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Abstract. In this paper, we propose a semi-supervised setting for se-
mantic segmentation of a whole volume from only a tiny portion of one
slice annotated using a memory-aware network pre-trained on video ob-
ject segmentation without additional fine-tuning. The network is modi-
fied to transfer annotations of one partially annotated slice to the whole
slice, then to the whole volume. This method discards the need for train-
ing the model. Applied to Electron Tomography, where manual annota-
tions are time-consuming, it achieves good segmentation results consid-
ering a labeled area of only a few percent of a single slice. The source
code is available at https://github.com/licyril1403/hijacked-STM.

Keywords: Deep Neural Network · Electron Tomography · Weakly An-
notated Data · Memory Network · Semi-Supervised Segmentation.

1 Introduction

Electron Tomography (ET) [7] is a powerful technique to reconstruct 3D nanoscale
material microstructure. A Transmission Electron Microscope (TEM) acquires
sets of projections from several angles, allowing the reconstruction of 3D volumes.
However, the resulting data contain noisy reconstruction artifacts because the
number of projections is limited, and their alignment remains a challenging task
[25] (Figure 1). Thus, standard segmentation methods often fail [8], requiring
the input of an expert to achieve a good segmentation [9,13,26].

Deep learning (DL) based approaches have achieved excellent results in this
area [1,14,11], as advances are made in semantic segmentation of 2D and 3D
images [22,5,19,2,24]. Standard approaches rely on training a neural network
on fully labeled datasets, which requires many annotated 3D samples. To ad-
dress the problem of low availability of annotated data, transfer learning [21,28]
or semi-supervised learning methods have been proposed with various learning

https://github.com/licyril1403/hijacked-STM
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Fig. 1. Reconstruction of a zeolite slice (resolution: 1nm/pixel) showing many artifacts
and noise, making automated segmentation difficult.

strategies [12,6,29,15]. These methods still require a specific training step for
each new image type or object class to segment. Specifically for ET, a new
training step will be necessary for every new material and acquisition condition.
Moreover, the training process requires some expertise in machine learning to
be done properly.

In video object segmentation, a problem close to volume segmentation, sig-
nificant progress has been made using memory networks [20,27,4]. The system
is fed with an annotated query frame and provides a complete segmentation
of the corresponding video. The query frame is usually the first frame of the
video, manually segmented by an annotator. This setup, similar to one-shot seg-
mentation, has the benefit of being class independent and does not require any
learning for new query images. Memory networks encode the annotated frame
in the memory and segment the remaining frames using that memory. However,
they have two main drawbacks. First, they need various tedious training steps
and large datasets for training. Second, they require a whole segmented frame
as input.

In this paper, we propose to hijack a Space-Time Memory (STM) network
pre-trained for video object segmentation and use it to segment ET volumes with
only a few annotated pixels from one slice. The structure of the hijacked network
is slightly modified to take only a few pixels of a slice as a query at the inference
step and does not require any training. To the best of our knowledge, this is
the first time this type of general-purpose pre-trained video object segmentation
network has been used to segment ET images.

Our main contributions are:

– A new semi-supervised volume segmentation method reusing a pre-trained
object segmentation STM network without additional training.

– A mask-oriented memory readout module to provide a partially segmented
query image at the inference step.

– A detailed experimentation on several actual ET data showing that an ac-
curate segmentation is possible with only one slice and a very small portion
of annotated pixels in this slice.
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2 Related works

Electron tomography segmentation Segmentation of tomograms remains
challenging because of reconstruction artifacts and low signal-to-noise ratio.
Manual segmentation is still the preferred method [9] with the support of vi-
sualization tools [13] and various image processing methods such as watershed
transform [26]. DL-based methods have been applied in electron tomography in
more recent work [1,14], with DL models performing better in general seman-
tic segmentation tasks [22,5,19,2,24]. The main bottleneck for ET segmentation
tasks is the low availability of labeled training data. Recent works addressed
the issue with either a semi-supervised setup with contrastive learning [15] or a
scalable DL model, which only requires small- and medium-sized ground-truth
datasets [14]. Our method goes further by repurposing a VOS model without
any training phase.

