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Abstract. Acute Myeloid Leukemia (AML) is one of the most aggres-
sive types of hematological neoplasm. To support the specialists’ decision
about the appropriate therapy, patients with AML receive a prognostic
of outcomes according to their cytogenetic and molecular characteris-
tics, often divided into three risk categories: favorable, intermediate, and
adverse. However, the current risk classification has known problems,
such as the heterogeneity between patients of the same risk group and
no clear definition of the intermediate risk category. Moreover, as most
patients with AML receive an intermediate-risk classification, special-
ists often demand other tests and analyses, leading to delayed treatment
and worsening of the patient’s clinical condition. This paper presents the
data analysis and an explainable machine-learning model to support the
decision about the most appropriate therapy protocol according to the
patient’s survival prediction. In addition to the prediction model being
explainable, the results obtained are promising and indicate that it is
possible to use it to support the specialists’ decisions safely. Most impor-
tantly, the findings offered in this study have the potential to open new
avenues of research toward better treatments and prognostic markers.

Keywords: Decision support system - Explainable artificial intelligence
- Acute Myeloid Leukemia - Knowledge discovery and pattern recogntion

1 Introduction

Acute Myeloid Leukemia (AML) is one of the most aggressive types of hemato-
logical neoplasm, characterized by the infiltration of cancer cells into the bone
marrow. AML has decreasing remission rates regarding the patient’s age, and
its average overall survival rate is just 12 to 18 months [21].

* Supported by CAPES, CNPq, and FAPESP grant #2021/13325-1.
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In 2010, the European LeukemiaNet (ELN) published recommendations for
diagnosing and treating AML [5], which became a field reference. A significant
update to these recommendations was published in 2017 [6] and 2022 [7], incorpo-
rating new findings concerning biomarkers and subtypes of the disease combined
with a better understanding of the disease behavior.

For a diagnosis of AML, at least 10% or 20% of myeloblasts must be present
in the bone marrow or peripheral blood, depending on the molecular subtype
of the disease [1]. This analysis is performed according to the Classification of
Hematopoietic and Lymphoid Tissue Tumors, published and updated by the
World Health Organization.

In addition to the diagnosis, the patient with AML receives a prognostic of
outcomes, often divided into three risk categories: favorable, intermediate, and
adverse. Cytogenetic and molecular characteristics define such stratification [25].
The cytogenetic characteristics come from certain chromosomal alterations. In
turn, the molecular ones are determined according to mutations in the NPM1,
RUNX1, ASXL1, TP53, BCOR, EZH2, SF3B1, SRSF2, STAG2, and ZRSR2
genes. Specialists commonly use the ELN risk classification to support critical
decisions about the course of each treatment, which can directly impact patients’
quality of life and life expectancy.

Patients with a favorable risk prognosis generally have a good response to
chemotherapy. On the other hand, those with adverse risk tend not to respond
well to this therapy, needing to resort to other treatments, such as hematopoietic
stem cell transplantation [25]. The problem with the current risk prognosis is the
high rate of heterogeneity between patients of the same risk group. In addition,
there is no clear definition regarding the intermediate risk since these patients
do not show a response pattern to treatments.

Most patients with AML receive an intermediate-risk classification [5]. Un-
fortunately, this makes specialists demand more information, such as the results
of other tests and analyses, to support their decisions regarding the most ap-
propriate treatment, even with little or no evidence of efficacy. This process
can result in delayed initiation of treatment and consequent worsening of the
patient’s clinical condition.

To overcome this problem, this study presents the result of a careful analysis
of real data composed of clinical and genetic attributes used to train an explain-
able machine-learning model to support the decision about the most appropriate
therapy protocol for AML patients. The model is trained to identify the treat-
ment guide that maximizes the patient’s survival, leading to better outcomes
and quality of life.

2 Related work

The decision on therapy for patients with AML is strongly based on the predic-
tion of response to treatment and clinical outcome, often defined by cytogenetic
factors |9]. However, the current risk classification can be quite different among
patients within the same risk groups, in which the result can range from decease
within a few days to an unexpected cure [5].

Since the mid-1970s, the standard therapy for patients with AML has been
chemotherapy, with a low survival rate. However, with advances, various data
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on mutations and gene expressions began to be collected, analyzed, and made
available, accelerating the development of therapeutic practices.

