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Llobregat, 08950, Catalonia, Spain

Abstract. This study focuses on comparing deep learning methods for the seg-
mentation and quantification of uncertainty in prostate segmentation from MRI
images. The aim is to improve the workflow of prostate cancer detection and di-
agnosis. Seven different U-Net-based architectures, augmented with Monte-Carlo
dropout, are evaluated for automatic segmentation of the central zone, peripheral
zone, transition zone, and tumor, with uncertainty estimation. The top-performing
model in this study is the Attention R2U-Net, achieving a mean Intersection
over Union (IoU) of 76.3% ± 0.003 and Dice Similarity Coefficient (DSC) of
85%±0.003 for segmenting all zones. Additionally, Attention R2U-Net exhibits
the lowest uncertainty values, particularly in the boundaries of the transition zone
and tumor, when compared to the other models.

Keywords: Segmentation · Uncertainty Quantification · Prostate · Cancer · Deep
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1 Introduction

Prostate cancer (PCa) is the most common solid non-cutaneous cancer in men and is
among the most common causes of cancer-related deaths in 13 regions of the world
[1]. According to a recent overview, in 2020 prostate cancer was the most frequently
diagnosed cancer in males in 12 regions of the world, which translates to around 1.41
million new cases [1]. However, when detected in early stages, the survival rate for
regional PCa is almost 100%. In contrast, the survival rate when the cancer is spread to
other parts of the body is of only 30% [2].

Magnetic Resonance Imaging (MRI) is the most widely available non-invasive and
sensitive tool for detection, localization and staging of PCa, due to its high resolution,
excellent spontaneous contrast of soft tissues, and the possibility of multi-planar and
multi-parametric scanning [3]. MRI can be also be used for PCa detection through the
segmentation of Regions of Interest (ROI). The use of image segmentation for PCa can
help determine the localization and the volume of the cancerous tissue [4]. Although
prostate image segmentation is a relatively old problem and some novel methods have
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been proposed, radiologists still perform a manual segmentation of the prostate gland
and regions of interest (central zone, peripheral zone, and transition zone) [5]. This man-
ual process is time-consuming, and is sensitive to the specialist experience, resulting in
a significant intra- and inter-specialist variability. Therefore, automating the process of
segmentation of prostate and gland regions of interest, may help save time for practi-
tioner radiologists and additionally can be used as a training tool for others. One of the
most popular architectures is the U-Net [6] model, which has been the inspiration be-
hind many recent works in the literature, such as Swin U-Net [7], or R2U-Net [8]. While
these models have yielded positive outcomes, inconsistencies in performance have been
observed in U-Net-based segmentation due to the prostate’s anatomical structure. The
boundaries between zones can distort semantic features, leading to unreliable results.
Furthermore, automatic segmentation typically produces deterministic segmentation
outcomes [9], and there is insufficient information available about the model’s confi-
dence level [10]. Despite their successes in many medical image analysis applications,
DL algorithms are usually not translated into real-world clinical scenarios because these
do not provide information about the uncertainty associated with their prediction. This
is problematic in the challenging context of pathological structures segmentation (e.g,
tumors) as even the top-performing methods are prone to errors, and due to the lack
of uncertainty information, it results impossible tell apart different sorts of erroneous
predictions.

Therefore, the overall segmentation workflow can be improved by providing the
uncertainties of the model that could allow end-users (e.g, clinicians) to review and
refine cases with high uncertainty.

In this work, we carry out a thorough assessment of automatic prostate zone seg-
mentation models using U-Net, Attention U-Net, Dense U-Net, Attention Dense U-Net,
R2U-Net, Attention R2U-Net, and Swin U-Net architectures. Additional to the segmen-
tation task, we include the pixel-wise estimation of the uncertainty, which can be done
by obtaining a probability distribution of the weights of the model. The zones evaluated
in this work are the central zone (CZ), the peripheral zone (PZ), transition zone (TZ),
and, in the case of a disease, the tumor zone (TUM), unlike previous works which only
evaluate CZ and PZ [10].

This paper has five sections including this introduction. Section 2 provides a review
about what has been done in previous works related to prostate segmentation and uncer-
tainty quantification. Section 3 the dataset used is described, followed by a description
of the uncertainty quantification procedure in this segmentation task. In section 4 the
results of the experiments are discussed in detail. Finally the conclusion of this work is
presented in Section 6.

