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Abstract. Colonoscopy is the most widely used medical technique for
preventing Colorectal Cancer, by detecting and removing polyps before
they become malignant. Recent studies show that around 25% of the
existing polyps are routinely missed. While some of these do appear in
the endoscopist’s field of view, others are missed due to a partial coverage
of the colon. The task of detecting and marking unseen regions of the
colon has been addressed in recent work, where the common approach
is based on dense 3D reconstruction, which proves to be challenging
due to lack of 3D ground truth and periods with poor visual content.
In this paper we propose a novel and complementary method to detect
deficient local coverage in real-time for video segments where a reliable
3D reconstruction is impossible. Our method aims to identify skips along
the colon caused by a drifted position of the endoscope during poor
visibility time intervals. The proposed solution consists of two phases.
During the first, time segments with good visibility of the colon and
gaps between them are identified. During the second phase, a trained
model operates on each gap, answering the question: "Do you observe
the same scene before and after the gap?" If the answer is negative, the
endoscopist is alerted and can be directed to the appropriate area in real-
time. The second phase model is trained using a contrastive loss based
on an auto-generated examples. Our method evaluation on a dataset of
250 procedures annotated by trained physicians provides sensitivity of
75% with specificity of 90%.
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1 Introduction

Colorectal cancer is one of the most preventable cancers, as early detection and
through screening is highly effective. The most common screening procedure
is optical colonoscopy – visually examining the surface of the colon for abnor-
malities such as colorectal lesions and polyps. However, performing a thorough
examination of the entire colon surface is proven to be quite challenging due
to unavoidable poor visibility segments of the procedure. As a consequence, im-
properly inspected regions may lead to a lower detection rate of polyps. Indeed,
recent studies have shown that approximately 25% of polyps are routinely missed
during a typical colonoscopy procedure [15].
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Various efforts to automatically detect and mark non-inspected regions of the
colon are reported in recent publications, where the common approach relies on
the creation of a dense 3D reconstruction of the colon’s shape [8,11,22,24,25,31].
However, such a reconstruction based on video solely is a challenging task, and
especially so in colonoscopy, in which reflections, low-texture content, frequent
changes in lighting conditions and erratic motion are common. As a consequence,
while the above 3D approach has promise, it is limited to segments of the video
exhibiting good visual quality.

In this work we propose a novel real-time approach for detecting deficient
local coverage, complementing the 3D reconstruction methods mentioned above.
Our proposed strategy provides a reliable, stable and robust solution for the
grand challenge posed by temporal periods of poor visual content, such as camera
blur, poor camera positioning, occlusions due to dirt and spayed water, and
more. The proposed method consists of two main phases. During the first, we
identify time segments with good visibility of the colon and gaps of poor visibility
between them. For this purpose we train a binary classifier, leveraging a small
set of annotated images and a self-supervised training scheme. During the second
phase, we train an ML model that aims to answer the following question for each
gap: Do you observe different scenes before and after the gap? (see Figure 1).
If the answer is positive, we suspect a loss of coverage due to an unintentional
drift of the endoscope position, and therefore alert the endoscopist accordingly
in real-time to revisit the area.

The second phase model is designed to generate low-dimensional frame-based
descriptors that are used for scene-change detection via a simple Cosine distance
evaluation. This network is trained using a contrastive loss based on automat-
ically generated positive and negative pairs of video segments. These training
examples are sampled from good-visibility segments of real colonoscopy videos,
where the translational speed of the endoscope can be reliably estimated.

To evaluate our method we introduce a dataset of 250 colonoscopy procedures
(videos). Two doctors have been asked to evaluate up to 5 gaps per video and
decide whether they suspect loss of coverage there. The evaluation of our method
using this annotated dataset provides sensitivity of 75% with specificity of 90%.

We note that our task of same-scene detection in the colon is related to
image retrieval [2,23,30] and geo-localization [5,17,18]. There is also some sim-
ilarity to techniques employed for face recognition [1,4,10,16] and person re-
identification [7,19,27]. In the narrower domain of colonoscopy, the only closely
related work we are aware of is reported in [20]. While their technique for lo-
cation recognition is related to our scene descriptor generation, their eventual
tasks are markedly different, and so are the evaluation protocols. Nevertheless,
for completeness of this work, we evaluate our scene descriptors on their dataset
and show that our method outperforms their results.

