the stack of the
exploration. In addition the algorithm maintains three mappings from prefixes
of E, named done, wut, and parkedWuS . For each prefix E′ of E,

– done(E′) is a mapping whose domain is the set of messages p for which the
call Explore(E′.p) has returned. If p does not start after E′, then done(E′)(p)
is the shared variable-access performed by next[E′](p). If p starts after E′,
then done(E′)(p) is the set of sequences of shared variable-accesses that can
be performed in a completed execution of p after E′. The information in
done(E′)(p) is collected during the call Explore(E′.p) (Lines 22 to 31).

– wut(E′) is a wakeup tree, i.e., an ordered tree 〈B,≺〉 where B is a prefix-
closed set of sequences, whose leaves are wakeup sequences. For each sequence
u ∈ B, the order ≺ orders its children (of form u.p) by the order in which
they were added to wut(E′). This is also the order in which the sequences
of form E′.u.p will be visited in the recursive exploration.

– parkedWuS (E′) is a set of wakeup sequences v that were previously being
inserted into some wakeup tree wut(E′′), but were “parked” at the sequence
E′ because at that time there was not enough information to determine
where in wut(E′′) to place v. Later, when a branch of wut(E′′) has been
extended to a maximal execution, it should be possible to determine where
to insert v.

Each call to Explore(E) first initializes done(E) and parkedWuS (E) (wut(E)
was initialized before the call), and thereafter enters one of two phases: race
detection (Lines 4 to 11) or exploration (Lines 13 to 31). The race detection
phase is invoked when E is a maximal execution sequence. First, for each wakeup
sequence v parked at a prefix E′ of E it invokes InsertParkedWuS(v, E′) to insert
v into the appropriate wakeup tree (Lines 5 to 7). Thereafter, each race (of form
e .E e′) in E is analyzed by ReverseRace(E, e, e′), which returns a set of
executions that reverse the race. Each such execution E′.v is returned as a pair
〈E′, v〉, where v is a wakeup sequence that should be considered for insertion
in the wakeup tree at E′. Each wakeup sequence v is checked for redundancy
(Line 10), using the information in done. If v is not redundant, it is inserted into
the wakeup tree at E′ for future exploration (Line 11).

The exploration phase (Lines 13 to 33) is entered if exploration has not
reached the end of a maximal execution sequence. First, if wut(E) only contains
the empty sequence, then an arbitrary enabled message is entered into wut(E)
(Lines 14 and 15). Thereafter, each sequence in wut(E) is subject to recursive
exploration. We find the ≺-minimal child p of the root of wut(E) (Line 19),
and make the recursive call Explore(E.p) (Line 21). Before the call, wut(E.p) is
initialized (Line 20). During the call Explore(E), information is also collected
about the sequences of shared-variable accesses that can be performed by each
message that is active after E, and subsequently stored in the mapping done.
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Algorithm 1: Event-DPOR

Initial call: Explore(〈〉) with wut(〈〉) = 〈{〈〉}, ∅〉

1 Explore(E) // Returns access sequences of messages

2 done(E) := ∅;
3 parkedWuS (E) := ∅;
4 if enabled(E) = ∅ then // When E is maximal, enter race detection

5 foreach E′ ≤ E do

6 foreach v ∈ parkedWuS (E′) do // Parked wakeup sequences

7 InsertParkedWuS(v,E′); // are inserted at the appropriate place

8 foreach e, e′ such that e .E e′ do // For each race in E

9 foreach 〈E′, v〉 ∈ ReverseRace(E,e, e′) do // For each race reversal

10 if ¬∃E′′, w, p s.t. E′′.w = E′ ∧ p ∈ dom(done(E′′)) ∧ p ∈
WI[E′′](w.v) then // If v is not redundant

11 Insert(v ,E ′, 〈〉); // insert v into the wakeup tree at E′

12 else // If not at a maximal execution sequence, explore...

13 if wut(E) = 〈{〈〉}, ∅〉 then

14 choose p ∈ enabled(E); // ... or by selecting an arbitrary p...

15 wut(E) := 〈{〈〉, p}, {(p, 〈〉)}〉; // Adapt wakeup tree accordingly

16 foreach message q that is active after E do

17 msgAccesses(q) := ∅; // Initialize the sequences of accesses for messages

18 while ∃q ∈ wut(E) do // While the wakeup tree is not empty...

19 let p = min≺{q ∈ wut(E)}; // ... pick next branch, ...

20 wut(E.p) := subtree(wut(E), p); // extract next wakeup tree)

21 let tmpAccesses = Explore(E.p); // ... and make a recursive call

22 if next[E](p) is the last event of message p then

23 add p to dom(tmpAccesses) with tmpAccesses(p) = {〈〉}

24 if next[E](p) performs a global access then

25 prepend next[E](p)’s access to each sequence in tmpAccesses(p)
26 foreach message q that is active after E do

27 msgAccesses(q) ∪= tmpAccesses(q)
28 add p to the domain of done(E); // Mark p as explored

29 if p starts after E then // If p starts

30 done(E)(p) := msgAccesses(p); // ... store p’s accesses

31 else done(E)(p) := next[E](p)’s access; // ... store next[E](p)’s access

32 remove all sequences of form p.w from wut(E); // At end, cleanup

33 return msgAccesses

The information is collected in the variable msgAccesses, which is initialized at
Line 17. Each recursive call Explore(E.p) returns the sets of access sequences
performed by messages that are active after E.p (Line 21). After prepending the
access performed by next[E](p) to the sets of access sequences performed by p
(Line 25), the sets returned by Explore(E.p) are added to the corresponding sets
in msgAccesses (Line 27). Finally, p is added to the domain of done(E) (Line 28).
If p starts a message after E, then done(E)(p) is assigned the set of access
sequences performed by p (Line 30), otherwise only the access of next[E](p).
Thereafter, the subtree rooted at p is removed from wut(E) (Line 33). When
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all recursive calls of form Explore(E.p) have returned, the accumulated sets of
access sequences are returned (Line 33).

Event-DPOR calls functions that are briefly described in the following para-
graphs. More elaborate descriptions (with pseudocode) are in Appendix A.

ReverseRace(E, e, e′) is given a race e .E e′ in the execution E (Line 8), and
returns a set of executions that reverse the race in the sense that they perform
the second event e′ of the race without performing the first one, and (except for
e′) only contain events that are not affected by the race. More precisely, it returns
a set of pairs of form 〈E′, u.e′〉, such that (i) E′.u is a maximal happens-before
prefix of E such that E′.u.e′ is an execution, and (ii) dom(E′) is a maximal
subset of dom(E′.u) such that E′ ≤ E. An illustration of the ReverseRace
function was given for the race on x in the program of Fig. 4.

Insert(v ,E ′, 〈〉) inserts the wakeup sequence v into the wakeup tree wut(E′). If
there is already some sequence u in wut(E′) such that u ⊑[E′] v or v ⊑[E′] u, then
the insertion leaves wut(E′) unaffected. Otherwise Insert(v ,E ′, 〈〉) attempts to
find the ≺-minimal non-leaf sequence u in wut(E′) with u ⊑[E′] v, and insert
a new leaf of form u.v′ into wut(E′), such that v ⊑[E′] u.v

′, which is ordered
after all existing descendants of u in wut(E′). The function finds such a u by
descending into wut(E′) one event at a time; from each node u′ it finds a next
node u′.p as the ≺-minimal child with u′.p ⊑[E′] v. If, during this search, the
message p starts after E′.u′ it may happen that the wakeup tree does not contain
enough subsequent events to determine whether u′.p ⊑[E′] v; in this case the
sequence v is “parked” at the node u′.p: the insertion of v will be resumed when
E′.u′.p is extended to a maximal execution (at Line 7 with E′ being E′.u′).

InsertParkedWuS(v, E′) inserts a wakeup sequence v, which is parked after a
prefix E′ of the execution E, into an appropriate wakeup tree. The function first
decomposes E′ as E′′.p, and checks whether p ∈ WI[E′′](v), using information
about the accesses of p that can be found in E. If the check succeeds, then
insertion proceeds recursively one step further in the execution E, otherwise v
conflicts with p and should be inserted into the wakeup tree after E′′.