2 Related Work

2.1 Deep Learning Segmentation

For segmentation, one of the best known models in the literature is the U-Net archi-
tecture [6], which is the base for many other novel models. The work from Zhu et
al. [11] proposes a U-Net based network to segment the whole prostate gland, obtain-
ing encouraging results (DSC of 0.885). Moreover, this architecture has served as the



Title Suppressed Due to Excessive Length 3

inspiration for some variants that enhance the performance of the original model. One
example is the work from Clark et al. [12] that presents a model that combines concepts
from the U-Net and the inception architectures. Another example is the work presented
by Oktay et al. [13], which proposes the addition of attention gates inside the original
U-Net model with the intention of focusing on specific target structures. The addition
of attention has served as base for other architectures such as Attention Dense U-Net
[14], Attention R2U-Net [8], among others. Also, the introduction of Transformers in
U-Net architectures is a novel approach for segmentation task that had demonstrated a
good performance in biomedical images, such as Swin U-Net [7]. Despite this, during
the course of this study, no other research was found that segmented the four zones dis-
cussed in this paper. Therefore, the number of studies that consider a third zone (TZ) is
still limited, this is more likely because the most common datasets used are PROMISE-
12 and the one from the PROSTATEx challenge, with only CZ and PZ. In addition to
that, providing a value that quantifies the uncertainty of the predictions can improve the
overall workflow since it could easily allow refining uncertain cases by human experts.

2.2 Uncertainty Quantification

The work from Theckel et al. [15] introduces a U-Net architecture with spatial dropout
to measure the uncertainty related to the segmentation of macular degeneration, utiliz-
ing different sizes of input data. The work from Suman et al. [16] applied the uncertainty
quantification problem to retinal imaging using a ResNet-based model, modified with
standard random dropout layers before every convolutional block. The work from Liu
et al. [10] proposes an automatic segmentation of the prostate zones and introduces a
pixel-wise uncertainty estimator using a ResNet50 backbone with attention and dropout
layers.

3 Materials and Methods

3.1 Dataset

The dataset used in the present work was provided by Universidad Politécnica de
Cataluña (UPC) in Barcelona, and Centre Hospitalaire de Dijon in France. The dataset
consists of three-dimensional T2-weighted fast spin-echo (TR/TE/ETL: 3600 ms/ 143
ms/109, slice thickness:1.25 mm) images acquired with sub-millimeter pixel resolution
in an oblique axial plane. The number of patients in the dataset are 19, with a total
of 205 images with their corresponding annotation masks (of prostate zones) used as
ground truth which were validated by experts using a dedicated tool [17].

The full dataset of 205 images, contains four different combination of zones, being:
(CZ+PZ), (CZ+PZ+TZ), (CZ+PZ+Tumor), and (CZ+PZ+TZ+Tumor) with 73, 68, 23,
and 41 images, respectively. For the purpose of this work, the dataset was divided in
85% for training and 15% for testing.
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3.2 Uncertainty Estimation in Prostate Segmentation

Epistemic and aleatory uncertainties are the two major types of uncertainty that can be
quantified. Epistemic uncertainty captures the uncertainty related to the models param-
eters caused by the lack of data, and, aleatory uncertainty captures the noise inherent in
the input data [10]. The sum of both uncertainties forms the predictive uncertainty.

In this work, the uncertainty of seven different U-net-based models was measured
in the test set. To approximate the inference of a model, Monte Carlo (MC) dropout of
a hidden layer was performed. MC Dropout is a technique used in neural networks to
incorporate uncertainty. It treats a network with dropped-out neurons as Monte Carlo
samples from all possible combinations, approximating a Gaussian process [10,18].
The minimization of cross-entropy loss is similar to minimizing the divergence of the
predicted distribution [16]. Using MC Dropout, pixel-wise epistemic uncertainty can
be computed as a variational Bayesian inference problem [16]. During predictions or
testing, dropout is also necessary. The main focus of this study is to investigate the pre-
dictive uncertainty of prostate segmentation, which can be quantified using the entropy
of the predictive distribution [10].

3.3 Proposed Work

This work uses the original U-Net model and six U-Net extensions from the literature:
Attention U-Net [13], Dense U-Net [19], Attention Dense U-Net [14], R2U-Net [8],
Attention R2U-Net, and Swin U-Net [7]. These architectures had demonstrated great
performance segmenting biomedical images, even some of them with public prostate’s
datasets including CZ and PZ. However, unlike in other works, we proposed to compare
the performance segmenting the three main zones of the prostate (CZ, PZ, and TZ) and
a tumor tissue if it is present, using the dataset described in Section 3.1.