Memory network Memory networks have an external module that can access
past experiences [23]. Usually, an object in the memory can be referred to as a
key feature vector and encoded by a value feature vector. Segmentation memory
networks such as STM [20], SwiftNet [27], or STCN [4] encode the first video
frame, annotated by the user, into the memory component. The next frame
(query) is encoded into key and value feature vectors. The query keys and the
memory are then compared, resulting in a query value feature vector used to
segment the object on that frame. The memory component is then completed
with the new key and value. This technique is often used in video segmentation as
the object to segment, whose shapes change as time passes, is constantly added
to the memory, providing several examples to help segmentation [20]. Unlike our
approach, where only a fraction of the frame is needed, these methods require
the annotation of the first entire frame.

Video and volumic interactive segmentation Memory networks are effec-
tive but require the segmentation of the entire first frame. An interaction loop
can be added where the user is asked to segment the first frame with clicks
or scribble to annotate the object of interest to the network [3]. The user cor-
rects the result until they are satisfied. Networks for interactive segmentation are
standard semantic segmentation models trained with an image channel, a mask
channel, and an interaction channel [17]. By combining the interactive network
for the first frame and the memory network to propagate the mask, recent works
produce a segmentation mask for the whole video with minimal input from the
user [3]. Similar methods have been applied in volumic segmentation [30,31,16].
However, for complex porous networks imaged with ET, standard interactive
methods struggle to segment correctly. Adapting an interactive model requires
training data composed of many segmented volumes not available for ET. We
propose an approach similar to interactive methods using a partially segmented
slice. Our method does not require any prior training.
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3 Proposed method

Our method uses the same model to reconstruct the partially annotated frame
and the entire volume. The images and masks in the memory are stored as key
and value feature vectors. The key encodes a visual representation of the object
so that objects with similar keys have similar shapes and textures. The value
contains information for the decoder on the segmentation. Our intuition is that
if we disable areas containing unlabelled data in the memory, we can encode
useful information to segment whole slices even with a small amount of labeled
data.

Fig. 2. The partially annotated slice is encoded by the memory encoder into the mem-
ory. At inference time, the query slice is encoded by the query encoder into a key
and a value and compared with the memory keys and values. During the memory
reading, the labeling mask selects only keys from labeled pixels, indicating whether a
pixel is annotated. The result is given to the decoder, which reconstructs the whole
segmentation.

In our framework, we ask an expert to annotate a small part of a slice As

of the volume V to get the segmentation Ŷ of the entire volume. From the
annotations given by the expert, a labeling mask Ms is built where labeled and
unlabeled pixels are denoted. The image and the annotations are encoded to
one key and one value {kM , vM} stored in the memory. There are two ways to
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propagate the annotation into the entire volume. In the first one, the memory is
directly used to segment other slices (Algorithm 1 and Figure 2). On the other
hand, we pass the same image Vs as a query into the network to get pseudo-
labels of the entire slice Ŷs. The entire slice and the newly acquired pseudo-label
mask are then encoded into a key and a value {kS , vS} to segment other slices
Vi, i ∈ [1, N ] with N the number of slices in the volume (Algorithm 2).

During the memory read, the key in memory is modified to mask unknown
zones to get the value to segment the whole slice. We use an STM network [20] as
the backbone of our method, as it was the first network to use memory networks
for 2D semantic segmentation. Moreover, as other methods in the field are based
on the STM network, our approach is generalizable to other networks.

Algorithm 1 Procedure for segmenting the whole volume with a portion of a
single slice annotated, with only the annotated bit in the memory.
Input: V , s, As, Ms, N
Output: Ŷ
{kM , vM} ← EncM (Vs, As)
while i ∈ {1, ..., N} do
{kQ, vQ} ← EncQ(Vi)
f ← PartialMemoryRead(Ms, k

M , kQ, vM , vQ)
Ŷi ← Decoder(Vi, f)

end while

Algorithm 2 Procedure for segmenting the whole volume with a portion of a
single slice annotated, with pseudo-labels of the entire slice in the memory.
Input: V , s, As, Ms, N
Output: Ŷ
{kM , vM} ← EncM (Vs, As) ▷ First slice reconstruction
{kQ, vQ} ← EncQ(Vs)
f ← PartialMemoryRead(Ms, k