Checking for Redundancy Tests of form p ∈ WI[E](w) for a message p and
an execution E.w appear at Line 10 and in the functions InsertWuS and
InsertParkedWuS. If p does not start after E, then the check can be straight-
forwardly performed using sleep sets [14]. If p starts after E, then checking
whether p ∈ WI[E](w) is NP-hard in the general case (see Theorem 1). To avoid
expensive calls to a decision procedure, Event-DPOR employs a sequence of in-
complete checks, starting with simple ones, and proceeding with a next test only
if the preceding was not conclusive. These tests are in order: 1) If p is the first
message (if any) on its handler in w, then p ∈ WI[E](w) is trivially true. 2) If
the happens-before relation precludes p from executing first on its handler, then
p ∈ WI[E](w) is false; checking this may require w to be extended so that p (and
possibly other messages) are executed to completion. 3) An attempt is made to
construct an actual execution in which p is the first message on its handler, which
respects the happens-before ordering. 4) If all previous tests were inconclusive,
a decision procedure is invoked as a final step.
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6 Correctness and Optimality

A program is defined to be non-branching if each message, which executes on
the same handler as some other message, performs the same sequence of accesses
(reads or writes) to shared variables during its execution, regardless of how its
execution is interleaved with other threads and messages. Note that the “non-
branching” restriction does not apply to non-handler threads nor to messages
that are the only ones executing on their handler.

The following theorems state that Event-DPOR is correct (explores at least
one execution in each equivalence class) for all event-driven programs and opti-
mal (explores exactly one execution in each equivalence class) for non-branching
programs. Proofs can be found in Appendix C.

Theorem 2 (Correctness). Whenever the call to Explore(〈〉) returns dur-
ing Algorithm 1, then for all maximal execution sequences E, the algorithm has
explored some execution sequence in [E]≃.

Theorem 3 (Optimality). When applied to a non-branching program, Algo-
rithm 1 never explores two maximal execution sequences which are equivalent.

7 Implementation

Event-DPOR was implemented on top of Nidhugg. Nidhugg [2] is a state-
of-the-art stateless model checker for C/C++ programs with Pthreads, which
works at the level of the LLVM Intermediate Representation. Nidhugg comes
with a selection of DPOR algorithms. One of them is Optimal-DPOR, which we
have used as a basis for Event-DPOR’s implementation.

We have extended the data structures of Nidhugg with the information
needed by Event-DPOR. For instance, nodes in wakeup trees contain new infor-
mation, such as the set of parked wakeup sequences, and events in executions
include the information in tmpAccesses, used to compute the done set as shown

in Lines 23 to 30 of Algorithm 1. The relation
hb
−→E is represented by a vector

clock per event, containing the set of preceding events. When reversing races (in
ReverseRace) and checking for redundancy (Line 10 of Algorithm 1), the rela-

tion
hb
−→E is extended by a saturation operation (Definition 6 in Appendix A)

that captures ordering constrained induced by serialized message execution.
Concerning race reversal, instead of reversing multiple races between mes-

sages executed on the same handler, our implementation detects and reverses
only the race induced by the first conflict, since other races cannot be reversed,
as explained using the example in Fig. 2. Moreover, in cases where ReverseRace
would return several maximal executions that reverse a race, our implementa-
tion instead returns their union, even though it may not form an execution (e.g.,
since it may contain several incomplete executed messages on a handler). From
this union, events will be removed adaptively during wakeup tree insertion to
extract only those maximal executions that generate new leaves in a wakeup
tree.
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8 Evaluation

In this section, we evaluate the performance of our implementation and put it
into context. Since currently there is no other SMC tool for event-driven pro-
grams to compare against,7 we have created an API, in the form of a C header
file, that implements event handlers as pthread mutexes (locks) and simulates
messages as threads that wait for their event handler to be free. This API al-
lows us to use plain C/pthread programs to compare Event-DPOR with the
Optimal-DPOR algorithm implemented in Nidhugg as baseline, but also with
the Lock-Aware Partial Order Reduction (LAPOR) algorithm [24], implemented
in GenMC. The LAPOR algorithm is often analogous to Event-DPOR w.r.t.
the amount of reduction that it can achieve when event handlers are modeled as
global locks. We also include in our comparison the baseline DPOR algorithm
of GenMC that tracks the modification order (–mo) of shared variables. For
Nidhugg, we used its master branch at the end of 2022; for GenMC, we used
version 0.6.1.8 We have run all benchmarks on a Ryzen 5950X desktop running
Arch Linux.

We will compare implementations of different DPOR algorithms based on the
number of executions that they explore, as well as the time that this takes. For
some programs, LAPOR also examines a fair amount of blocked executions (i.e.,
executions that cannot be serialized and need to be aborted), which naturally
affects its time performance. In Table 1, we show the number of executions
explored by an entry of the form T+B, where T is the number of complete
traces and B is the number of blocked executions. (We omit the B part when it
is zero.)

All the benchmark programs we use are parametric, typically on the number
of threads used (and thus messages posted); their parameters are shown inside
parentheses. In the first program (posters), each thread posts to a single event
handler two messages containing stores to some atomic global variable, and then
the value of this variable is checked by an assertion. This simple program al-
lows us to establish the baseline speed of all implementations. We can see that
GenMC –mo is the fastest here. The reason is that it does not perform any checks
whether the explored executions are sequentially consistenct, which allows it to
be five times faster than LAPOR, and seven to nine times faster than Nidhugg’s
algorithm implementations. We can also notice that Event-DPOR incurs a small
but noticeable overhead over Optimal-DPOR for the extra machinery that its
implementation requires.

The next two benchmarks were taken from a paper by Kragl et al. [27]. In
buyers, n “buyer” threads coordinate the purchase of an item from a “seller”
as follows: one buyer requests a quote for the item from the seller, then the
buyers coordinate their individual contribution, and finally if the contributions
are enough to buy the item, the order is placed. In ping-pong, the “pong” handler

7 All our attempts to use R4 failed miserably; the tool has not been updated since 2016.
8

GenMC v0.6.1 (released July 2021) warns that LAPOR usage with –mo is experi-
mental; in fact, LAPOR support has been dropped in more recent GenMC versions.

https://github.com/eth-sri/R4
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Table 1. Performance of different DPOR algorithm implementations.

Executions (Traces+Blocked) Time (secs)

GenMC Nidhugg GenMC Nidhugg

Benchmark –mo –lapor –optimal –event –mo –lapor –optimal –event

posters(3) 90 90 90 90 0.02 0.03 0.09 0.09
posters(4) 2520 2520 2520 2520 0.18 0.81 0.94 1.42
posters(5) 113400 113400 113400 113400 9.43 47.11 50.87 84.64

buyers(6) 720 720+2383 720 720 0.08 2.51 0.36 0.51
buyers(7) 5040 5040+20301 5040 5040 0.56 25.80 2.53 3.96
buyers(8) 40320 40320+191369 40320 40320 5.03 306.95 23.59 37.70

ping-pong(6) 3276 3276+8271 3276 3276 0.23 3.99 1.45 2.61
ping-pong(7) 27252 27252+79435 27252 27252 2.01 44.51 13.78 26.42
ping-pong(8) 253296 253296+835509 253296 253296 20.63 572.07 149.26 299.12

consensus(2) 4 4+4 4 4 0.01 0.01 0.06 0.06
consensus(3) 216 125+347 216 125 0.04 0.29 0.20 0.20
consensus(4) 331776 50625+242828 331776 50625 75.43 293.91 419.90 177.63

prolific(5) 120 30+26 120 30 0.17 5.34 0.21 0.18
prolific(7) 5040 126+120 5040 126 16.12 98.14 11.79 2.12
prolific(9) 362880 510+502 362880 510 2462.83 1132.65 1363.31 26.28

sparse-mat(4,3) 204 34 204 34 0.16 0.06 0.16 0.09
sparse-mat(4,5) 185520 1546 185520 1546 212.51 3.56 126.06 1.66
sparse-mat(4,7) � 130922 � 130922 � 603.31 � 234.27

plb(4) 105 1 105 1 0.02 0.01 0.10 0.06
plb(6) 10395 1 10395 1 1.99 0.02 6.61 0.06
plb(8) 2027025 1 2027025 1 556.46 0.02 1808.24 0.06

thread receives messages with increasing numbers from the “ping” thread, which
are then acknowledged back to the “ping” event handler.

Looking at Table 1, we notice that, in both buyers and ping-pong, all algo-
rithms explore the same number of traces, but LAPOR also explores a significant
number of executions that cannot be serialized and need to be aborted. In fact,
for both benchmarks, the aborted executions significantly outnumber the traces
explored. This affects negatively the time that LAPOR takes, and GenMC

–lapor becomes the slowest implementation. In contrast, Event-DPOR does not
suffer from this problem and shows similar scalability as baseline GenMC and
Optimal-DPOR.