In 2010, the European LeukemiaNet (ELN) proposed a risk categorization
based on cytogenetic and molecular information, considering the severity of the
disease |5]. This classification comprises four categories: favorable, intermediate
I, intermediate II, and adverse.

In 2017, a significant update to the ELN’s risk classification was published [6].
The updated risk classification grouped patients into three categories (favorable,
intermediate, and adverse) and refined the prognostic value of specific genetic
mutations. Since then, specialists have commonly used this stratification to sup-
port important decisions about the course of each treatment, which can directly
impact the patient’s quality of life and life expectancy.

In 2022, the ELN’s risk classification was updated again. The main change
provided is related to the expression of the FLT3-ITD gene. All patients with
high expression but without any other characteristics of the adverse group are
classified as intermediate risk. Another significant change is that mutations in
BCOR, EZH2, SF3B1, SRSF2, STAG2, and ZRSR2 genes are related to the
adverse risk classification |7].

Specialists often rely on the ELN risk classification to define the treatment
guidelines given to the patient shortly after diagnosis. Patients with a favorable
risk generally present a positive response to chemotherapy. In contrast, patients
with an adverse risk tend not to respond well to this therapy, requiring other
treatments, such as hematopoietic stem cell transplantation [25]. However, there
is no clear definition regarding the therapeutic response of AML patients with
intermediate risk.

The problem with using the current risk classifications as a guide for decid-
ing the most appropriate treatment is that there can be significant variability
of patients in the same risk group, with different characteristics such as age
and gender. For example, patients under 60 tend to respond better to high-dose
chemotherapy. On the other hand, patients over 60 years old tend to have a low
tolerance to intense chemotherapy and may need more palliative therapies |14].
Several studies suggest that age is a relevant factor when deciding the treatment
for a patient, a fact that is not considered by the current risk classification. How-
ever, as most patients with AML receive the intermediate risk, specialists often
require additional information, such as the results of other tests and analyses,
to decide the most appropriate treatment, even with little or no evidence of ef-
ficacy [5]. This process can lead to a delay at the start of treatment and worsen
the patient’s clinical condition.

Studies have emphasized the significance of analyzing mutations and gene
expression patterns in families of genes to determine the therapeutic course in
AML. Over 200 genetic mutations have been identified as recurrent in AML
patients through genomic research [25]. With genetic sequencing, the patient
profile for AML has transitioned from cytogenetic to molecular [15]. However,
due to the heterogeneity of the disease, it is difficult to manually analyze the
various genetic alterations that may impact the course of the disease. To over-
come these challenges, recent studies have sought to apply machine learning
(ML) techniques to automatically predict the outcome after exposure to specific
treatments and complete remission of the disease.
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For example, [10] trained supervised ML models with data extracted from
RNA sequencing and clinical information to predict complete remission in pedi-
atric patients with AML. The k-NN technique obtained the best performance,
with an area under the ROC curve equals to 0.81. The authors also observed sig-
nificant differences in the gene expressions of the patients concerning the pre-and
post-treatment periods.

Later, [19] used clinical and genetic data to train a random forest classifier
capable of automatically predicting the survival probability. According to the
authors, the three most important variables for the model were patient age
and gene expression of the KDM5B and LAPTM4B genes, respectively. The
authors concluded that applying ML techniques with clinical and molecular data
has great predictive potential, both for diagnosis and to support therapeutic
decisions.

In the study of [17], a statistical decision support model was built for pre-
dicting personalized treatment outcomes for AML patients using prognostic data
available in a knowledge bank. The authors have found that clinical and demo-
graphic data, such as age and blood cell count, are highly influential for early
death rates, including death in remission, which is mainly caused to treatment-
related mortality. Using the knowledge bank-based model, the authors concluded
that roughly one-third of the patients analyzed would have their treatment pro-
tocol changed when comparing the model’s results with the ELN treatment
recommendations.

The success reported in these recent studies is an excellent indicator that re-
cent ML techniques have the potential to automatically discover patterns in vast
amounts of data that specialists can further use to support the personalization
and recommendation of therapy protocols. However, one of the main concerns
when applying machine learning in medicine is that the model can be explain-
able, and experts can clearly understand how the prediction is generated [4].

In this context, this study presents the result of a careful analysis of real
data composed of clinical and genetic attributes used to train an explainable
machine-learning model to support the decision about the most appropriate
therapy protocol for AML patients. Our main objective is to significantly reduce
the subjectivity involved in the decisions specialists must make and the time in
the treatment decision processes. This can lead to robust recommendations with
fewer adverse effects, increasing survival time and quality of life.