Before the final training, an hyperparameter tunning proccess using a stratified 5-
Fold validation with the training set was carried out using the base U-Net model in
order to obtain the optimal combination of data augmentation, learning rate and an
approximation of epochs for training. The results demonstrated that including data aug-
mentation in the training did not increase significantly the performance of the mod-
els. Therefore we decided to use the original dataset without data augmentation due to
computational resources and time processing. The previously mentioned models were
trained for 145 epochs, using Adam optimizer with a learning rate of 1e− 4 and Cate-
gorical Cross-Entropy (CCE) loss function. The performance was evaluated using Dice
Score (DSC) and Intersection over Union (IoU) as the main metrics.

4 Results and Discussion

4.1 Quantitative Results
Table 1 shows a summary of evaluation results of the seven studied architectures, in
terms of two metrics (DSC and IoU) and loss value. In order to obtain these results,
the evaluation of each model was performed T = 50 times, and due to the incorpora-
tion of MC Dropouts the results were different each time. Therefore, the average of all
evaluations and prostate zones is reported with their corresponding standard deviation.
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Table 1: Comparison of model performance in segmentation metrics and loss value.
The metrics are denoted by upward (↑) or downward (↓) arrows, indicating the desired
direction of values. Bold values highlighted in green represent the best score achieved
among all models.

Model IoU ↑ DSC ↑ Loss ↓

U-Net 0.676 ± 0.021 0.770 ± 0.021 0.0139 ± 0.0007
Attention U-Net 0.688 ± 0.011 0.781 ± 0.010 0.0132 ± 0.0003
Swin U-Net 0.725 ± 0.014 0.816 ± 0.014 0.0134 ± 0.0002
Dense U-Net 0.754 ± 0.004 0.846 ± 0.004 0.0146 ± 0.0003
Attention Dense U-Net 0.760 ± 0.006 0.847 ± 0.005 0.0154 ± 0.0004
R2U-Net 0.764 ± 0.002 0.850 ± 0.002 0.0119 ± 0.0001
Attention R2U-Net 0.763 ± 0.003 0.850 ± 0.003 0.0113 ± 0.0001

Based on the metrics values, it can be seen that U-Net was the model with worst
performance. The use of attention to focus on the ROI helped to slightly outperform the
performance in segmentation tasks compared to the original U-Net by around 1 − 2%
for IoU and DSC.

Moving to Swin U-Net, a novel architecture from the state-of-the-art that uses Swin
Transformers [7,?] achieved to increase the IoU and DSC values by more than 7%, and
lower loss value compared to U-Net.

In the case of Dense U-Net, the performance of the model exceeds the previous
three architectures, with IoU and DSC scores 11% and 10% better than the base U-
Net, respectively, with a loss value of 0.0146. As a plus, this model did not need more
computational resources or time during its training compared to base U-Net. The next
model consisted on the incorporation of attention modules to Dense U-Net, which again
outperformed all the previous models in the segmentation metrics by 12% of IoU, and
10% of DSC compared to U-Net. However, it achieved the higher loss value among all
of 0.0154.

The last two architectures R2U-Net and Attention R2U-Net achieved very similar
results, but outperformed all the other models with values of 76.4% and 85% for IoU
and DSC, respectively, and the lowest loss value of 0.0113 for the Attention R2U-Net.

As mentioned before, an uncertainty comparison between the architectures was car-
ried out per each prostate zone, as well as for the full image with its corresponding
standard deviation as it is shown in Figure 1. The results shown in this figure can help
us to determine, in relation with previous table, which model achieved to segment with
more certain the prostate and its zones.

In Figure 1 it is observed that overall, the model that had the lowest mean uncer-
tainty segmenting all the images in the test set was R2U-Net with a mean value of
0.048± 0.014 after 50 predictions, validating the results obtained in the Table 1, being
the most reliable and accurate model overall thanks to the use of recurrent and residual
units to get more context information.

Furthermore, the Attention U-Net was the one with the highest uncertainty overall
with a value of 0.086 ± 0.023, having poor results in comparison to the other models.
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Fig. 1: Comparison of Uncertainty per each class between DL Architectures. The mean
uncertainty could be identify with a black star inside each box, and the line represents
the median uncertainty value obtained, the best model is indicated with a red box for
each zone.

U-Net and Swin U-Net obtained very similar results in most of the prostate zones,
although in the case of the TZ and Tumor, Swin U-Net achieved lower uncertainty.

Dense U-Net, Attention Dense U-Net and Attention R2U-Net succeeded in obtain-
ing smaller uncertainty mean values than U-Net (0.055 ± 0.018, 0.054 ± 0.018, and
0.052± 0.014, respectively). Although, TZ and Tumor are the zones less present in the
dataset, and where it looks to be more complex to segment, models like R2U-Net and
Attention R2U-Net managed to achieved a great segmentation performance and uncer-
tainty values in average of those zones in the test set. It is important to notice that both
results are correlated. These models managed to be adequately trained to perform the
most accurate segmentation task among the others, which can give more confidence to
radiologists when using a prostate segmentation tool based in this trained model.