With the four remaining benchmarks, we evaluate all implementations in
programs where algorithms tailored to event-driven programming, either na-
tively (Event-DPOR) or which are lock-aware (when handlers are implemented
as locks), have an advantage. The first program (consensus), again from the pa-
per by Kragl et al. [27], is a simple broadcast consensus protocol for n nodes
to agree on a common value. For each node i, two threads are created: one
thread executes a broadcast method that sends the value of node i to every
other node, and the other thread is an event handler that executes a collect

method which receives n values and stores the maximum as its decision. Since
every node receives the values of all other nodes, after the protocol finishes, all
nodes have decided on the same value. The next program (prolific) is synthetic: n
threads send n messages with an increasing number of stores to and loads from
an atomic global variable to one event handler. The sparse-mat program com-
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putes the number of non-zero elements of a sparse matrix of dimension m × n,
by dividing the work into n tasks sent as messages to different handlers, which
compute and join their results. The last benchmark (plb) is taken from a paper
by Jhala and Majumdar [21]. A fixed sequence of task requests is received by
the main thread. Upon receiving a task, the main thread allocates a space in
memory and posts a message with the pointer to the allocated memory that will
be served by a thread in the future.

Refer again to Table 1. In consensus, all algorithms start with the same num-
ber of traces, but LAPOR and Event-DPOR need to explore fewer and fewer
traces than the other two algorithms, as the number of nodes (and threads)
increases. Here too, LAPOR explores a significant number of executions that
need to be aborted, which hurts its time performance. On the other hand,
Event-DPOR’s handling of events is optimal here. The prolific program shows a
case where algorithms not tailored to events (or locks) explore (n − 1)! traces,
while LAPOR and Event-DPOR explore only 2n−2 consistent executions, when
running the benchmark with parameter n. It can also be noted that Event-DPOR
scales much better than LAPOR here in terms of time, due to the extra work that
LAPOR needs to perform in order to check consistency of executions (and abort
some of them). The sparse-mat program shows another case where algorithms
that are not tailored to events explore a large number of executions unneces-
sarily (� denotes timeout). This program also shows that Event-DPOR beats
LAPOR time-wise even when LAPOR does not explore executions that need to
be aborted. Finally, plb shows a case on which Event-DPOR and LAPOR really
shine. These algorithms need to explore only one trace, independently of the
size of the matrices and messages exchanged, while DPOR algorithms not tai-
lored to event-driven programs explore a number of executions which increases
exponentially and fast.

We remark that, in all benchmarks, the inexpensive checks for redundancy
were sufficient, and Event-DPOR explored the optimal number of traces. Results
from an extended set of benchmarks appear in Appendix D.

9 Concluding Remarks

In this paper, we presented a novel SMC algorithm, Event-DPOR, tailored to
the characteristics of event-driven multi-threaded programs running under the
SC semantics. The algorithm was proven correct and optimal for event-driven
programs in which the variable accesses of events do not depend on how their
execution is interleaved with other threads.

We have implemented Event-DPOR in the Nidhugg tool, and we will open-
source our implementation. With a wide range of event-driven programs, we
have shown that Event-DPOR incurs only a moderate constant overhead over
its baseline implementation (Optimal-DPOR), it is exponentially faster than ex-
isting state-of-the-art SMC algorithms in time and number of traces examined
on programs where events’ actions do not conflict, and does not suffer from per-
formance degradation caused by having to examine non-serializable executions.
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Event-DPOR assumes that handlers can process their events in arbitrary
order. Directions for future work include to retarget Event-DPOR for event-
driven programs with other policies (e.g., FIFO), and for specific event-driven
execution models.

10 Reproducible Artifact

An anonymous artifact containing the benchmarks and all the tools used
in the evaluation, including our Nidhugg with Event DPOR, is available at
https://doi.org/10.5281/zenodo.7929004.
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A Detailed Descriptions of Auxiliary Functions

In this section, we describe in detail the functions that are called by
Event-DPOR, and were briefly described at the end of Section 5.2 Some of

these functions extend the happens-before relation
hb
−→E on an execution with

additional ordering constraints that are enforced in the event-driven execution
model, stemming from the fact that each handler must execute its messages in
some sequential order. The following saturation operation adds such additional
orderings imposed by any ordering relation on events.

Definition 6 (Saturation). Let E be a sequence of events, and −→E be an
irreflexive partial order on the events of E. We define 〈〈−→E〉〉 as the smallest

transitive relation
st
−→E on the events of E which includes −→E and satisfies the

constraint that whenever e and e′ are events in different messages on the same
handler, and there is an event e′′ in the same message as e and an event e′′′ in

the same message as e′ with e′′
st
−→E e′′′, then e

st
−→E e′. ⊓⊔

In the above definition, note that it is not required that e is distinct from e′′,
nor that e′ is distinct from e′′′.

A.1 Reversing Races

A key procedure of Event-DPOR is ReverseRace(E, e, e′) which constructs new
executions by analyzing and reversing a race in an explored execution. This
procedure is given a race e .E e′ in the currently explored execution E (at
Line 8 of Algorithm 1), and returns a set of maximal executions that reverse the
race. More precisely, it returns a set of pairs of form 〈E′, u.e′〉, such that (i) E′.u
is a maximal happens-before prefix of E such that E′.u.e′ is an execution, and
(ii) dom(E′) is a maximal subset of dom(E′.u) such that E′ ≤ E.

The procedure ReverseRace(E, e, e′) is shown in Algorithm 2. Let E′′ be the
set of events of E that are not affected by the race (Line 2): this is the set of

events e′′′ with e
hb
9E e′′′. If E′′ can be reordered to form an execution, the code

at Lines 4 to 23 will have no effect; ReverseRace will terminate and returns
its linearization. However, there are situations in which E′′ cannot be reordered
into an execution. For instance, E′′ may contain two incomplete messages on the
same handler because the remaining parts of these messages happen-after e in
E. Since an execution may contain at most one incomplete message per handler,
ReverseRace then performs a sequence of message removals and reorderings
to produce a set of maximal wakeup sequences. The procedure employs the
saturation operation of Definition 6 to constrain the ordering between messages
on the same handler. The procedure maintains an ordering relation

sc
−→E′′ on

E′′, initialized to 〈〈
hb
−→E′′〉〉 (Line 4). It thereafter performs a sequence of steps

in which messages are removed from E′′ and/or the ordering relation
sc
−→E′′

is extended. Some steps may be resolved nondeterministically: in such cases
the procedure pursues all possible alternatives, potentially resulting in several
returned sequences. The steps of Algorithm 2 are the following.
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Algorithm 2: Reversal of a Race.

1 ReverseRace(E,e, e′)

2 let E′′ be the subsequence of E consisting of the events e′′′ with e
hb
9E e′′′;

3 let e′′ be the last event performed by ê′;

4
sc
−→E′′ := 〈〈

hb
−→E′′〉〉;

5 let S = {E′′};
6 foreach F ∈ S do

7 repeat

8 if an incomplete message includes an event e′′′ with e′′′
hb
−→F e′′

then

9 remove all other incomplete messages on same handler from F ;

10 if several incomplete messages execute on one handler then

11 foreach incomplete message p in the same handler do

12 construct a sequence U where all the messages except p

from this handler are removed;
13 add U to the set S;

14 delete F from S;
15 pick another sequence F from S;

16 foreach incomplete message p do

17 add relation
sc
−→F from all other messages on same handler to p

and saturate;

18 foreach cycle in
sc
−→F do

19 remove a message in the cycle;

20 remove events that follow already removed events in the
hb
−→F

ordering;

21 if an event e′′′ s.t. e′′′
hb
−→F e′′ is deleted then

22 remove F from S and exit the loop;

23 until each handler in F has at most one incomplete message;

24 let WSS = ∅ // set of wakeup sequences;
25 foreach F ∈ S do

26 foreach two messages from the same handler that are not ordered by
sc
−→F do

27 add relation
sc

′

−−→F as they appear in F ;
28 repeat

29 nondeterministically pick two messages ordered by the relation
sc

′

−−→F and reverse the order;

30 until until
sc
−→F and

sc
′

−−→F together are acyclic;

31 topologically sort F respecting
sc
−→F and

sc
′

−−→F ;
32 extract largest common prefix E′ of F and E;
33 add 〈E′, .u.e′〉 to WSS, where F = E′.u;

34 return(WSS);
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Line 5 After the loop from Line 7 to Line 23, the set S will contain all the
possible sequences with at most one incomplete message per handler.

Line 8 If an incomplete message includes an event e′′′ with e′′′
hb
−→F e′′, then

any other message on the same handler which is not completely executed in
F must be removed.

Line 10 If several incomplete messages execute on the same handler, then finds
all the possible sequence where only one of the incomplete messages is present
and saves them to S.

Line 16 Whenever a handler has an incomplete message p, any other message
p′ on that handler must be executed before p, represented by extending

sc
−→F

from the last event of p′ to the first event of p and then saturating.
Line 18 If

sc
−→F becomes cyclic during the filtering and ordering procedure, then

each cycle should be broken by removing the events in a suitable message.
Line 21 It is possible to have two or more incomplete messages from the same

handler in F each having at least one event that happens-before e′′. Because
of this reason or non-deterministic choice during message deletion process

described previously, an event e′′′ such that e′′′
hb
−→F e′′ might be deleted

from E′′. Then the algorithm removes F from S.