3 Materials and methods

This section details how the data were obtained, processed, analyzed, and se-
lected. In addition, we also describe how the predictive models were trained.

3.1 Datasets

The data used to train the prediction models come from studies by The Can-
cer Genome Atlas Program (TCGA) and Oregon Health and Science University
(OHSU). These datasets are known as Acute Myeloid Leukemia [25,27] and com-
prise clinical and genetic data of AML patients. Both are real and available in
the public domain at https://www.cbioportal.org/. We used three sets with
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data collected from the same patients: one with clinical information (CLIN), an-
other with gene mutation data (MUT), and another with gene expression data
(EXP). Table [I| summarizes these original data.

Table 1: Amount of original data in each database. Each database is composed of
three sets of features: clinical information (CLIN), gene mutation data (MUT),
and gene expression data (EXP)

Attributes
|Samples|Patients| CLIN| MUT | EXP

TCGA| 200 200 31 |25,000(25,000
OHSU| 672 562 97 | 606 |22,825

3.2 Data cleaning and preprocessing

Since the data comes from two sources, we have processed them to ensure con-
sistency and integrity. With the support of specialists in the application domain,
we removed the following spurious data:

1. Samples not considered AML in adults observed by (%) the age of the patient,
which must not be less than 18 years, and (i7) the percentage of blasts in
the bone marrow, which should be greater or equal to 20%;

2. Samples without information on survival elapsed time after starting treat-
ment (Quverall Status Survival);

3. Duplicate samples; and

4. Features of patients in only one of the two databases.

We used the 3-NN method to automatically fill empty values in clinical data
features (CLIN). We used the features with empty values as the target attributes
and filled them using the value predicted from the model trained with other
attributes. Nevertheless, we removed the features of 37 genes with no mutations.

Subsequently, we kept only the samples in which all the variables are compat-
ible, observing data related to the exams and treatment received by the patients,
as these affect the nature of the clinical, mutation, and gene expression data.
Of the 872 initial samples in the two databases, 272 were kept at the end of the
preprocessing and data-cleaning processes. Of these, there are 100 samples from
patients who remained alive after treatment and 172 who died before, during, or
after treatment. Cytogenetic information was normalized and grouped by AML
specialists. Moreover, the same specialists analyzed and grouped the treatments
in the clinical data into four categories according to the intensity of each therapy:

1. Target therapy — therapy that uses a therapeutic target to inhibit some
mutation/AML-related gene or protein;

2. Regular therapy — therapy with any classical chemotherapy;

3. Low-Intensity therapy — non-targeted palliative therapy, generally recom-
mended for elderly patients; and
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4. High-Intensity therapy — chemotherapy followed by autologous or allogenic
hematopoietic stem cell transplantation.

Finally, the specialists checked and validated all the data.

3.3 Feature selection

This section describes how we have analyzed and selected the features used to
represent clinical, gene mutation, and gene expression data.

Clinical data Among the clinical attributes common in the two databases,
specialists in the data domain selected the following 11 according to their rele-
vance for predicting clinical outcomes. In Table[2] we briefly describe all selected
clinical features, and Table [3| summarizes the main statistics of those with a con-
tinuous nature. Figures [l and [2] summarize their main statistics.

Table 2: Clinical features description

Feature

Description

Diagnosis age

Bone marrow blast %
Mutation count

PB blast %

WBC

Gender

Race

Cytogenetic info

ELN risk classification

Treatment intensity
classification
Overall survival status

Patient age when diagnosed with AML
Percentage of blasts in the bone marrow

Number of genetic mutations observed
Percentage of blasts in peripheral blood

White blood cell count

Patient gender

Whether the patient is white or not

Cytogenetic information the specialist used

in diagnosing the patient

ELN risk groups

(favorable, intermediate, and adverse)

The intensity of treatment received by the patient
(target, regular, low-intensity, or high-intensity therapy)
Patient survival status (living or deceased).

Table 3: Main statistics of clinical features with a continuous nature

Feature ‘Minimum‘Maximum‘Median‘Mean
Diagnosis age 18 88 58(55.11
Bone marrow blast % 20 100 72|68.13
Mutation count 1 34 9| 9.54
PB blast % 0 99.20| 39.10|40.99
WBC 0.4 483| 39.40|19.85
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Among the clinical attributes, in line with several other studies, the only
noticeable highlight is that the patient’s age seems to be a good predictor of
the outcome. The older the patient, the lower the chances of survival. All other
attributes showed similar behavior for both classes, with subtle differences.

