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Abstract. Quality control (QC) has long been considered essential to
guarantee the reliability of neuroimaging studies. It is particularly im-
portant for fetal brain MRI, where large and unpredictable fetal motion
can lead to substantial artifacts in the acquired images. Existing meth-
ods for fetal brain quality assessment operate at the slice level, and fail
to get a comprehensive picture of the quality of an image, that can only
be achieved by looking at the entire brain volume. In this work, we
propose FetMRQC, a machine learning framework for automated image
quality assessment tailored to fetal brain MRI, which extracts an en-
semble of quality metrics that are then used to predict experts’ ratings.
Based on the manual ratings of more than 1000 low-resolution stacks
acquired across two different institutions, we show that, compared with
existing quality metrics, FetMRQC is able to generalize out-of-domain,
while being interpretable and data efficient. We also release a novel man-
ual quality rating tool designed to facilitate and optimize quality rating
of fetal brain images.

Our tool, along with all the code to generate, train and evaluate the
model is available at https://github.com/Medical-Image-Analysis-

Laboratory/fetal_brain_qc/
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Fig. 1. Examples of clinical image quality: left, excellent quality, and right, low quality.
On the right, the stack would be excluded from further analysis due to significant
intensity changes between many slices and strong signal drop; in the through-plane
view, strong inter-slice motion makes it difficult to discern the structure of the brain.

1 Introduction

Magnetic Resonance Imaging (MRI) of the fetal brain is increasingly comple-
menting ultrasound imaging to diagnose abnormalities, thanks to its unmatched
soft tissue contrast [1,2]. However, inherent noise sources and imaging artifacts,
such as fetal motion, can degrade the quality of the acquired images and jeopar-
dize subsequent analyses. Indeed, insufficient MRI data quality has been shown
to bias neuroradiological assessment and statistical analyses [3–5]. Therefore, es-
tablishing objective image quality assessment and control (QA/QC) protocols for
neuroimaging studies has long been considered critical to ensure their reliability,
generalization, and replicability [6, 7]. More recently, some QA/QC tools have
been popularized for the adult brain and attempt to automate and aid exclu-
sion decisions [8–12]. Unfortunately, these techniques have found generalization
across imaging devices extremely challenging [8]. Moreover, they are inapplica-
ble to fetal MRI, as they rely on invalid prior knowledge, e.g., assuming that
the head is surrounded by air or the relative position of the brain with respect
to the axis of the bore of the scanner. This is true in particular for MRIQC [8],
from which this work is inspired.

In fetal brain MRI, QA/QC has been approached implicitly within super-
resolution reconstruction (SRR) methods [13–17]. SRR builds a high-resolution,
isotropic 3D volume from several differently-oriented, consecutive stacks of 2D
slices with substantially lower resolution on the through-plane axis (i.e., aniso-
tropic resolution). Typically, SRR methods rely on a manual selection of stacks
that are deemed adequate for reconstruction. These methods may incorporate
an automated QC stage for outlier rejection that excludes sub-standard slices or
pixels from the input low-resolution stacks [13,14,17,18]. Outside of fetal brain
MRI, Uus et al. [19] have explored methods to automate the rejection of poorly
registered stacks. However, bad quality series can remain detrimental to the final
quality of the reconstruction, even when SRR pipelines include outlier rejection
schemes. This is why, in this work, we focus on the QA/QC of low-resolution
(LR) stacks.
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Recent work has applied deep learning on QA/QC of LR stacks of fetal
brain MRI [20–22]. These solutions automatically identify problematic slices for
exclusion (QC), and, if streamlined with the acquisition, their short inference
time permits re-acquiring corrupted slices [23] (QA). However, not all artifacts
can be seen by analyzing single slices. For instance, inter-slice motion (visible
on the right of Figure 1), a strong bias field in the through-plane direction, or
an incomplete field of view can often clearly be seen only when considering the
entire volume.

We propose FetMRQC, a framework for QA/QC of clinical fetal brain MRI,
operating on stacks of LR, T2-weighted (T2w) images. Inspired by MRIQC [8],
FetMRQC generates a visual report corresponding to each input stack, for effi-
cient screening and manual QA. The tool also automatically extracts an ensem-
ble of image quality metrics (IQMs) that reflect some quality feature. Finally,
we propose a learning framework to automatically predict image quality from
the IQMs corresponding to new images. We manually assessed more than 1000
LR stacks acquired across two different institutions and several MRI scanners
within each. Using these manual quality annotations, we quantitatively assess
FetMRQC in two QA/QC tasks, namely, regression and binary classification (in-
clusion/exclusion). Our results demonstrate the feasibility of automated QA/QC
of T2w images of the fetal brain and the substantial improvement of SRR after
QC of subpar stacks.

2 Methodology

FetMRQC comprehends two major elements to implement QA/QC protocols
of unprocessed (LR stacks) fetal brain MRI data. First, the tool builds upon
MRIQC’s paradigm and generates an individual QA report for each LR stack
to assist and optimize screening and annotation by experts. Second, FetMRQC
proposes a learning framework (Figure 3) based on image quality metrics (IQMs)
extracted from the data to automate the assessment.

2.1 Data

We retrospectively collected LR T2w stacks from 146 subjects retrieved from two
existing databases at two different institutions, CHUV and BCNatal. The data
were acquired on different Siemens scanners and a common MR scheme (Half
fourier Single-shot Turbo spin-Echo; HASTE), at 1.5T and 3T, with both normal
and pathological cases. The full list of parameters is detailed in Table 4 in the
Appendix. The corresponding local ethics committees independently approved
the studies under which data were collected, and all participants gave written
informed consent. CHUV provided 61 subjects, with an average of 7.9±3.0 LR
stacks per subject. The BCNatal provided 85 subjects, 5.8± 3.4 stacks per sub-
ject. The aggregate sample size is N=1010 LR series.
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Fig. 2. Visual quality assessment tool proposed in this work. The HTML report gives
some general information on the anonymized scan, displays all slices with brain content,
as well as both orthogonal through-plane views, as seen on Figure 1.

