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Abstract. With the advent of recent technologies, image editing has
become accessible even without expertise. However, this ease of manip-
ulation has given rise to malicious manipulation of images, resulting in
the creation and dissemination of visually-realistic fake images to spread
disinformation online, wrongfully incriminate someone, or commit fraud.
The detection of such forgeries is paramount in exposing those deceitful
acts. One promising approach involves unveiling the underlying mosaic
of an image, which indicates in which colour each pixel was originally
sampled prior to demosaicing. As image manipulation will alter the mo-
saic as well, exposing the mosaic enables the detection and localization
of forgeries. The recent introduction of positional learning has facilitated
the identification of the image mosaic. Nevertheless, the clues leading to
the mosaic are subtle and frail against common operation such as JPEG
compression. The pixelwise estimation of the mosaic is thus often im-
precise, and a comprehensive analysis and aggregation of the results are
necessary to effectively detect and localize forged areas. In this work,
we propose mimic: Mosaic Integrity Monitoring for Image a Contrario
forensics. an a contrario method to analyse a pixelwise mosaic estima-
tion. We show that despite the weakness of these traces, the sole analysis
of mosaic consistency is enough to beat the state of the art in forgery de-
tection and localization on uncompressed images. Moreover, results are
promising even on slightly-compressed images. The a contrario frame-
work ensures robustness against false positives, and the complementary
nature of mosaic consistency analysis to other forensic tools makes our
method highly relevant for detecting forgeries in high-quality images.

Keywords: Positional learning · Image Forgery Detection · Demosaic-
ing · a contrario · Media forensics

(a) Forged image (b) Detected grid offsets (c) Detected forgery

Fig. 1: Mimic automatically detects forgeries based on the analysis of the under-
lying mosaic of an image. An a contrario detection automatically filters the grid
estimates in search for significant inconsistencies, while keeping false positives
under control.



1 Introduction

The once-reliable status of photographic images as evidence is now uncertain,
owing to the proliferation of digital photography and the development of so-
phisticated photo editing tools. Although image modifications are frequently
intended to enhance an image’s aesthetic appeal, they can alter the meaning of
the image. The addition, modification, or concealment of objects can give an
image a completely new and potentially misleading meaning, especially as the
modifications can now appear convincingly authentic.

However, images contain traces and artefacts left by the various operations
of the image signal processing pipeline (ISP), from the camera sensors to the
compressed version of the image. Those traces act as a signature to the image;
as modifications made to an image will alter the original traces. As such, the
resulting inconsistencies can be detected to show that the image has been forged.
One such trace that can be analysed is the image mosaic.

Most cameras do not capture colours directly, instead, a colour filter array
(CFA) is used to sample each pixel’s value in a single colour. By applying filters of
different colours to adjacent sensors, the pixels are sampled in different colours.
The missing colours are interpolated with a demosaicing algorithm to provide a
true colour image. We focus on the Bayer CFA, used in nearly all commercial
cameras. This matrix samples half of the pixels in green, a quarter in red, and a
quarter in blue, in a quincunx pattern. Depending on the offset, the image can be
sampled in one of four patterns: r g

g b , b g
g r , g r

b g , or g b
r g . These patterns are phases

of the 2-periodic CFA, offset by 0 or 1 in both directions. As demosaicing involves
the reconstruction of missing data, no demosaicing method can be considered
perfect, and each method introduces artefacts of some degree. As a result, these
artefacts can reveal the image mosaic.

When an image is forged, the underlying mosaic of the image is altered as
well. Copy-move forgeries, for instance, will displace the mosaic and might induce
dephasing. Common operations in photo editing software, such as cloning and
healing, often consist of multiple small copy-moves from smooth regions, the
underlying mosaic of the resulting image will thus feature many small blobs of
the original mosaic. Splicing from JPEG-compressed or resampled sources will
make the underlying mosaic harder to detect, and might even alter its periodicity.
Overall, revealing the underlying mosaic of an image provides important clues
to the presence of image forgeries.