M , kQ, vM , vQ)
Ŷs ← Decoder(Vs, f)
{kS , vS} ← EncM (Vs, Ŷs)
while i ∈ {1, ..., s− 1} ∪ {s+ 1, ..., N} do ▷ Whole volume propation
{kQ, vQ} ← EncQ(Vi)
f ←MemoryRead(kS , kQ, vS , vQ)
Ŷi ← Decoder(Vi, f)

end while

3.1 Key value embedding

The memory and the query encodings are slightly different. We consider, for a set
of image I ∈ RH×W and its annotation A ∈ RH×W , the memory encoder EncM
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composed of a backbone network and followed by two parallel convolutional
layers, outputting a memory key kM ∈ RH/8×W/8×C/8 and a memory value
vM ∈ RH/8×W/8×C/2 such as:

EncM (I,A) = {kM , vM} (1)

where W and H are the image size and C is the number of dimensions of the
feature vectors at the output of the backbone network.

The query encoder shares the same architecture with different weights, but
since the mask of the image is not available, only the slice passes through the
query encoder EncQ:

EncQ(I) = {kQ, vQ} (2)

with kQ ∈ RH/8×W/8×C/8 the query key and vQ ∈ RH/8×W/8×C/2 the query
value.

3.2 Partial memory read

The standard method for memory reading from the STM network is modified to
account for partially annotated slices. Let M ∈ RH×W be the annotation mask:

Mi,j =

{
0 if Ai,j is unannotated
1 if Ai,j is annotated

(3)

The mask M is then downsampled to be applied directly to the memory key:

MD = Downsample(M, 8) ∈ RH/8×W/8 (4)

A bilinear interpolation is used, which smoothes the boundaries. Next, the
similarity map S ∈ RHW/16×HW/16 is computed between a reshaped memory
kMr ∈ RHW/16×C/8 and a query kQr ∈ RHW/16×C/8 keys:

S = kQr × kMr
T

(5)

where × is the matrix product. A softmax is then applied to S. However, we
mask S with MD to cancel the unannotated areas’ memory key’s contribution
kM . Since S is the matrix product of kQ and kM , to properly mask kM , MD

is reshaped into one dimension ML ∈ RHW/16. We then multiply each row of S
with ML:

Ri,j =
exp (Si,j)M

L
i∑

k,l

exp (Sk,l)ML
k

(6)
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The resulting matrix R ∈ RHW/16×HW/16 is the similarity between each zone
of kM and kQ without the contribution of unannotated zones. The segmentation
key f ∈ RH/8×W/8×C is obtained by concatenating the query value and the
memory value, weighted by R.

f = [vQ, R× vM ] (7)

where × denotes the matrix product.

4 Experiments and results

4.1 Implementation details

We use the STM network architecture proposed in [20] as well as the weights
proposed by the authors. The network’s backbone is a ResNet, trained for a
video segmentation task with Youtube-VOS and DAVIS as training datasets.
The decoder outputs a probability map that is 1/4 of the initial input size,
which degrades the results for ET where fine details on porous areas are needed.
An upsampling operation is performed on the input slice before entering the
network. The input slice is upscaled two times as a compromise between memory
consumption and finer details.

All the results are computed with Intersection Over Union (IOU) on the
entire volume V :

IOU(V ) =

N∑
i=1

Ŷi ∩ Yi

N∑
i=1

Ŷi ∪ Yi

(8)

with Ŷ the segmented volume and Y the ground truth. The closer the IOU is to
1, the better the segmentation is.

4.2 Data

Chemical processes in the energy field often require using zeolites [10]. However,
the numerous nanometric scale cavities make zeolites complex to segment. We
evaluated our method on three volumes of hierarchical zeolites, NaX Siliporite
G5 from Ceca-Arkema [18]. Volumes’ sizes are 592×600×623, 512×512×52, and
520×512×24.