Line 27 By adding additional relation
sc′

−−→F , the algorithm determines a total
order on the messages from the same handler.

Line 29 If
sc
−→F and

sc′

−−→F together form a cycle, the algorithm tries to guess

another order
sc′

−−→F . Systematic search of
sc′

−−→F is a NP-complete problem
in general case (see Theorem 4 below). But for the programs we have tried
so far, doing Line 27 is sufficient.

Line 31 The sequence u is linearized by topological sort procedure while re-

specting
sc
−→F and

sc′

−−→F .

As an illustration, consider the race on x in the program of Fig. 4. Here,
there is a unique (up to equivalence) maximal execution which reverses the race,
which consists of all events that post messages, all events in messages p2 and
q2, and the assignment to d by p1. The read of x by q2 should be ordered last,
since it corresponds to the racing event e′. Message q1 is removed by the rule at
Line 8, whereby also the second of event of p1 is removed, since it reads from
the first event in q1.

Event-driven Consistency. When describing Line 29 above, we stated that
the problem of determininig whether a given happens-before relation can be ob-
tained from some execution is NP-complete. This follows from NP-completeness
of the event-driven consistency problem. The event-driven consistency problem

consists in checking whether, for a given directed graph (S,
hb
−→S) where S is a

set of events and
hb
−→S is a set of edges, there is an execution sequence E such

that (S,
hb
−→S) is the hb-trace of E.

Theorem 4. The event-driven consistency problem is NP-complete.



Tailoring Stateless Model Checking for Event-Driven Programs 27

Algorithm 3: Insertion into Wakeup Tree.

1 Insert(v ,E ′, u)
2 if v is the empty sequence or u is a leaf in wut(E′) then return;
3 foreach child u.p of u, in order (from left to right) do

4 if p does not start after E′.u then // If a new message is not started ...

5 if p ∈ WI[E′.u](v) then

6 if next[E′.u](p) ∈ v then Insert(v \p ,E ′, u.p) else return;

7 else

8 if p is the first (if any) message on its handler in v then

9 if next[E′.u](p) ∈ v then Insert(v \p ,E ′, u.p) else return;
10 else if p is fully present in v then

11 if p ∈ WI[E′.u](v) then Insert(v \p ,E ′, u.p) else continue;
12 else

13 add v to parkedWuS (E′.u.p);
14 return;

15 insert v as a new branch from u, ordered after the existing children of u;
16 return;

The proof of the above theorem can be found in Appendix B.2. Given this
NP-hardness result, we define a procedure to reverse races (Appendix A.1) that
makes use of a saturation procedure to constrain the ordering between messages
and therefore reduces the number of cases to consider.

A.2 Wakeup Tree Insertion

In this section, we formally define wakeup trees, and present the procedure
InsertWuS for inserting wakeup sequences, and InsertParkedWuS for inserting
parked wakeup sequences.

Definition 7 (Wakeup Tree). A wakeup tree is an ordered tree 〈B,≺〉, where
B (the set of nodes) is a finite prefix-closed set of sequences of messages, with
the empty sequence 〈〉 being the root. The children of a node u, of form u.p for
some set of messages p, are ordered by ≺. In the tree 〈B,≺〉, such an ordering
between children is extended to a total order ≺ on B by letting ≺ be the induced
post-order relation between the nodes in B (i.e., if the children u.p1 and u.p2 are
ordered as u.p1 ≺ u.p2, then u.p1 ≺ u.p2 ≺ u in the induced post-order). ⊓⊔

Insertion of a wakeup sequence v into the wakeup tree wut(E′) is performed
by calling the function Insert(v ,E ′, u) with parameters v and E′, and the pa-
rameter u being the empty sequence. The call Insert(v ,E ′, 〈〉) will, if v conflicts
with all its current leaves, extend the wakeup tree wut(E′) by a new leaf v′ such
that v′ ≃ E′v. The recursive function Insert(v ,E ′, u), shown in Algorithm 3,
traverses the wakeup tree wut(E′) from the root downwards, where u is the cur-
rent point of the traversal. The initial call is performed with u being the empty
sequence. Each invocation of Insert(v ,E ′, u) first checks whether a leaf has been
reached or all of v has already been examined, in which case nothing new should
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Algorithm 4: Insertion of Parked Wakeup Sequences.

1 InsertParkedWuS(v,E′)
2 let E′′.p be E′;
3 if v is the empty sequence then return;
4 if E′′ was formerly a leaf in a wakeup tree then return;
5 if p ∈ WI[E′′](v) then

6 let q be the message following E′ in E;
7 InsertParkedWuS(v\p,E′.q);

8 else

9 Insert(v ,E ′′, 〈〉); // If conflict w. next event, insert into the wakeup tree

be added to wut(E′) (Line 2). Thereafter, it considers the children of u (of
form u.p) from left to right. For each child u.p, the algorithm tries to determine
whether or not p ∈ WI[E.u](v). If p does not start after E′.u then p ∈ WI[E.u](v)
then p ∈ WI[E.u](v) can be checked by simple inspection at Lines 4 to 6 (as
described in the second paragraph of Appendix A.3). The algorithm traverses
to u.p by a call to Insert(v \p,E ′, u.p) if p ∈ WI[E.u](v), otherwise it considers
the next child of u if p 6∈ WI[E.u](v). If p ∈ WI[E.u](v) but p does not appear in
v, then actually no wakeup sequence need be inserted (Line 6). If p starts after
E′.u (Line 7), then

– the case in which p is the first (if any) message on its handler in v, considered
at Line 9 is performed according to the Simple Check in Appendix A.3;

– if p executes to completion in the sequence v (Line 10), then v contains
sufficient information to decide whether p ∈ WI[E.u](v) using the remaining
sequence of checks in Appendix A.3;

– if none of these two cases apply, then more information is needed about
which accesses p performs when it is executed. Therefore the sequence v is
“parked” at the node u.p: the insertion of v will be resumed when the node
u.p is extended to a maximal execution starting with E′.u.p, which happens
at Line 7 of Algorithm 1 with E′ being E′.u.

If all children u.p of u have been traversed with failing tests for p ∈ WI[E.u](v),
then v is added as a new branch from u, ordered after the already existing
children (Line 15).

It remains to define the procedure for inserting parked wakeup sequences
(called at Line 7 of Algorithm 1). This insertion is described in Algorithm 4, as
the function InsertParkedWuS(v, E′), which inserts a wakeup sequence v which
is parked after a prefix E′ of the execution E. The function first decomposes E′

as E′′.p, and checks whether p ∈ WI[E′′](v). Information about the accesses of
p can now be found in the execution E, so that the check p ∈ WI[E′′](v) can
be performed. The check will be exact for non-branching programs, but possibly
conservative in general. If the check succeeds, then insertion proceeds one step
further in the execution E (Line 7), otherwise v conflicts with p and so should
be inserted at the wakeup tree after E′′ (Line 9). As an additional optimization,
Line 4 checks whether E′′ was the leaf that is extended to the currently explored
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execution. If so, the insertion can return without inserting anything, in analogy
with how leaves are handled in wakeup tree insertion (Line 2 of Algorithm 3).

A.3 Checking for Redundancy

Let us now consider the problem of deciding whether p ∈ WI[E](w) for a message
p and an execution E.w.

If p does not start after E, then p ∈ WI[E](w) can be checked by simple
inspection, as follows. If next[E](p) is a local event or posts a message, then
p ∈ WI[E](w) holds trivially. If next[E](p) accesses a shared variable, then (i) if
p appears in w, we have p ∈ WI[E](w) precisely when there is no event e in

w such that e
hb
−→E.w next[E](p), and (ii) if p does not appear in w, we have

p ∈ WI[E](w) precisely when no event in w conflicts with next[E](p).
If p starts after E, then checking whether p ∈ WI[E](w) is NP-hard in the

general case, as we show in Theorem 1. However, in many cases, the check can
be performed by tests that run in polynomial time. Event-DPOR employs the
following sequence of checks, starting with simple ones, and resorting to an exact
decision procedure only as a last step. We assume that the event which posts
message p appears in E, otherwise p ∈ WI[E](w) is trivially false.

Simple Check If p is the first message (if any) on its handler in w, then p ∈
WI[E](w) is trivially true (recall our assumption that the first event of a
message does not access a shared variable).

Happens-Before Check If p is not the first message on its handler in w, we
check whether there is a happens-before dependency from a message p′ which
precedes p on its handler, as follows.
1. If p is not executed to completion in w, we extend w by a sequence of

events performed by p which performs all the shared-variable accesses
that p did not perform in w. If after this extension, some event of p
happens-after an event in a message q on another handler which is not
executed to completion in w, then w is further extended by events of
q in the same way. If an event of q again happens-after an event in an
incomplete message on some other handler, this procedure is repeated
recursively until convergence, resulting in an extension w′ of w.