To summarize, this work offers three main contributions:

– We present a novel stable, robust and accurate method for detecting deficient
local coverage in real-time for periods with poor visual content.
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Fig. 1. Our solution starts by detecting time segments with good visibility of the colon
and gaps between them. For each such gap we answer the question: Do you observe
different scenes before and after the gap? If the answer is positive, the endoscopist is
alerted to revisit the area in real-time.

– Our coverage solution complements the 3D reconstruction approach, covering
cases beyond it’s reach;

– We introduce a novel self-supervised method for generating frame-based de-
scriptors for scene change-detection in colonoscopy videos.

This paper is organized as follow: Section 2 describes Phase I of our method,
aiming to identify time segments with good visibility of the colon and gaps
between them. Phase II of our method is presented in Section 3, addressing the
same-scene question by metric learning. Section 4 summarizes the results of our
experiments and Section 5 concludes the paper.

2 Method: Phase I – Visibility Classification

Our starting point is a frame-based classification of the visibility content. We
characterize good visibility frames as those having a clear view of the tubular
structure of the colon. In contrast, poor visibility frames may include severe
occlusions due to dirt or sprayed water, a poor positioning of the camera - being
dragged on the colon walls, or simply blurred content due to rapid motion.

In order to solve this classification task, we gather training and validation
annotated datasets by experts. Operating on 85 different colonoscopy videos,
5 good visibility segments and 5 poor ones were identified in each. A naive
supervised learning of a classifier leads to an unsatisfactory 84% accuracy on
the validation set due to insufficient data. In an attempt to improve this result,
we adopt a semi-supervised approach. First, we pre-trained an encoder on large
(1e6) randomly sampled frames using simCLR [9]. This unsupervised learning
embeds the frames such that similar ones (obtained by augmentations of the
same frame) are close-by, while different frames (the rest of the frames in the
batch) are pushed away. Given the learned encoder, we train a binary classifier
on the resulting embeddings using the labeled data. Since the dimension of the
embedding vectors is much smaller then the original frame sizes (512 vs. 2242),
this approach leads to far better accuracy of 93%. We further improve the above
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by smoothing the predictions based on their embeddings, as shown in Fig. 2.
For each input batch of 512 frames, their cross-similarities (the cosine distance
between their embedding vectors) are leveraged, such that similar frames are
also encouraged to be assigned to the same class. This improves the per-frame
accuracy on the validation set up to 94%.

Fig. 2. To achieve high accuracy visibility classifier, we train an encoder in an un-
supervised manner and then train a binary classifier the resulting embeddings using
the labeled data. Further improvement is made by smoothing predictions based on
similarity distances, resulting in 94% accuracy on the validation set.

To conclude, the trained classifier provides a partitioning of the time axis
into disjoint intervals of good or poor visibility. In order to further relax these
intervals, we apply a median filter with window size of 10 frames.

3 Method: Phase II – Gaps with Loss of Coverage

After partitioning the procedure timeline into periods with good visibility and
gaps between them, our goal now is to identify gaps with a potential loss of cov-
erage, defined as exhibiting a change of the scene between their ends. In order
to compare scenes before and after a gap, we learn distinctive frame descrip-
tors. These vectors are compared via a simple distance measure for addressing
the same/not-same scene question. While the direct approach towards this task
would be to gather a training set of many thousands of such gaps along with
their human annotation, we introduce a much cheaper, faster, and easier alter-
native based on a self-supervised approach. In this section we describe all these
ingredients in greater details.
Scene Descriptors: Assume that a training set of the form {F k1 , F k2 , ck}Nk=1

is given to us, where F k1 and F k2 are two frames on both sides of a given gap,
and ck is their label, being ck = 1 for the same scene and 0 otherwise. N is the
size of this training data, set in this work to be N = 1e5 examples. We design
a neural network f = TΘ(F ) that embeds the frame F to the low-dimensional
vector f ∈ R512, while accommodating our desire to serve the same/not-same
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scene task. More specifically, our goal is to push same-scene descriptor-pairs
to be close-by while forcing pairs of different scenes to be distant, being the
essence of contrastive learning, which has been drawing increased attention re-
cently [3,9,13,28]. Therefore, we train TΘ(·) to minimize the loss function

L(Θ) =

N∑
k=1

(2ck − 1)d
(
TΘ(F k1 ), TΘ(F k2

)
(1)

=
∑

{ck=1}k

d
(
TΘ(F k1 ), TΘ(F k2

)
−

∑
{ck=0}k

d
(
TΘ(F k1 ), TΘ(F k2

)
.