Gene mutation data After cleaning and preprocessing the data, 281 gene
mutation features remained. Then, we employed the 2 statistical method to
select a subset of these features. We chose to use the y? test because it has
been widely used in previous studies to analyze the correlation between genetic
mutations and certain types of cancer [23]. We defined the following hypotheses:
HO — patient survival is independent of gene mutation; and H1 — both groups are
dependent. Using p < 0.05, only two features were selected: PHF6 and TP53
gene mutations.

The TP53 mutation is the best known among the two gene mutations se-
lected. Several studies show the relationship between T'P58 mutation with ther-
apeutic response and prognosis. The TP53 gene is considered the guardian of
genomic stability, as it controls cell cycle progression and apoptosis in situations
of stress or DNA damage, and mutations in this gene are found in approximately
half of the cancer patients . Although mutations in TP53 are less common
in AML patients (about 10%), they predict a poor prognosis .
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Fig. 2: Bar plots of categorical nature clinical features

The mutation in the PHF6 gene has been identified as a genetic alteration
associated with hematologic malignancies . PHF6 is a tumor suppressor gene,
and several studies have shown a high mutation frequency in the adverse risk
group of AML . These observations suggest that PHF6 mutations may have
a significant role in the development and progression of AML and may serve as
a potential prognostic marker for the disease .

To further investigate the potential of gene mutation data on outcome predic-
tion, we have enriched the set of gene mutation features with well-known genes
already highlighted in studies in the literature and used by the ELN .
The literature features used were: FLT3, NPM1, DNMT3A, IDH1, IDH2, TET?2,
ASXL1, RUNX1, CEBPA, NRAS, KRAS, SF3B1, U2AF1, SRSF2.

Gene expression data After data cleaning and preprocessing, 14,712 gene
expression features remained. To select the most relevant features for outcome
prediction, we have employed a method similar to Lasso Regression : we
have trained an SVM model with L1 regularization. This method estimates the
relevance of the features by assigning a weight coefficient to each of them. When
a feature receives a zero coeflicient, it is irrelevant enough for the problem the
model was trained for. As a consequence, these features are not selected.

The method was trained with all 14,712 gene expression features, from which
22 were selected.

The final datasets we have used to train and evaluate the outcome predic-
tion models are publicly available at https://github.com/jdmanzur/ml4aml_
databases. It is composed of 272 samples (patient data) consisting of 11 clin-
ical features (CLIN), 22 gene expression features (EXP), and 16 gene mutation
features (MUT). Table [4f summarizes each of these datasets.
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Table 4: Final datasets used to train and evaluate the outcome prediction models

Dataset #Features|Features

Diagnosis age, Bone marrow blast (%),
Mutation count, PB blast (%),

WBC, Gender, Race,

Cytogenetic info, ELN risk classification,
Treatment intensity classification,
Overall survival status (class)
CCDC1/4A, CPNES, CYP2EL,

CYTL1, HAS1, KIAA0141,

KIAA1549, LAMA2, LTK, MICALLZ2,
MX1, PPM1H, PTH2R, PTP4AS3,
RAD21, RGS9BP, SLC29A2, TMED/,
TNFSF11, TNK1, TSKS, XIST
Treatment intensity classification,
Overall survival status (class)

FLT3, NPM1, DNMT3A, IDHI, IDH?,
TET2, ASXL1, RUNX1, CEBPA, NRAS, KRAS
Gene mutation (MUT) 18 SF3B1, U2AF1, SRSF2, PHF6, TP53,
Treatment intensity classification,
Overall survival status (class)

Clinical (CLIN) 11

Gene expression (EXP) 24

3.4 Training the outcome prediction models

Since interpretability is a crucial pre-requisite for machine-learning models in
medicine [4], we have employed the well-known Explainable Boosting Machine
(EBM) technique [2].

EBM is a machine learning approach that combines the strengths of boosting
techniques with the goal of interpretability. It is designed to create accurate and
easily understandable models, making it particularly useful in domains where
interpretability and transparency are important.

EBM extends the concept of boosting by incorporating a set of interpretable
rules. Instead of using complex models like neural networks as weak learners,
EBM employs a set of rules defined by individual input features. These rules are
easily understandable and can be represented as “if-then” statements.