2. Thereafter, the happens-before relation
hb
−→E.w′ is extended to include

ordering constraints induced by the event-driven execution model.

(i) First
hbp〈E〉
−−−−→E.w′ is constructed as the smallest transitive relation

which includes
hb
−→E.w′ and in addition enforces e

hbp〈E〉
−−−−→E.w′ e′ when-

ever e is in a message whose first event is in E and e′ occurs after e
on the same handler as e.

(ii) Thereafter,
sc
−→E.w′ is defined as the saturation 〈〈

hbp〈E〉
−−−−→E.w′〉〉 of

hbp〈E〉
−−−−→E.w′ (see Definition 6).

If now e′
sc
−→E.w′ e for some event e in p and event e′ in a message which

precedes p on the same handler, then p ∈ WI[E](w) must be false.
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Witness Construction If the Happens-Before Check was not negative, the
next step is to construct an actual execution in which p is the first message on
its handler. First,

sc
−→E.w′ is extended, by ordering the events in p before any

event in a message that precedes p in w′ on the same handler, and thereafter
saturated by the saturation operation 〈〈·〉〉. If the result contains a cycle, then
p ∈ WI[E](w) must be false. Otherwise we extend the saturated extension of
sc
−→E.w′ to a total order on the messages of each handler, by ordering messages
that are still unordered to execute in the same order as they appear in w′.
If this can be done without creating a cycle then p ∈ WI[E](w) is true.

Decision Procedure If a cycle is created, then a decision procedure is invoked
as a final step.

B Proofs of Complexity Results

In this section, we prove the complexity results of Theorems 1 and 4 but first
we need to define the happens-before relation on the events of each execution
sequence.

Given an execution sequence E, we define the happens-before relation on E,

denoted
hb
−→E , as the irreflexive partial order on dom(E) induced by the union

of three sub-relations,
po
−→E ,

cnf
−−→E , and

pb
−→E . Each of these is a sub-relation of

<E , defined as follows.

e
po
−→E e′ if e and e′ are performed by the same message p.

e
cnf
−−→E e′ if e and e′ access a common shared variable x, and at least one of

them writes to x.
e

pb
−→E e′ if ê′ is the message that is posted by e and e′ is the first event of ê′.

Intuitively,
po
−→E (program order) is the total order of events of each message.

Note that
po
−→E does not order events of different messages relative to each other.

The relation
cnf
−−→E (conflicts with) captures data flow constraints arising from

reads and writes to shared variables. The relation
pb
−→E (posted by) captures the

causal dependency from message posting to message execution.

B.1 Proof of Theorem 1

We prove the lower bound by reduction from the VSC-read problem. The re-
duction is similar to the one from the event-driven consistency problem to the
VSC-read problem. The idea is to start from an execution sequence and reversing
the order of two messages will lead to the pattern used in the hardness proof of
the event-driven consistency problem. In this proof, we will replace the conflict
relation from pe to pe,x by a sequence of conflict relations that go through two
particular messages p′e,x and p′′e,x if they are executed in a certain order. Oth-
erwise, there is no conflict relation from pe to pe,x, and so the happens-before
relation is acyclic.
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We use the same set of assumptions as in the hardness proof of the event-
driven consistency problem. We now reduce the VSC-read problem to the order

reversing problem. Let (S,
hb
−→S=

po
−→S ∪

rf
−→S) be a directed graph. As in the

previous proof, we associate a message pe for each event e. The message pe will
be executed by the handler h. For every write event e in S executed by a thread
t, we have a message pe of the form [xe = 1; xt = 1; x′

e = 1]. For a read event
e′ in S executed by a thread t and reading from the write event e, we have a
message pe′ which is of the form [a = ye; xt = 1; ye′ = 0].

We also use an extra handler hx for each variable x (used in the events of
S). For each write event e on the variable x, we have a message pe,x that will
run the following sequence of statements [xe = 0; ze = 0; ye = 0; z′e = 0]. We
then add a conflict relation from the first write of pe,x to the first write of pe.
This will force the message pe to start after pe,x. For a read event e′ reading from
the write event e, we also add a conflict relation from the third write of pe,x to
the first read of pe′ . Observe that we do not impose a direct conflict relation
from pe or pe′ to pe,x.

For each write event e on the variable x, we have two messages p′e,x and p′′e,x
that run on a fresh handler he the following sequence of statements [a = z; x′

e =

1] and [ze = 0; a = x] respectively. We add a conflict relation from the second
last event of pe to the second event of p′e,x and from the first write event of p′′e,x
to the last event of the second write event of pe,x. Observe that in the case that
p′e,x is executed before p′′e,x, we have an indirect conflict relation from the last
write of pe to the second write of pe,x through p′e,x and p′′e,x. In the case where
we execute p′′e,x before p′e,x, there is no (indirect) happens-before relation from
pe to pe,x.

In similar manner, for each read event e′ on x in S reading from the write
event e, we have two messages p′e′,x and p′′e′,x that run on a fresh handler he′ the
following sequence of statements [a = z; ye′ = 1] and [a = z′e; a = x] respec-
tively. We add a conflict relation from the last event of pe′ to the second event of
p′e′,x and from the first read event of p′′e′,x to the last write event of pe,x. Observe
that in the case that p′e′,x is executed before p′′e′,x, we have an indirect conflict
relation from the last write of pe′ to the last write of pe,x through p′e′,x and p′′e′,x.

To set the order of all p′e,x and p′′e,x (p′e′,x and p′′e′,x), we will use two messages
p and p′ on a fresh handler h′ that run the following statements [xp = 1; z = 1]
and [xp′ = 1; x = 1] respectively. We add then a conflict relation from the first
read event of p′e,x (resp. p′e′,x) to the event of p and from the write event of p′ to
the last event of p′′e,x (resp. p′′e′,x). Note that if p is executed before p′ then p′e,x
(resp. p′e′,x) is executed before p′′e,x (resp. p′′e′,x).

Let (S′,
hb

′

−−→S′=
po
−→S′ ∪

cnf
−−→S′ ∪

pb
−→S′) be the constructed hb-trace from

(S,
hb
−→S=

po
−→S ∪

rf
−→S). It is easy to see that there is an execution sequence E

such that (S′,
hb
−→S′) is the hb-trace of E and where the message p′ is executed

before p and p′′e,x (resp. p′′e′,x) is executed before p′e,x (resp. p′e′,x).

Lemma 1. There is an execution sequence E′ such that (S′,
hb
−→S′) is the hb-

trace of E′ and where the first event of message p is the first executed event in



32 P. Abdulla, M. Atig, F. Bønneland, S. Das, B. Jonsson, M. Lång, K. Sagonas

E if and only if there is an execution E′′ such that S = dom(E),
po
−→S=

po
−→E

and
rf
−→S⊆

cnf
−−→E.

Imposing p to be executed before p′ will impose that every p′e,x (resp. p′e′,x)
is executed before p′′e,x (resp. p′′e′,x) and so there will be an indirect relation from
the last write of (resp. pe) pe′ to the last (second) write of pe,x through p′e,x and
p′′e,x (p′e′,x and p′′e′,x). Thus, we are in similar case as in the hardness proof of
the event-driven consistency problem. Furthermore, we have the first event of
E′ can be the first event of p since it is independent from any other event.

Lemma 2. p ∈ WI[〈〉](E) if and only if there is an execution sequence E′ such

that (S′,
hb
−→S′) is the hb-trace of E′ and where the message p is executed before

p′.

Finally, Theorem 1 can be seen as an immediate corollary of Lemmas 1 and 2.

B.2 Proof of Theorem 4

Upper-bound Let (S,
hb
−→S) be a directed graph (i.e., hb-trace) where S is a set of

events and
hb
−→S=

po
−→S ∪

cnf
−−→S ∪

pb
−→S is a set of labeled edges. To show that the

event-driven consistency problem is NP, it suffices to first guess a total ordering
<S between the messages on the same thread handler. Observe that we can have
at most one incomplete message per handler which should be scheduled last with
respect to <S. We then use the total order relation <S to extend the program

order relation
po
−→S into a total order relation

po
−→ on the set of events executed

by the same handler such that: (1) e
po
−→ e′ if e

po
−→S e′, and (2) e

po
−→ e′ whenever

e and e′ are events in two different messages p and p′ on the same handler and

p <S p′. Finally, the extended happens-before relation
hb
−→=

po
−→ ∪

cnf
−−→S ∪

pb
−→S

is acyclic (which is equivalent to checking sequential consistency of the extended

graph (S,
hb
−→)) if and only if there is an execution sequence E such that (S,

hb
−→)

is the hb-trace of E (i.e., S = dom(E),
po
−→=

po
−→E ,

cnf
−−→S=

cnf
−−→E and

pb
−→S=

pb
−→E).