4.2 Qualitative Results

In Figure 2, a qualitative comparison is presented among the predictions of each model
using four different example images from the dataset. The comparison involves all pos-
sible combinations of zones. The first two columns display the original T2-MRI image
of the prostate and its corresponding ground truth mask. Subsequently, each column
represents the average of probabilities obtained from 50 predictions for each model. It
can be observed that the first two zone combinations (Image A and B in Figure 2) are
relatively easier for most models, as they produce segmentation that closely resemble
the ground truth. However, certain models such as U-Net and Swin U-Net appear to
misclassify pixels as TZ even when they are not present in the ground truth. Neverthe-
less, based on the examples in the test set, the models have been trained effectively to
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Fig. 2: Comparison of average segmentation after 50 predictions for each model in all
the combinations of zones in the dataset.

achieve satisfactory segmentation performance on images containing CZ and PZ, and
some including TZ.

Regarding the other two combinations that include the tumor, they posed the most
complex segmentation challenge with notable variation among models. In Image C of
Figure 2, models like U-Net and Attention Dense U-Net incorrectly classified a TZ
region that was not identified in the ground truth. Meanwhile, other models tended to
excessively smooth the original segmentation, yielding a seemingly good but possibly
inaccurate result. However, when visually compared to the ground truth, the best seg-
mentation in this example was achieved by R2U-Net and Attention R2U-Net.

For the last example, most models struggled to accurately segment the tumor. Sur-
prisingly, U-Net and Dense U-Net produced acceptable results, but Attention R2U-Net
demonstrated the best overall performance.

Figure 3 illustrates the significance of uncertainty by displaying the same four ex-
amples as in the previous figure, along with corresponding uncertainty maps represented
as heat maps for each trained model. The temperature of the image indicates the level
of uncertainty, with higher temperatures indicating greater uncertainty in those pixels,
while lower temperatures indicate higher certainty in the model’s pixel segmentation.

The model with the highest uncertainty, particularly around the boundaries of TZ
and tumor, is U-Net, followed by Attention U-Net. This observation is evident. Fur-
thermore, as previously mentioned, the first two examples were easier for the models,
resulting in relatively low uncertainty across most of them. When dealing with images
containing tumors, the inclusion of dense blocks enhanced model certainty. However,
the utilization of recurrent residual blocks and attention modules surpassed other mod-
els, achieving acceptable predictions in the test set with low uncertainty values, even in
TZ and tumor tissues.
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Fig. 3: Comparison of uncertainty maps after 50 predictions for each model with previ-
ous examples.

5 Application

In order to have a computer-aided tool which can be used for radiologists or clinicians,
we proposed a Web App using Flask framework which we called ’ProstAI’, and it was
designed to have easier access to predict images using the best trained model with
MC dropouts: Attention R2U-Net. This app predicts the segmentation mask, as well as
the uncertainty map, which is very helpful to indicate the experts which are the pixels
where the model has higher uncertainty about their segmentation, an example is shown
in Figure 4.

Fig. 4: Example of the analysis page of the ’ProstAI’ app using a prostate image from
the Test set.
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This tool is proposed for experimental usage, further information about the app and
an example of usage can be found in: https://github.com/pabloquihui/
ProstAI.

6 Conclusion

This study makes a valuable contribution to prostate cancer segmentation by introduc-
ing the segmentation of transition and tumor zones, along with the quantification of
uncertainty, which has received limited attention in existing literature. The utilization
of a private dataset validated by multiple experts, including two radiologists and two
oncologists, enhances the reliability and accuracy of the findings. A comparison of
seven different deep learning models was conducted using segmentation metrics, uncer-
tainty scores, and visual inspection. Among these models, Attention R2U-Net emerged
as the top-performing approach in both analyses. The inclusion of recurrent residual
blocks in U-Net (R2U-Net) notably enhanced the segmentation results by capturing ad-
ditional contextual information. Furthermore, Attention R2U-Net demonstrated excep-
tional proficiency in segmenting all prostate zones, exhibiting superior performance in
metrics and yielding lower average uncertainty estimated using the MC method. This
highlights the positive impact of attention modules on improving segmentation and,
more significantly, reducing uncertainty in predictions by focusing on the ROI.

Moreover, a web app has been developed with a focus on experimental use for
radiologists. This app provides more accurate, consistent, and faster results and displays
the uncertainty map for each predicted image. The uncertainty map provides a visual
representation of the pixels in which the model is uncertain about the segmentation,
giving radiologists a better idea of the areas that require further analysis.
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