Of course, this mosaic is not explicitly known. Revealing the sampling colour
of each pixel is a difficult enterprise, as the mosaic traces are hidden deep in the
highest frequencies of an image. The slightest JPEG compression can dampen
or even erase said traces [20], making it even more difficult to unconceal.

The recent advent of positional learning [6,7], coupled with internal fine-
tuning, enabled the analysis of demosaicing traces on an image, even after a slight
compression. However, even these methods remain locally inaccurate; reliable
information on the mosaic can only be obtained when aggregating the method’s
output over a larger scale. Simply revealing the estimated mosaic is consequently
no longer enough to detect forgeries. To provide reliable detections, a method



must be able to analyse its own estimation so as to distinguish true mosaic
inconsistencies from regions where the analysis is not accurate enough.

A contrario detection theory [14,15] provides a way to perform such an anal-
ysis. Based on the non-accidentalness principle, this theory proposes to detect
data based on their unlikelihood under a background hypothesis, by thresholding
the results based on a tolerated limit on the number of false alarms (NFA) under
the hypothesis. This paradigm has seen successful applications in varied detec-
tion tasks [1,21,22,23,24,28,29,30], including forensics [3,8,10,5,10,17,19,32,29].

In this article, we propose mimic: Mosaic Integrity Monitoring for Image a
Contrario forensics, an a contrario method to analyse a mosaic estimate and re-
liably detect image forgeries. Taking as only input the pixelwise mosaic estimate
from an existing demosaicing analysis algorithm, the proposed method detects
regions in which the estimate is significantly incoherent due to a shifted or even
locally erased mosaic. Mimic beats the forgery detection SOTA on high-quality
images, even against a slight compression.

2 Related Works
Demosaicing analysis focused at first on linear estimation or using filters to de-
tect inconsistencies [34,8,7]. Popescu and Farid jointly estimated a linear model
and detected sampled pixels [34]. Ferrara looked for the local absence of de-
mosaicing traces by comparing the variance between sampled and interpolated
pixels [18]. Kirchner and Milani identified the sampling pattern by performing
demosaicing with multiple algorithms [25,31]. Choi compared the counts of in-
termediate values in each lattice to estimate the correct pattern [11,4].

A contrario analysis is more than twenty years old [15], and has recently seen
use in image forensics, primarily to attempt to detect inconsistencies in the
JPEG [32] or demosaicing patterns [10,8] while controlling the risks of false pos-
itives. Blocks are made to vote for the most likely pattern, then the algorithm
look for regions where one of the votes is significant enough to void the back-
ground hypothesis of an absence of demosaicing or JPEG compression. If two
different patterns are significantly detected in different places, then the meth-
ods conclude to a forgery. This paradigm, however, is unable to detect regions
without demosaicing traces, as is often possible in forged images, and also fails
to reliably detect many forgeries even when they are visible in the vote maps.

Positional learning In AdaCFA [6], it is noted that due to translation invariance,
convolutional neural networks cannot inherently detect the position of pixels, or
information thereon. However, they can do so if the input image itself contains
cues on the position of each pixel, as they will then learn to infer the positional
information from these cues. In the case of demosaicing, the sampling mosaic of
an image is 2-periodic, and demosaicing artefacts thus feature a strong 2-periodic
component. If a CNN is trained on demosaiced images to detect information such
as the modulo (2, 2) position (horizontally and vertically) of each pixel, it will
naturally rely on the demosaicing artefacts to use them as clue to the position
of the pixel. Of course, the actual position of the pixel is already known, there