Observe that checking the acyclicity of the extended happens-before relation
hb
−→S can be done in polynomial time. Furthermore, the execution sequence E
can be obtained via the linearlization of the extended happens-before relation
hb
−→ (since the extend the program order relation

po
−→ forces the messages on the

same handler to be executed one after the other).

Lower-bound We prove the lower bound by reduction from the problem of ver-
ifying the sequential consistency of traces when only the read-from relation is
given. Hereafter, we call this problem VSC-read. The VSC-read problem consists

in checking whether, given a directed graph (S,
hb
−→S=

po
−→S ∪

rf
−→S) where S is

a set of write and read events,
po
−→S is the program order relation that totally

orders all the events of each thread, and
rf
−→S is the read-from relation that maps

each read event to the write event from which it gets its value, there is an ex-

ecution sequence E such that S = dom(E),
po
−→S=

po
−→E and

rf
−→S⊆

cnf
−−→E . The
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VSC-read problem is known to be NP-complete in the size of the program [13,
Theorem 4.1].

We now reduce the VSC-read problem to the event-driven consistency prob-

lem. Let (S,
hb
−→S=

po
−→S ∪

rf
−→S) be a directed graph. To simplify the presenta-

tion9, we assume w.l.o.g. that each write event is read by at least one read event.
The main idea of our reduction is to associate a message pe for each event e.
The message pe will be executed by the handler h. The order of the execution of
these messages will correspond to a linearization of the set of event S (since all
these messages will be executed by the same handler h). However, this poses a
challenge since such reduction from the VSC-read problem to the event-driven
consistency problem will fix the order of write events on the same variable (as

it is implied by the conflict relation
cnf
−−→). To address this challenge, we rename

the shared variables used by each event in S and thus there will be no conflict re-
lation between write-write events (and therefore between read-write events too).
However, this leads to a new challenge which is how to make sure that between a
write event e ∈ S and a read event e′ ∈ S that is reading from e there is no other
scheduled write event in S on the same variable between e and e′. To address
this second challenge, we use an extra handler hx per variable x that executes a
number of independent messages (one per write event on x in S). The order in
which these messages are executed corresponds to the order in which the write
events on the same variable are scheduled. Furthermore, we make sure that each
read event is scheduled after the write event it reads from and before the next
scheduled write event on the same variable.

Formally, for every write event e in S executed by a thread t, we create a
message pe running on the thread handler h. The message pe will be of the
form [xe = 1; xt = 1; xe = 1]. For a read event e′ in S executed by a thread
t and reading from the write event e, we create a message pe′ running on the
thread handler h. The message pe′ will be of the form [a = ye; xt = 1; a =

ye]. We use the write event on xt to order the messages corresponding to events

running on the same thread t in S. In fact, we will simulate
po
−→S using

cnf
−−→S′

that will totally order all the write events on xt. This results in adding a conflict

relation
cnf
−−→S′ between every two events corresponding to the writes on xt in

two different messages pe and pe′ iff e
po
−→S e′.

The statements on xe and ye are used to force a total order on the messages
corresponding to events on the same variable such that all the read messages
are scheduled just after their corresponding write messages. To that aim, we
use an extra handler hx for each variable x (used by the events of S). For each
write event e on the variable x, we create a message pe,x that will run the
following sequence of statements [xe = 0; xe = 0; ye = 0; ye = 0]. We then
add a conflict relation from the first write of pe,x to the first write of pe and
from the last write of pe to the second write of pe,x. This will force the message

9 We assume that threads/messages are spawned/posted by a main thread, and that
all shared variables get initialized to 0, also by the main thread. To make the pre-
sentation simple, we omit the events of the main thread.
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pe to start and end before its corresponding reads. For a read event e′ reading
from the write event e, we also add a conflict relation from the third write of pe,x
to the first read of pe′ and from the last read of pe′ to the last write of pe,x. This
conflict relation will force that the entire message pe′ will be executed just after
the message pe without the interleaving of any other message that corresponds
to a write event on x between pe and p′e.

Observe that the messages pe are run one after the other (since they are on the
same handler h). Furthermore, the constraints between the messages of handler
h and those of handler hx impose that the read message pe′ is scheduled just
after its corresponding write message pe but before the next scheduled write

message on the same variable. Let (S′,
hb

′

−−→S′=
po
−→S′ ∪

cnf
−−→S′ ∪

pb
−→S′) be the

constructed hb-trace from (S,
hb
−→S=

po
−→S ∪

rf
−→S). It is then easy to see that:

Lemma 3. There is an execution sequence E′ such that (S′,
hb
−→S′) is the hb-

trace of E′ if and only if there is an execution E such that S = dom(E),
po
−→S=

po
−→E and

rf
−→S⊆

cnf
−−→E.

C Proof of Correctness and Optimality

In this section, we prove correctness (Theorem 2) and optimality (Theorem 3)
of the Event-DPOR algorithm.

C.1 Proof of Theorem 2

Let us first prove Theorem 2. This theorem follows from the more general The-
orem 5, which we state and prove in this section.

Let us assume a particular completed execution of Event-DPOR. This exe-
cution consists of a number of terminated calls to Explore(E) for some values
of the parameters E and WuT . Let E denote the set of execution sequences E
that have been explored in some call Explore(E). Define the ordering ∝ on E
by letting E ∝ E′ if Explore(E) returned before Explore(E′). Intuitively, if one
were to draw an ordered tree that shows how the exploration has proceeded, then
E would be the set of nodes in the tree, and ∝ would be the post-order between
nodes in that tree. Theorem 2 follows from the more general Theorem 5, stated
here

Theorem 5 (Correctness of Event-DPOR). Whenever a call to
Explore(E) returns during Algorithm 1, then for all maximal execution se-
quences E.w, the algorithm has explored some execution sequence in [E.w]≃.

Since the initial call to the algorithm, Explore(〈〉), starts with the empty
sequence as argument, Theorem 5 implies that for all maximal execution se-
quences E the algorithm explores some execution sequence E′ which is in [E]≃.
Note also that a sequence of form E.w need not have been explored inside
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the call Explore(E), but can have been explored in some earlier call, of form
Explore(E′.p) for some prefix E′ of E.

The proof of Theorem 5 proceeds by induction on the set E of execution se-
quences E that are explored during the considered execution, using the ordering
∝ (i.e., the order in which the corresponding calls to Explore(E) return).

We first state and prove a small lemma.

Lemma 4. Let E be the tree of explored execution sequences. and let ∝ be the
order in which the corresponding calls to Explore(E) return. Consider some
point in the execution, and let wut(E) be the wakeup tree at E at that point, for
some E ∈ E.

1. If w ∈ wut(E) for some w, then E.w ∈ E.

2. If w ≺ w′ for w,w′ ∈ wut(E) then E.w ∝ E.w′

Proof. The lemma follows by noting how the exploration from any E ∈ E is
controlled by the wakeup tree wut(E) at Lines 13 to 21 of Algorithm 1.

We now continue with the proof of Theorem 5.

Base Case: This case corresponds to the first execution sequence E for which
the call Explore(E) returns. By the algorithm, E is already maximal, so the
theorem trivially holds.

Inductive Hypothesis: The theorem holds for all execution sequences E′ with
E′ ∝ E.

Inductive Step: Proof by contradiction. Let us assume that there exists an ex-
ecution E such that when the call to Explore(E) returns, there is a maximal
execution sequence E.w such that Algorithm 1 has not explored any execution
sequence in [E.w]≃. We will show that this leads to a contradiction. So, let E
be the smallest such execution in the ∝ order. Let done be the value of the map-
ping done when the call to Explore(E) returns. Note that for such w to exist,
E cannot be maximal, so done(E) contains at least one message.

For each message p such that p ∈ done(E′) for some E′ with E′ ≤ E, define
E′

p to be the longest such E′. Thus, if p ∈ done(E) then E′
p = E, otherwise if E′

p

is defined it is a strict prefix of E with p ∈ done(E′
p). It follows that E′

p.p ∝ E.
We further define w′

p by E = E′
p.w

′
p. For each message p such that E′

p is defined
and p ∈ WI[E′

p]
(w′

p), define

– wp as the longest prefix of w such that p ∈ WI[E′

p]
(w′

p.wp) (such a prefix

must exist since one candidate is the empty sequence),

– ep as the first event in w which is not in wp. Such an event ep must exist,
otherwise wp = w, which implies p ∈ WI[E′

p]
(w′

p.w), which together with the
Inductive Hypothesis contradicts the assumption that the algorithm has not
explored any execution sequence in [E.w]≃,

– w′′
p as a sequence such that w′

p.wp ⊑[E′

p]
p.w′′

p .
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Among the messages p for which E′
p is defined and p ∈ WI[E′

p]
(w′

p), select q such
that wq is the longest prefix among wp. If there are several such messages q with
equally long prefixes wq, then among these pick q such that E′

q.q is minimal with
respect to ∝. Let w′′

q be a sequence with w′
q.wq ⊑[E′

q]
q.w′′

q .