During training, EBM automatically learns the optimal rules and their asso-
ciated weights to create an ensemble of rule-based models. The weights reflect
the importance of each rule in the overall prediction, and the ensemble model
combines their predictions to make a final prediction.

The interpretability of EBM comes from its ability to provide easily under-
standable explanations for its predictions. Using rule-based models, EBM can
explicitly show which features and rules influenced the outcome, allowing AML
specialists to understand the underlying decision-making process.

EBM has been applied successfully in various domains, such as predicting
medical conditions, credit risk assessment, fraud detection, and predictive main-
tenance, where interpretability and transparency are paramount [20].
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We have used the EBM classification method from the InterpretML libraryﬂ
to train seven outcome prediction models: one per dataset (CLIN, MUT, EXP)
and four using all possible combinations (CLIN+MUT, CLIN+EXP, MUT+EXP,
CLIN+MUT+EXP).

3.5 Performance evaluation

We evaluated the performance of the prediction models using holdout [18]. For
this, we have divided the data into three parts 80% was randomly separated
for training the models, 10% of the remaining data was randomly selected for
model and feature selection, and the remaining 10% was used to test. The data
separation was stratified; therefore, each partition preserves the class balance
of the original datasets. We must highlight we performed the feature selection
processes using only training and validation partitions.

We calculated the following well-known measures to assess and compare the
performance obtained by the prediction models: accuracy, recall (or sensitivity),
precision, F1-Score, and the Area Under the ROC Curve (AUC).

4 Results and discussion

First, we trained the outcome prediction models using only the best-known genes
consolidated by studies in the literature, both for the expression and mutation
contexts. These genes are FLT3, NPM1, DNMT3A, IDH1, IDH2, TET2, ASXLI,

RUNX1, CEBPA, NRAS, KRAS, SF3B1, U2AF1, and SRSF2. Table 5 presents
the prediction performance obtained.

Table 5: Results achieved by the outcome prediction models. The genes from
MUT and EXP were selected according to consolidated studies in the literature

Model F1-Score AUC Accuracy Precision Recall
CLIN 0.57 0.53 0.57 0.57 0.57
MUT 0.64 0.70 0.64 0.76 0.64
EXP 0.66 0.62 0.68 0.66 0.68
CLIN+MUT 0.67 0.64 0.68 0.67 0.68
CLIN+EXP 0.57 0.53 0.57 0.57 0.57
MUT+EXP 0.63 0.59 0.64 0.63 0.64
CLIN+MUT+EXP 0.54 0.51 0.54 0.55 0.54

The model that achieved the best result was the one that combined clinical
and genetic mutation data. When analyzing the models trained with individual

! InterpretML is a Python library that provides a set of tools and algorithms for
interpreting and explaining machine learning models. The documentation is available
at https://interpret.ml/docs.
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datasets, the ones based on gene mutation and expression showed the best per-
formances. However, the overall results obtained are low and unsatisfactory for
predicting the outcomes of AML patients. Surprisingly, the genes most known
in the literature seem not strongly associated with outcomes prediction.

We then trained the outcome prediction models using the data resulting
from the pre-processing, data analysis, and feature selection process described
in Section [3] (Table [4]). Table [6] shows the results obtained.

Table 6: Results achieved by the outcome prediction models. The genes from
MUT were selected using x2-test + the genes selected according to the literature.
The genes from EXP were selected using LASSO

Model F1-Score AUC Accuracy Precision Recall
CLIN 0.57 0.53 0.57 0.57 0.57
MUT 0.65 0.63 0.64 0.66 0.64
EXP 0.86 0.84 0.86 0.86 0.86
CLIN+MUT 0.67 0.64 0.68 0.67 0.68
CLIN+EXP 0.78 0.74 0.79 0.78 0.79
MUT+EXP 0.82 0.79 0.82 0.82 0.82
CLIN+MUT+EXP 0.78 0.74 0.79 0.78 0.79

The performance of the model trained only with the mutation data deterio-
rated slightly compared to the one obtained only with the genes highlighted in
the literature. However, the performance of the model trained only with the ex-
pression data showed a remarkable improvement since all performance measures
were up about 30%, and figuring as the best model we achieved. This strong
increase in model performance is probably due to the careful KDD (Knowledge
Discovery in Databases) process performed on the data and the new genes dis-
covered to be good predictors.