is thus no need to actually detect it. What matters is that the network mimics
the underlying mosaic of an image. Being trained on authentic images with
integrate mosaics, the network indeed detects the correct positions of pixels in the
training set. When used on a real image, however, the correctness of the output
depends on the integrity of the image mosaic. If an image is authentic with an
integrate mosaic, the network should correctly detect the position of pixels. More
interestingly, if the tested image is locally forged, its mosaic will likely be locally
altered as well. As a consequence, the network will yield incorrect outputs. If the
mosaic has simply been shifted, for instance due to an internal copy-move, the
model output will likewise be locally shifted on the forged area. If the mosaic is
locally destroyed, for instance due to blurring or the insertion of a compressed
and/or resampled object, whose mosaic is no longer visible, the network will
simply render noise-like output instead of the actual position. In both cases,
the fact that the network yields locally erroneous results is the very proof of a
local forgery. This positional learning is introduced with AdaCFA [6] and refined
with 4Point [7]. Combined with internal retraining on the very tested image, the
internal mosaic of an image can be revealed even on slightly-compressed images.

3 Proposed method: Mimic
Mimic extends on 4Point [7], where positional learning is coupled with internal
fine-tuning on tested image. A network is trained on demosaiced images to detect
two features on each pixel: its diagonal offset, which corresponds to whether the
pixel was initially sampled in green or in another colour, and the evenness of
the line and column of pixels that are on the main diagonal, which corresponds
to whether the pixel (which is at this point known not to be sampled in green)
was sampled in red or blue. This formulation is equivalent to detecting the
modulo 2 position of the pixels horizontally and vertically, but is more natural
in terms of demosaicing. From there, 4Point introduces a simple scheme to give
a confidence over the authenticity of regions in the image. The mosaic estimated
by the network is satisfying even on slightly-compressed images. However, as
artefacts are not always visible and are often dampened or destroyed by even
slight JPEG compression, the detected positions is rarely perfect. The result
of the network only lead to an estimation of the underlying mosaic, and the
estimation itself is not error-free. A thorough analysis of the result is thus needed
to distinguish true clues of forgeries from mere estimation errors of the network.

Starting from the same base network and training, we introduce a more ro-
bust way to analyze the output of the network. Using an a contrario framework,
we look for regions where the estimate is significantly more erroneous than in
the rest of the image. Indeed, while the mosaic may be harder to detect on some
images due to the processing of an image, this difficulty should not naturally
vary within an image, as such, a locally erroneous estimate is a sign of forgery.

3.1 Block votes

The network outputs two features for each pixel, namely its diagonal offset Od

and the evenness of its line offset Ol, both between 0 and 1 with extremes
signifying more confidence in the result.



To bypass differences that may arise between differently-sampled pixels, the
results are aggregated into 2× 2 blocks, which correspond to a mosaic tile. The
estimations on the four pixels of each block are averaged and compared to the
midpoint, so as to return three binary outputs per block:

– δ · g
g · |

g ·
· g

represents the diagonal of the block, more precisely whether the
underlying mosaic tile of the block has green-sampled pixels in the top-right
and bottom-left corners ( · g

g · kind, with δ · g
g · |

g ·
· g

= 0) or in the top-left and
bottom-right corners ( g ·

· g kind, with δ · g
g · |

g ·
· g

= 1)
– δ r g

g b | b g
g r

(resp. δg r
b g |g b

r g
) refine on the diagonal to estimate the full pattern.

They represent whether, assuming the block tile is of the · g
g · kind (resp.

gxxg), whether it is more likely to be on a r g
g b or b g

g r tile (resp. g r
b g or g b

r g ).

We now know the detected diagonal and pattern of each 2 × 2 block in the
image. The detected diagonal and pattern of the whole image is then defined
as the mode of the blocks’ diagonals and patterns. Let Dg ∈ { · g

g · ,
g ·
· g } and

Pg ∈ { r g
g b ,

b g
g r ,

g r
b g ,

g b
r g } denote the global diagonal and pattern of the image.

3.2 A contrario automatic forgery detection

Algorithm 1: Error map computation
1 function compute_errormap(P)

Input P: patterns or diagonal of each block, size (X,Y ).
Output E: Error map of P , same size.
Output Pg: Global detected pattern or diagonal.