Let p′ be the message êq of eq. We first note that eq must be a shared-variable
access. To see why, note that if eq would start the message p′, then no event of
the message p′ can be in w′

q.wq . Moreover, the handler of p′ must be free after
E′

q.w
′
q.wq, and E′

q.w
′
q.wq must contain the event which posts p′. We can simply

extend w′′
q until it starts message p′ and then we have a sequence w′′′

q with
w′

q.wq.eq ⊑[E′

q]
q.w′′′

q , contradicting the choice of wq.
There are now two cases to consider.

1. q does not start a message after E′
q. Then E′

q contains the first part of
message q (up until but not including next[E′

q ]
(q)). Since w′

q.wq ⊑[E′

q]
q.w′′

q ,

it follows that next[E′

q]
(q) does not conflict with any event in w′

q.wq, and that

we can choose w′′
q as w′

q.wq. The only reason for q 6∈ WI[E′

q ]
(w′

q .wq.eq) (which

implies w′
q.wq .eq /⊑[E′

q]
q.w′′

q .eq) is that next[E′

q ]
(q) conflicts with eq. This

implies that the execution E′
q.q.w

′
q.wq .eq contains a race between next[E′

q]
(q)

and eq. Let w′′′
q be w′

q.wq.eq and let E′
q.q.w

′′′
q .z be a maximal extension

of E′
q.q.w

′′′
q . Then next[E′

q]
(q) .E′

q.q.w
′′′

q .z eq. By the Inductive Hypothesis,

Explore(E′
q .q) has then explored some sequence E′

q.q.z
′ in [E′

q.q.w
′′′
q .z]≃.

When exploring it, the race next[E′

q]
(q) .m

E′

q.q.z
′ eq between next[E′

q]
(q) and

eq will be detected (at Line 8). Then ReverseRace(E′
q.q.z

′, next[E′

q ]
(q), eq)

will return maximal executions, one of which must contain E′
q.w

′
q.w

′
q.eq as a

happens-before prefix.
2. q starts a message after E′

q. Since eq is a shared-variable access, it can be
simply added to p′ in w′′

q , obtaining w′′′
q . Since q 6∈ WI[E′

q ]
(w′

q .wq.eq), w′′
q

must contain an event e, which is not in w′
q.wq , which conflicts with eq. This

implies that the execution E′
q.q.w

′′′
q contains a race between e and eq. Let

E′
q.q.w

′′′
q .z be a maximal extension of E′

q.q.w
′′′
q . Then e .E′

q.q.w
′′′

q .z eq. By
the Inductive Hypothesis, Explore(E′

q.q) has then explored some sequence
E′

q.q.z
′ in [E′

q.q.w
′′
q .z]≃. When exploring it, the race e .m

E′

q.q.z
′ eq between

e and eq will be detected (at Line 8). Then ReverseRace(E′
q.q.z

′, e, eq) will
return maximal executions, one of which must contain E′

q.w
′
q.w

′
q.eq as a

happens-before prefix.

Let E′
q.w

′
q.w

′
q.eq be reordered as E′

q.v. It follows that q 6∈ WI[E′

q]
(v), from

the assumptions made when selecting q. Moreover, there cannot be any E′′, w, p
such that E′′.w = E′

q and p ∈ dom(done(E′′)) and p ∈ WI[E′′](w.v), also by
the assumptions made when selecting q. Thus, the wakeup sequence v will be
inserted into the wakeup tree wut(E′

q) (Line 11) by the call Insert(v ,E ′
q
, 〈〉). We

claim that this insertion will add a sequence of form E.p with p ∈ WI[E](wq.êq).
To see why, we consider the definition of Insert(v ,E ′

q
, u) in Algorithm 3. We first

claim that during the insertion, the sequence u will always satisfy Eq.u ≤ E and
v will satisfy u′.wq.êq ⊑[Eq.u] v, where u.u′ = w′

q. This is trivially true initially.
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To see that it is preserved by each iteration of the loop starting at Line 3,
we consider the possible children of form u.p. Let r be the message such that
E′

q.u.r ≤ E (if still E′
q.u < E). We know that E′

q.u.r is in E when Explore(E) is
returns. Furthermore, for each branch u.p with Eq.u

′.p ∝ Eq.u
′.r we have that

p 6∈ WI[E.u](u
′.wq .êq) by the Inductive Hypothesis and the assumption that E.w

has not been explored. On the other hand r ∈ WI[E.u](u
′.wq .êq), implying that

either u.r is already in wut(E′
q) during the insertion, in which case the loop

will move to the next iteration with invariants preserved, or u.r is not already
in wut(E′

q) in which case it must be added during the current insertion and
produce a branch u.v such that u′.wq .êq ⊑[Eq.u] v. Thus, when the insertion of
v has completed, possibly after having been parked, the exploration tree will
contain an execution of form E.v′ with wq.êq ⊑[E] v

′, thereby contradicting the
assumption that wq is the longest extension of E that has been explored. This
concludes the proof of the inductive step, and Theorem 5 is proven. ⊓⊔

C.2 Proof of Theorem 3

Let us next prove Theorem 3. This theorem depends on Event-DPOR being able
to the following property P:

P: whenever the exploration tree E contains a node of form E.p, then the al-
gorithm will not add an execution of form E.w which is contained in some
execution of form E.p.w′ for some w′, i.e., for which p ∈ WI[E](w).

If P is enforced, then Algorithm 1 cannot explore two equivalent maximal exe-
cutions. To see this, let E be the longest common prefix of the two executions.
Let the execution of the two, which is explored first, be of form E.p.w′. The
other execution will then be the continuation of a wakeup sequence, which is
inserted as a new sequence w from the node E in the exploration tree E , and
thereafter extended to E.w.v. But if now E.p.w′ ≃ E.w.v, then E.w ⊑ E.p.w′,
which implies p ∈ WI[E](w), which contradicts P.

It thus remains to check that property P is enforced. By inspection of Algo-
rithm 1, we see that whenever a new sequence is inserted into E , which happens
before inserting a new wakeup sequence (Line 10), inside procedure InsertWuS

(Algorithm 3) for wakeup tree insertion, and in the procedure InsertParkedWuS
(Algorithm 4) for inserting parked wakeup sequences. Furthermore, for non-
branching programs the test for p ∈ WI[E](w), described in Appendix A.3, is
exact. This concludes the proof of the theorem. ⊓⊔

D Complete Set of Benchmark Tables

In this appendix, we include the complete set of benchmark results comparing
the performance of the Event-DPOR with that of the Optimal-DPOR algorithm,
with the LAPOR technique implemented in GenMC and also with the baseline
algorithm of GenMC which tracks the modification order (–mo) of shared vari-
ables. A subset of these results appears in the main body of the paper.
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Table 2. Performance on programs where different DPOR algorithms implemented in
Nidhugg and GenMC explore the same number of complete and blocked executions.
Times (in seconds) show the relative speed of their implementations.

Executions (Traces+Blocked) Time (secs)

GenMC Nidhugg GenMC Nidhugg

Benchmark –mo –lapor –optimal –event –mo –lapor –optimal –event

writers(4) 24 24 24 24 0.01 0.01 0.07 0.07
writers(6) 720 720 720 720 0.05 0.16 0.26 0.37
writers(8) 40320 40320 40320 40320 3.14 12.31 16.19 25.96

posters(3) 90 90 90 90 0.02 0.03 0.09 0.09
posters(4) 2520 2520 2520 2520 0.18 0.81 0.94 1.42
posters(5) 113400 113400 113400 113400 9.43 47.11 50.87 84.64

2PC(6) 720+720 720+720 720+720 720+720 0.41 3.57 1.22 2.14
2PC(7) 5040+5040 5040+5040 5040+5040 5040+5040 3.46 33.83 9.92 19.13
2PC(8) 40320+40320 40320+40320 40320+40320 40320+40320 33.86 359.59 96.56 210.57

Baseline Comparison First, we measure the performance of algorithm imple-
mentations on three programs where all algorithms explore the same number of
executions. The first two of them are simple programs where a number of threads
post racing messages to a single event handler. Both programs are parametric
on the number of threads (and messages posted); the value of this parameter is
shown inside parentheses. The messages of the first program (writers) consist of
a store to the same atomic global variable followed by an assertion that checks
for the value written. The second program (posters) is similar but between the
write and the assertion check the messages also post, to the same handler, an-
other message with an atomic store to the same global variable; this increases
the number of executions to examine. Finally, the third program (2PC) is a two-
phase commit protocol used by a coordinator and n participant threads (i.e., n+1
handler threads in total) to decide whether to commit or abort a transaction, by
broadcasting and receiving messages.