The slices are automatically partially annotated to simulate real-world data.
A rectangle window of the area Aw is considered labeled. The remaining slice is
unlabelled. The center of the window is drawn randomly on the border between
the object and the background (Figure 3). The window is adjusted to fit entirely
on the screen while maintaining its area. We define the labeling rate as r = Aw

H×W .
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Fig. 3. A partially annotated slice of a zeolite. A window of an area Aw is considered
to be annotated, while the pixel label on the outside of the window is unknown. The
center of the window is randomly selected near the border between the object and the
background to include pixels from both classes.

Fig. 4. 3D visualization of segmented volumes of hierarchical zeolites NaX Siliporite
G5. A random window of 6% of one slice has been annotated. Segmentations are
provided using our approach (Algorithm 1).

4.3 Results

For each volume, we run each experiment on the same five randomly selected
slices. The mean IOU of the three volumes is reported.

Comparaison with the STM network We first compare our method with an
unmodified STM network for several labeling rates r. We give the same partially
annotated slices for the STM network and our method. The results are shown
in Table 1. The STM network can not process the partially labeled slice because
it was not intended to deal with such data. As a result, there is no way for the
STM network to differentiate labeled and unlabeled pixels, which leads to poor
segmentation. Our key masking allows the STM network to achieve significantly
better results with accurate segmentation (Figure 4).
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Table 1. Mean IOU on our volumes for our method and an unmodified STM net-
work. The modification from our approach allows an STM-like model to produce good
segmentation.

r 0.02 0.06 0.12 0.18 0.25
Ours 0.551 0.625 0.693 0.725 0.758
STM 0.013 0.024 0.070 0.150 0.285

First slice propagation We then study the different approaches for the first
slice. We tested our method with only the annotated parts in the memory shown
(Ours) in the Algorithm 1 against our method with the pseudo-labels of the entire
first slice in the memory (Ours+F) described by the Algorithm 2. The results in
Table 2 demonstrate that better results are obtained with only the annotated bit
in the memory. The STM network performs better with accurate data instead of
more variety in memory. Our method’s implementation only uses the partially
labeled parts in the memory.

Table 2. Mean IOU on our volumes for our method with only the labeled parts in the
memory (Ours) and our method with the pseudo-labels of the first slice in the memory
(Ours+F). Our approach uses only the annotated zones in the memory.

r 0.02 0.06 0.12 0.18 0.25
Ours 0.550 0.625 0.693 0.725 0.758
Ours+F 0.564 0.588 0.650 0.671 0.710

Comparaison with other methods Finally, we compare our methods with
other approaches that can handle partially labeled slices [15]. We study the per-
formance of our method against a UNET with a weighted cross entropy to train
only on labeled zones and a contrastive UNET that uses contrastive learning to
exploit unlabeled areas. Both methods require a training phase. The results are
shown in Table 3. Our method performs better than a standard UNET but still
lags behind the contrastive UNET. Nevertheless, our method shows promising
results with scores close to methods with a training procedure. Figure 5 shows
all the results from the experiments previously mentioned.

5 Conclusion

In this paper, we illustrate that a slightly modified STM network handles accu-
rate volumetric segmentation of 3D scans from ET with only a tiny portion of
one slice labeled needed without any further fine-tuning. This approach achieves
results close to methods that require a training procedure. The masking of the
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Table 3. Mean IOU on our volumes for our method, a UNET adapted for partially
segmented areas, and a UNET using a contrastive loss to exploit both labeled and
unlabeled zones. Our proposed method achieves results close to these methods despite
no training phase.

r 0.02 0.06 0.12 0.18 0.25
Ours 0.551 0.625 0.693 0.725 0.758
UNET 0.544 0.600 0.671 0.695 0.839
Contrastive UNET 0.737 0.768 0.793 0.813 0.815

Fig. 5. Mean IOU for several labeling rates r. All methods do not need an additional
training procedure except UNET and contrastive UNET [15].

memory shows that semi-labeled slices can be used to propagate accurate seg-
mentation in fields where annotated data are not widely available. A more de-
tailed segmentation mask can be obtained with further investigations, as the
original STM network output size is 1/4 of the original size.
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