2 Pg := mode(P )
3 E := 0X,Y

4 for x from 0 to X and y from 0 to Y do
5 if Px,y ̸= Pg then
6 Ex,y := 1

7 return E, Pg

In each 2×2 block of the image, we have derived an estimation of the diagonal
tile and full pattern of the underlying mosaic. These estimations can be compared
to the global estimations to look for forgeries. So as to avoid false positives that
are solely due to misinterpretation of the detected mosaic map, we propose an
a contrario framework to automatically detect significantly deviant regions.

As proposed in [8], we could focus on regions that present a significant grid
that is different from the grid of the global image. Yet, this would not enable us
to detect areas with multiple small patches of different grids (as is frequently the
case on inpainted images); nor would we see the localised absence of demosaicing.

Instead, we detect regions where the detection is significantly erroneous,
ie.where the network makes more mistakes than in the rest of the image. We
apply the method separately on the detected diagonals and patterns. Let Ed



(resp.Ep) be a binary map which equals 1 for each block whose detected diago-
nal (resp.pattern) is different from Dg (resp.Pg). This is a map of the “wrong”
blocks. The computation of those maps is described in Algorithm 1.

For the rest of the subsection, E represents either Ed or Ep. The empirical
probability of any block on the image being wrong is denoted by p0, and is
computed as the mean of E. We want to find regions in which the error density
is significantly higher than p0.

Algorithm 2: NFA computation
1 function get_rectangle_nfa(E, d, x0, x1, y0, y1)

Input E: 1 if the block is erroneous, 0 if it is correct. Size (X,Y ).
Input d: Downsampling coefficient, given by the radius of the linear

estimation filters.
Input x0, x1, y0, y1: Coordinates of the rectangle whose NFA to compute
Output ϵ: NFA of the rectangle

2 p0 :=
1

X · Y

X∑
x=0

Y∑
y=0

Exy

3 ntests := 2 ∗ (X · Y )2

4 k :=

x1∑
x=x0

y1∑
y0

Exy

5 n := (x1 − x0) · (y1 − y0)

6 NFA := ntests · Ip0
(

k

d2
− 1,

n− k

d2

)
7 return NFA

Let us assume that, in a given rectangle, k out of the n blocks contained in the
rectangle are incorrect. Under the background hypothesis that the probability
of error is p0, and assuming that the blocks are independent, the probability of
having at least k wrong blocks in the area is the survival function of the binomial
distribution Binomsf (k, n, p0). Yet a first obstacle to this simple strategy arises,
as the grid values of different blocks are not independent, as the neural network
uses inputs that overlap between neighbouring blocks. To achieve independence,
we simulate down-sampling and divide k and n by d2, where d is the distance
between two independent outputs. We set d to 17, the radius of the CNN. To
account for the fact that in the binomial integers are then replaced by floating
values, we use the Beta distribution to interpolate the binomial. The probability
of having at least k wrong blocks in this area is thus evaluated by

pk,n,p0
= Ip0

(
k

d2
+ 1,

n− k

d2

)
,

where Ix is the regularized incomplete Beta function. Under the a contrario
framework, the number of tests is the possible number of rectangles in the image,
that is, the number of blocks squared, multiplied by a factor 2 since we work
separately on the patterns and diagonal. The NFA associated with the detection,



whose computation is described in Alg. 2, is consequently defined by

NFAk,n,p0 = 2n2
blocksIp0

(
k

d2
− 1,

n− k

d2

)
. (1)

Algorithm 3: Forgery detection
1 function get_forgery_mask(E, d, s)

Input P: Patterns or diagonals of each block, size (X,Y ).
Input pb: 0.5 if P represents diagonal, 0.25 if it represents patterns.
Input d: Downsampling coefficient, given here by the size of the filters.
Input s: Stride at which to search for rectangles. Here, s = 16.
Output D: Forgery mask, each pixel represents the NFA detection score of

its corresponding 2× 2 block.
2 D := +∞
3 E,Pg := compute_errormap(P )
4 Ec := morphological_closing(E, disk2)
5 labels := label_connected(E)
6 for label from 0 to max(labels) do
7 M = labelsx,y = label