Results from running these benchmarks for increasing number of threads are
shown in Table 2. As can be seen, all algorithms explore the same number of
executions here. This allows us to establish that:

(i) GenMC –mo is fastest overall; in particular, it is 3–7 times faster than Nid-

hugg –optimal and about 8–9 times faster than Nidhugg –event.
(ii) The overhead that LAPOR incurs over its baseline implementation in

GenMC is significant. Still, for the first two programs, which involve just
one event handler and no blocked or aborted executions, GenMC –lapor

beats Nidhugg –event. However, Nidhugg –event is faster than GenMC

–lapor on the third program (2PC).
(iii) The overhead that Event-DPOR incurs over Optimal-DPOR for the extra

machinery that its implementation requires is small but quite noticeable.

The results from 2PC corroborate these conclusions. The blocked executions in
this benchmark are due to assume-blocking and affect all algorithms equally in
terms of additional executions examined. However, notice that GenMC –lapor

is affected more in terms of time overhead compared to its baseline.
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Table 3. Performance on programs where different DPOR algorithms implemented in
Nidhugg and GenMC examine the same number of traces, but LAPOR also explores
a significant number of executions that need to be aborted. This negatively affects the
runtime that SMC using LAPOR takes.

Executions (Traces+Blocked) Time (secs)

GenMC Nidhugg GenMC Nidhugg

Benchmark –mo –lapor –optimal –event –mo –lapor –optimal –event

buyers(6) 720 720+2383 720 720 0.08 2.51 0.36 0.51
buyers(7) 5040 5040+20301 5040 5040 0.56 25.80 2.53 3.96
buyers(8) 40320 40320+191369 40320 40320 5.03 306.95 23.59 37.70

ping-pong(6) 3276 3276+8271 3276 3276 0.23 3.99 1.45 2.61
ping-pong(7) 27252 27252+79435 27252 27252 2.01 44.51 13.78 26.42
ping-pong(8) 253296 253296+835509 253296 253296 20.63 572.07 149.26 299.12

Performance on More Involved Event-Driven Programs The next two bench-
marks were taken from a recent paper by Kragl et al. [27]. In buyers, n “buyer”
threads coordinate the purchase of an item from a “seller” as follows: one buyer
requests a quote for the item from the seller, then the buyers coordinate their in-
dividual contribution, and finally if the contributions are enough to buy the item,
the order is placed. In ping-pong, the “pong” handler thread receives messages
with increasing numbers from the “ping” thread, which are then acknowledged
back to the “ping” event handler.

Results from running these benchmarks are shown in Table 3. In these two
programs, all algorithms explore the same number of traces, but LAPOR also
explores a significant number of executions that cannot be serialized and need to
be aborted. This negatively affects the time that SMC using LAPOR requires;
GenMC –lapor becomes the slowest configuration here. In contrast, Nidhugg

–event shows similar scalability as baseline GenMC and Nidhugg –optimal.

Performance on Event-Driven Programs Showing Complexity Differences Be-
tween DPOR Algorithms Finally, we evaluate all algorithms in programs where
algorithms tailored to event-driven programming, either natively (Event-DPOR)
or which are lock-aware (when handlers are implemented as locks), have an ad-
vantage. We use six benchmarks. The first (consensus), again from the paper by
Kragl et al. [27], is a simple broadcast consensus protocol for n nodes to agree on
a common value. For each node i, two threads are created: one thread executes
a broadcast method that sends the value of node i to every other node, and
the other thread is an event handler that executes a collect method which
receives n values and stores the maximum as its decision. Since every node re-
ceives the values of all other nodes, after the protocol finishes, all nodes have
decided on the same value. The second benchmark (db-cache) is a key-value
store system inspired from Memcached, a well known distributed cache appli-
cation. There are n clients requesting a fixed sequence of storage accesses to
a server via UDP sockets (modeled as threads with mailboxes). On the server
side there is one worker thread per client to fulfill these requests. So multiple
worker threads on the server threads may race. The third benchmark (prolific)
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Table 4. Performance on programs that show complexity differences in the number of
traces that different DPOR algorithms implemented in Nidhugg and GenMC explore.

Executions (Traces+Blocked) Time (secs)

GenMC Nidhugg GenMC Nidhugg

Benchmark –mo –lapor –optimal –event –mo –lapor –optimal –event

consensus(2) 4 4+4 4 4 0.01 0.01 0.06 0.06
consensus(3) 216 125+347 216 125 0.04 0.29 0.20 0.20
consensus(4) 331776 50625+242828 331776 50625 75.43 293.91 419.90 177.63

db-cache(2) 4608+480 32 4608 32 0.33 0.04 2.24 0.09
db-cache(3) 3048192+401484 1764 3048192 1711 262.62 2.29 2322.91 2.02
db-cache(4) � 235224 � 218527 � 402.31 � 418.34

prolific(5) 120 30+26 120 30 0.17 5.34 0.21 0.18
prolific(7) 5040 126+120 5040 126 16.12 98.14 11.79 2.12
prolific(9) 362880 510+502 362880 510 2462.83 1132.65 1363.31 26.28

sparse-mat(4,3) 204 34 204 34 0.16 0.06 0.16 0.09
sparse-mat(4,5) 185520 1546 185520 1546 212.51 3.56 126.06 1.66
sparse-mat(4,7) � 130922 � 130922 � 603.31 � 234.27

mat-mult(4,3,5) 13824 1 13824 1 4.52 0.04 21.82 0.07
mat-mult(4,4,5) 331776 1 331776 1 157.49 0.05 828.91 0.07
mat-mult(4,5,5) � 1 � 1 � 0.08 � 0.07

plb(4) 105 1 105 1 0.02 0.01 0.10 0.06
plb(6) 10395 1 10395 1 1.99 0.02 6.61 0.06
plb(8) 2027025 1 2027025 1 556.46 0.02 1808.24 0.06

is synthetic: n threads send n messages with an increasing number of stores
to and loads from an atomic global variable to one event handler. The fourth
benchmark (sparse-mat) computes sparseness (number of non-zero elements) of a
sparse matrix of dimension m×n. The work is divided among n tasks/messages
and sent to different handlers, which then compute and join these results. The
fifth benchmark (mat-mult) implements concurrent matrix multiplication taking
two matrices of dimensions m × k and k × n as inputs. The work is divided
among n tasks/messages and sent to different handlers, which then compute
and join these results. The last benchmark (plb) is taken from a paper by Jhala
and Majumdar [21]. The main thread receives a fixed sequence of task requests.
Upon receiving a task, the main thread allocates a space in memory and posts
a message with the pointer to the allocated memory that will be served by a
thread in the future.

Results from running these six benchmarks are shown in Table 4.

In consensus, all algorithms start with the same number of traces, but LAPOR
and Event-DPOR need to explore fewer and fewer traces than the other two
algorithms, as the number of nodes (and threads) increases. Here too, LAPOR
explores a significant number of executions that need to be aborted, which hurts
its time performance. On the other hand, Event-DPOR’s handling of events is
optimal in this program, even though it is not non-branching.

The db-cache program shows a case where GenMC, both when running with
–mo but also with –lapor, is non-optimal. In contrast, Event-DPOR, even with
employing the inexpensive redundancy checks, manages to explore an optimal
number of traces.
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The prolific program shows a case where algorithms not tailored to events
(or locks) explore (n− 1)! traces, while LAPOR and Event-DPOR explore only
2n − 2 consistent executions, when running the benchmark with n nodes. We
briefly explain why the number of feasible executions are 2n − 2. Because of the
access patterns of global variables in this program, each message is conflicting
with the previous and the next messages. In an execution, these conflicts can
be represented by n directed edges. So there are 2n possible reorderings when
both directions of each edge are considered. But two of these reorderings are not
possible because they create a cycle, hence the 2n − 2. On this program, it can
also be noted that Event-DPOR scales much better than LAPOR here in terms
of time, due to the extra work that LAPOR needs to perform in order to check
consistency of executions (and abort some of them).

The sparse-mat program shows another case where algorithms that are not
tailored to events explore a large number of executions unnecessarily (� denotes
timeout). This program also shows that Event-DPOR beats LAPOR time-wise
even when LAPOR does not explore executions that need to be aborted.

Finally, plb shows a case on which Event-DPOR and LAPOR really shine.
These algorithms need to explore only one trace, independently of the size of the
matrices and messages exchanged, while DPOR algorithms not tailored to event-
driven programs explore a number of executions which increases exponentially
and fast.
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