In the above expression, d(·, ·) stands for a distance measure. In this work we
use the Cosine similarity d(f1, f2) = 1− fT1 f2/‖f1‖2‖f2‖2.
Creating the Training Data: Constructing the training set {F k1 , F k2 , ck}Nk=1

might be a daunting challenge if annotations by experts are to be practiced. We
introduce a fully automatic alternative that builds on a reliable displacement
estimation of the endoscope, accessible in good visibility video segments of any
real colonoscopy. This displacement can be evaluated by estimating the optical-
flow between consecutive frames (see [21,26]) and estimating the amount of flow
trough the frame boundary [14] (see Figure 3).

Given any time interval of good visibility content, the cumulative directional
transnational motion can be estimated rather accurately. Thus, starting with
such a video segments, and randomly marking an inner part of it of a random
length of 5 − 30 seconds as a pseudo-gap, we can define frames on both its
ends as having the same scene or not based on the accumulated displacement.
Figure 4 presents the whole process of creating training examples this way, easily
obtaining triplets {F k1 , F k2 , ck}.

Our attempts to improve the above contrastive training scheme by introduc-
ing a margin, as practiced in [12] and employing a “soft-max” loss version [28],
did not bring a significant improvement. A technique that delivered a benefit is
to pre-train the network TΘ in fully unsupervised way using simCLR [9] (as in
Section 2), and proceed along the above contrastive learning scheme. Implemen-
tation details can be found in the supplementary material.

Fig. 3. Endoscope displacement estimation is based on optical-flow calculation be-
tween consecutive frames using the amount of flow trough the frame boundary
(see [14]).
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Fig. 4. We simulate random artificial gaps of various duration in good-visibility video
segments, estimate the endoscope motion within these simulated gaps, and get this way
reliable training examples for our overall task. Gaps associated with low accumulated
motion contribute a ‘same-scene’ training example (ck = 1), while high-motion gaps
refer to a different scene pair (ck = 0).

Gap Classification: With a simple machinery of a distance evaluation of the
frame descriptors on both ends of any gap, we are now equipped to answer our
main questions: Is there a potential loss of coverage during this poor-visibility
video segment? Has the probe drifted away form its original position? As this
distance evaluation can be applied over various frames on both sides of the gap,
the challenge is to find a reliable fusion of the information within these many
pairs of frames. While we have experimented with various such options, the best
results are achieved by calculating a single descriptor for the scenes before and
after the gap, and then comparing these using a Cosine distance. This unified
descriptor, f̄ , is obtained by a weighted average of the individual descriptors in
a segment of 2 seconds on each side, fi, as follows: f̄ =

∑
i fiwi/

∑
i wi, where

wi = vie
−si , vi and si are the raw visibility score and the temporal distance to the

gap, both referring to the i-th frame. While the effectiveness of employing such
a simple averaging of the descriptors might seem surprising, a similar strategy
was proven successful for face recognition from multiple views in [29].

4 Results

As explained in Section 3, first we generate per-frame scene descriptors and then
employ them to detect the gaps with potential loss of coverage. This section
starts from presenting the evaluation of the stand-alone scene descriptors and
compares them to SOTA. Then we describe the dataset of the annotated gaps
and present the evaluation of our gap classifier on this dataset.
Scene Descriptors: We evaluate our scene descriptors on the recently released
dataset for colonoscopic image retrieval – Colon10K [20]. This dataset contains
20 short sequences (10,126 images), where the positive matching images were
manually labeled and verified by an endoscopist. We follow the setup and the
evaluation metrics described in [20]. In total, they have 620 retrieval tasks (de-
noted by “all ”), while 309 tasks use the intervals that are not direct neighbor
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Rank-1 recognition rate Mean average precision (mAP)
Method all indirect all indirect
[20] 0.9032 0.8058 0.9042 0.8245
Our 0.9131 0.8173 0.9723 0.9112