8 if
1

|Ec|
∑
x∈Ec

1EC (x) > 1− pb then

9 ϵ := 0 for R rectangle within the bounding box of M at
step s do

10 ϵR := get_rectangle_nfa(E, d,R)
11 ϵ := min(ϵ, ϵR)

12 M := morphological_closing(M, disk8)
13 D|M := min(D|M, ϵ)

14 return D

Ideally, to detect forgeries in an image, we would compute the NFA of all
the rectangles in the image. The score of a pixel would be the minimal score
among the rectangles containing that pixel, and the score of an image would be
that of the most significant rectangle. However, the number of rectangles scales
quadratically with the number of pixels in an image. Hence, checking all possible
rectangles is not possible. Even if a forgery is detected, some rectangles bigger
than the forgery itself may still be significant, and the detection will therefore
be too large; conversely, if part of a forgery is detected, we should detect nearby
parts of the same forgery as well, even if they are not as significant as the
detected part. As a consequence, we propose to first detect and separate all
potential forgeries, and then to decide on their significance, so as to improve the
localization of the forgeries. The method used is described in Alg. 3.

Still separately on the diagonal and full patterns, we use the map E of 2× 2
blocks whose diagonal/pattern is erroneous. We apply a morphological closing
to this map with a disk of size 2 to connect inconsistent blocks, and segment the
resulting map into connected components. Components where the global pattern



Image Ground Truth Grid analysis 4Point Mimic

Fig. 2: Visual results on Korus forged images. In most cases, mimic detects the
forgeries, even with inaccurate grid estimates. Although it uses the same grid
estimate as 4Point, its detections are much more precise, in addition to being
automatic. Its main caveat is that it misses some detections when they are too
thin or diagonal, such as in the second and last columns.

(respectively diagonal) represent more than 25% (respectively 50%) of the blocks
are immediately rejected and not tested for forgeries.

Each of the remaining components is tested to determine whether it is a
forgery. On each component, we test all the rectangles contained within the
bounding box of the component, with a step of 16 pixels. The selected striding
represents a compromise between precision and computation time, as a lower
stride means more rectangles need to be checked.

Finally, we keep the NFA of the most significant rectangle. We set the score
of the whole component to this NFA, thus solving the final two issues addressed
above: only blocks that were in the component are given this NFA, and blocks out
of a significant rectangle but still in the component are kept. Forgery detection
is performed separately on the full pattern and on diagonals, then the detected
forgeries are merged. The final NFA map is the pointwise minimum of score
maps of the patterns and diagonals NFA.

The NFA of a region is an upper bound on the expected number of regions
that would be falsely detected as forged under the background hypothesis. We
set the threshold to ϵ = 10−3, and the final, binary map keeps pixels whose NFA
is below this threshold. Under the background hypothesis, the false detection



rate therefore is expected to be below one for 1000 images. Of course, this rate
only concerns the risk of false positives that are due to a misinterpretation of
the estimated mosaic, and does not provide further guarantees against significant
errors within the estimated mosaic, which could be due to the image structure,
such as the presence of textured areas, or post-processing such as resampling
which would modify the mosaic traces. Still, this enables us to filter out regions
which are only marginally less precisely detected than the rest of the image. The
proposed a contrario method thus only select regions which are significantly more
erroneous than the rest of the image, regardless of the reason, and provides us
with a mathematically rigorous way to automatically interpret the estimated
mosaic to yield an automatic detection.