Since gene expression data are expensive to obtain, they are usually absent
on the first visit with specialists [6]. In this case, the outcome prediction model
trained with clinical data and genetic mutations can be used as an initial guide
to support the first therapeutic decisions.

The main advantage of using EBMs is that they are highly intelligible because
the contribution of each feature to an output prediction can be easily visualized
and understood. Since EBM is an additive model, each feature contributes to
predictions in a modular way that makes it easy to reason about the contribution
of each feature to the prediction. Figure [3] shows the local explanation for two
test samples correctly classified as positive and negative using the classification
model trained with the EXP feature set.

Figure [4] presents the top-15 attributes according to their importance in gen-
erating the prediction of outcome using gene mutation (Fig, gene expression
(Fig7 and clinical data (Fig7 respectively. The attribute importance scores
represent the average absolute contribution of each feature or interaction to the
predictions, considering the entire training set. These contributions are weighted
based on the number of samples within each group.
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Fig. 3: Local explanation showing how much each feature contributed to the
prediction for a single sample using the classification model trained with the
EXP feature set. The intercept reflects the average case presented as a log of the
base rate (e.g., —2.3 if the base rate is 10%). The 15 most important terms are
shown.

The four most influential clinical features are (i) when low-intensity treat-
ment is chosen by the specialist; (i) the patient’s age; (i) when high-intensity
treatment is chosen; and (i) the ELN risk classification. It is well-known that
the age at diagnosis and the ELN risk classification can potentially impact the
patient’s outcome . Considering that specialists often do not have access to
the most suitable treatment intensity during model prediction, the predictions
are automatically generated for the four categorized treatment types (Section
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Fig.4: Top-15 features that most influence the models’ prediction

, and the one that best optimizes the patient’s survival time is selected as
the recommended therapy.

Regarding genetic mutation data, the mutations in the TP53 and PHF6
genes are ranked as the most influential, followed by the gene mutations already
well-known in the literature. If, on the one hand, the mutation in the TP53 gene
was already expected, to the best of our knowledge, there are no studies in the
literature associating the PHF6 gene with predicting outcomes in the context of
AML. Therefore, laboratory tests should be performed to confirm whether this
gene may serve as a potential prognostic marker.

Among the most influential genetic expression features for model prediction,
the following stand out KIAAQ141, MICALL2, and SLC9A2. Unlike the other
genes, such as PPM1 and LTK, which are already related in several AML studies,
as far as we know, there is no study in the literature relating any of the three
genes mentioned in the context of AML. In particular, the gene KIAA01/1,
also known as DELFE1, has been recently identified as a key player . In a
pan-cancer analysis, MICALL2 was highly expressed in 16 out of 33 cancers
compared to normal tissues . The role of SLCY9A2 in cancer is still an area
of active research, and the exact relationship between SLC9A2 and cancer de-
velopment or progression is not fully understood. However, some studies have
suggested potential associations between SLC9A42 and certain types of cancer,
such as colorectal, breast, and gastric cancer.

The findings presented in this paper suggest that the biological role of these
genes in the pathogenesis and progression of AML deserves future functional
studies in experimental models and may provide insights into the prognosis and
the development of new treatments for the disease.
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5 Conclusion

To support the decision on the therapy protocol for a given AML patient, spe-
cialists usually resort to a prognostic of outcomes according to the prediction of
response to treatment and clinical outcome. The current ELN risk stratification
is divided into favorable, intermediate, and adverse. Despite being widely used,
it is very conservative since most patients receive an intermediate risk classifica-
tion. Consequently, specialists must require new exams, delaying treatment and
possibly worsening the patient’s clinical condition.

This study presented a careful data analysis and explainable machine-learning
models trained using the well-known Explainable Boosting Machine technique.
According to the patient’s outcome prediction, these models can support the
decision about the most appropriate therapy protocol. In addition to the predic-
tion models being explainable, the results obtained are promising and indicate
that it is possible to use them to support the specialists’ decisions safely.

We showed that the prediction model trained with gene expression data per-
formed best. In addition, the results indicated that using a set of genetic features
hitherto unknown in the AML literature significantly increased the prediction
model’s performance. The finding of these genes has the potential to open new
avenues of research toward better treatments and prognostic markers for AML.

For future work, we suggest collecting more data to keep the models updated
regarding the disease variations over time. Furthermore, the biological role of
the genes KIAA0141, MICALL2, PHF6, and SLC92A in the pathogenesis and
progression of AML deserves functional studies in experimental models.
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