Table 1. Comparison of our scene descriptor generation to [20] on the Colon10K
dataset. In all the evaluated metrics our method outperforms [20].

frames of their queries as positives (denoted by “indirect”). We use the data
from Colon10K for the evaluation purposes only. Table 1 compares the results
to those reported in [20]. Rank-1 recognition rate is the percentage of tasks in
which the most similar to the query image is true positive. The Mean aver-
age precision is the area under the precision-recall curve. For both metrics our
method outperforms [20] for both “all ” and “indirect” tasks.
Gap Classification: In order to evaluate our gap classification we introduce
a dataset of 250 colonoscopy procedures (videos) from five different hospitals.
We have automatically identified between 2 to 5 true gaps in each video and
presented these to doctors for their annotation – whether a loss of coverage is
suspected. Each gap was evaluated by two doctors and the ones without a con-
sensus (∼25%) were omitted. This resulted with 750 gaps having high-confidence
annotations, 150 of which are marked as exhibiting a loss of coverage. Figure 5
presents the ROC of our direct gap classification method evaluated on the whole
dataset of 750 gaps. At the working point of 10% false alarms (alert on gap with
no coverage loss) we cover 75% of gaps with real coverage loss. The area under
curve (AUC) is 0.9, which usually indicates a high-accuracy classifier.

The above classification exploits the information before and after the gap,
while completely disregarding the information about the gap itself. Having a
dataset of annotated true gaps, we can improve this accuracy by a supervised
learning that exploits the gap characteristics. We thus split the dataset of the
annotated gaps 50:50 to training and evaluation. Since we have a very limited
amount of the training examples we use a low-dimensional classifier – Gradient

Fig. 5. Direct gap classification: ROC curve evaluated on the whole dataset (750 gaps).
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Method
Features Frame Gap Visibility Visibility AUC

similarities duration inside the gap outside the gap
X 0.651

Original X 0.876
X X 0.896
X 0.881

Supervised X X 0.898
X X X 0.929
X X X X 0.932

Table 2. Impact of various features on the AUC, evaluated on 375 test gaps.

Boosting [6] – that operates on the following input data: (i) A 32-bin histogram
of the similarity matrix’ values between frames 2 seconds before and after the
gap; (ii) A 32-bin histogram of the visibility scores 2 seconds before and after
the gap; (iii) A 32-bin histogram of the visibility scores inside the gap; and (iv)
The duration of the gap. We performed class-balancing using up-sampling with
augmentations before training.

Table 2 compares the original approach to the supervised one, summarising
the contribution of different input features to the final accuracy (measured by
AUC). In the supervised approach we use one half of the dataset for training,
thus the evaluation is performed using the other half of the dataset for both the
original and the supervised approaches. In the first approach we also explored
a classificaiton based on the gap duration only, getting an AUC of 0.651, being
higher than random but lower than employing frame similarities. Weighing the
scene descriptors by the visibility scores (see Section 3) improves the AUC by
2%. In the supervised approach both gap duration and visibility scores inside
the gap provide a substantial contribution of 2% each to the AUC.

5 Conclusion

This work presents a novel method for the detection of deficient local coverage
in real-time for periods with poor visual content, complementing any 3D re-
construction alternative for coverage assessment of the colon. Our method starts
with an identification of time segments with good visibility of the colon and gaps
between them. For each such gap we train an ML model that tests whether the
scene has changed during the gap, alerting the endoscopist in such cases to re-
visit a given area in real-time. Our learning constructs frame-based descriptors
for same scene detection, leveraging a self-supervised approach for generating
the required training set. For the evaluation of the gap classification results we
have built a dataset of 250 colonoscopy videos with annotations of gaps with
deficient local coverage. Our future work includes an extension of our approach
to a guidance of the endoscopist to the exact place where the coverage was lost,
and using our scene descriptors for bookmarking points of interest in the colon.
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