4 Results

Method Uncompressed JPEG Q = 95 JPEG Q = 90

Mimic 0.724 0.311 0.196

4Point [7] 0.709 0.307 0.151
AdaCFA [6] 0.692 0.005 0.003
DDem [10] 0.401 0.129 0.093
Shin[35] 0.104 0.001 0.001

Choi[11,4] 0.603 0.156 0.070
Ferrara[18,37] 0.071 0.000 0.000
Dirik[16,37] -0.002 0.000 0.001

Park[33] 0.116 0.001 0.000

Noiseprint[13] -0.001 0.004 0.001
Splicebuster [12] 0.003 0.004 0.001
ManTraNet [2,36] 0.000 -0.001 0.002

Table 1: Results on the CFA Grid exomask (Grid) dataset of the Trace database,
on uncompressed images and after compression with quality factors 95 and 90.
The methods are grouped, after the proposed method mimic are methods based
on demosaicing analysis, then more generic methods that do not specifically tar-
get demosaicing artefacts. Our analysis of the mosaic improves on the results of
4Point, especially on stronger compression (Q = 90). As already established in
the literature [6,10,7,9], generic methods that do not specifically target demo-
saicing artefacts are entirely blind to shifts in the mosaic.

We test mimic on the Trace CFA Grid [9] and on the Korus [26,27] datasets.
The Trace CFA Grid dataset, on which results are shown in Tab. 1 contains
1000 forged images that can only be detected by their demosaicing traces, thus
enabling a comparison between demosaicing analysis methods and evaluation
of the sensitivity to demosaicing artefacts of more generic methods. The Korus
dataset, on which results are shown in Tab. 2 and visually in Fig. 2, features 220
forged images from four cameras.



Method Overall Canon 60D Nikon D7000 Nikon D90 Sony α57

Proposed 0.472 0.000 0.595 0.630 0.662

4Point [7] 0.353 0.00 0.401 0.378 0.624
AdaCFA [6] 0.167 0.002 0.049 0.044 0.574

Shin[35] 0.143 0.021 0.003 0.012 0.511
Choi[11,4] 0.238 0.004 0.176 0.251 0.251

Ferrara[18,37] 0.321 -0.016 0.498 0.461 0.339
Dirik[16,37] 0.153 0.036 0.241 0.275 0.062

Park[33] 0.338 0.018 0.540 0.491 0.302
Noiseprint[13] 0.202 0.153 0.322 0.236 0.148

Splicebuster [12] 0.238 0.153 0.329 0.222 0.155
ManTraNet [2,36] 0.169 0.121 0.229 0.193 0.143

Table 2: Results on the Korus dataset of forged images. No demosaicing artefacts
are found on the Canon 60D images by any of the demosaicing-based method,
thus we can safely conclude they do not feature demosaicing artefacts. On all
the other images, as well as overall, the proposed method significantly improves
over the existing state of the art on this dataset.

Results are presented using Matthew’s Correlation Coefficient (MCC), a met-
ric ranging from 1 (perfect detection) to -1 (opposite detection). Any input-
independent method has a zero MCC expectation. The MCC can only be mea-
sured on binary detections, which is only the case for mimic. For the other
methods, we threshold the output on the threshold that maximizes the score,
giving those methods a slight advantage compared to a real case scenario, where
adjusting the threshold to the data would not be possible.

Experiments on the Trace dataset show that mimic beats the state of the
art even when the images are JPEG-compressed at quality levels 95 and 90,
while generic methods are shown to be insensitive to demosaicing artefacts and
inconsistencies. On the Korus dataset, one quarter of the images do not feature
traces of demosaicing, as validated by all tested methods. The proposed method
is thus unable to detect forgeries on this part of the dataset. Despite that, mimic
still yields the best overall score on this dataset. We further note that on the
images without traces of demosaicing, mimic does not make any false detection.

5 Conclusion
In this paper, we proposed mimic (Mosaic Integrity Monitoring for Image a Con-
trario forensics), an a contrario method that extends on the demosaicing analysis
network 4Point [7] to refine its analysis and automatically detect image forgeries.
Mimic identifies forgeries as regions where the network output is significantly
more erroneous than in the rest of the image. An a contrario framework helps
limit the risk of false positives.

Demosaicing artefacts are frail and subtle, yet they can provide highly-
valuable information to detect forgeries. On high-quality images, their sole anal-
ysis yields better results on forgery detection than any other state-of-the-art
method. These results are furthermore fully complementary to non-demosaicing-
specific methods, which are not sensible to demosaicing artefacts.
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