2.2 Manual QA of fetal MRI stacks

Akin to MRIQC [8], FetMRQC generates an HTML-based report adapted to
the QA of fetal brains for each input LR stack (Figure 2). The input dataset is
required to comply with the Brain Imaging Data Structure (BIDS) [24], a for-
mat widely adopted in the neuroimaging community. The reports are generated
using an image with a corresponding brain mask. This mask can be extracted
automatically, and in this work, we used MONAIfbs [25]. Each individual-stack
report has a QA utility (the so-called rating widget, with which raters can fill in
an overall quality score, the in-plane orientation, and the presence and grading
of artifacts showcased by the stack. We chose also to use an interval (as opposed
to categorical) rating scale with four main quality ranges: [0, 1]: exclude – (1, 2] :
poor – (2, 3]: acceptable – (3, 4]: excellent. Interval ratings simplify statistical
modeling, set lower bounds to annotation noise, and enable the inference task
where a continuous quality score is assigned to input images, rather than broad
categories.

We generated the individual report corresponding to each of the 1010 LR
stacks. Two raters independently annotated each 555 of the dataset using the
proposed tool, which yielded 100 stacks annotated by both raters to test inter-
rater variability. These 100 stacks were randomly selected. Rater , YG, 1 is a
maternal-fetal physician with 5 years of experience in neuroimaging, and Rater 2,
MBC, is an engineer with 20 years of experience in neuroimaging.

2.3 IQMs extraction and learning

IQMs in fetal brain MRI. Leveraging the same workflow that generates the
individual reports, a number of IQMs were extracted from the full stack and
from the information within the brain mask. Since only a few IQMs defined
by MRIQC can be applied to fetal brains, we implemented a set of IQMs spe-
cific to the application at hand. In [14], Kainz et al. proposed a rank error
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Fig. 3. Proposed automated IQA pipeline. Given an input image and the corresponding
brain mask, an ensemble of IQMs are extracted, and then processed in a prediction
model. IQMs are normalized and irrelevant entries are removed before being fed into
a regression or classification model, that produces the final outcome.

based on the estimated compressibility of an LR stack. Later on, brain mask-
derived measures were used such as the volume of the brain mask, mask volume,
in [18] or its centroid in [26]. Recently, deep learning-based IQM slice-wise and
stack-wise have been proposed, dl slice iqa [21] and dl stack iqa [27], which
respectively do slice-wise and stack wise quality assessment12.

We propose additional IQMs for quality prediction that have not previously
been used in the context of fetal brain MRI. They can roughly be categorized
into two groups, and full details are provided in Table 3 in the Appendix. In a
nutshell, intensity-based IQMs directly rely on the voxel values of the image.
These include summary statistics [8] like mean, median, and percentiles. We also
re-use metrics traditionally used for outlier rejection [13, 14, 18] to quantify the
intensity difference between slices in a volume. We also compute entropy [8],
estimate the level of bias using N4 bias field correction [28] and estimate the
sharpness of the image with Laplace and Sobel filters. The second type of metrics
are shape-based and operate directly on the automatically extracted brain
mask. We propose to use a morphological closing to detect through-plane motion,
as well as edge detection to estimate the variation of the surface of the brain
mask.

Variation on the metrics. All the IQMs operate on LR images or masks
and can be modified by various transformations of the data. For instance, Kainz
et al. [14] evaluated their metrics only on the third of the slices closest to the cen-
ter of a given LR volume. We include various variations on the IQMs, including
considering the whole ROI instead of the centermost slices ( full). Other vari-
ations include keeping or masking the maternal background, aggregating point
estimates using mean, median, or other estimators, computing information the-
oretic metrics on the union or intersection of masks, etc. Finally, slice loss

metrics can be either computed as a pairwise comparison between all slices (by
default) or only on a window of neighboring slices ( window). With all the dif-

1 We use the pre-trained models throughout these experiments, as we want to test the
off-the-shelf value of these IQMs

2 The method of Liao et al. [22] was not included because their code is not publicly
available, and we could not get in contact with the authors.
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ferent variations, we arrive at a total of 75 different features. See Fig. 7 in the
Appendix for a cross-correlation matrix between all IQMs on our dataset.

Feature-wise normalization. We explored both global and subject-wise
standard and robust scaling. In our experiments, we did not notice substantial
changes between global and subject-wise scaling, and for the sake of simplicity,
we adopted global scaling in the rest of this work.

Feature-selection and dimensionality reduction. We explored feature
variance and correlations. We removed irrelevant features (variance = 0 for a
given subset of data) and drop IQMs that are highly correlated with each other
(with threshold 0.8 and 0.9). We also removed features which do not contribute
more than noise using the Winnow algorithm [29] with extremely randomized
trees [8]. Finally, we also explored using principal component analysis to reduce
dimensionality and construct orthogonal features as input of the model.

Model selection and evaluation through nested cross-validation.
Nested cross-validation (CV) is a fully automated mechanism to perform model
selection and evaluation without introducing optimistic biases [30]. In this frame-
work, an outer CV loop benchmarks the expected performance of the family of
models represented by the inner loop. An inner CV loop is executed for each
fold of the outer loop to select the best-performing model on average.

We set up the nested CV framework with five folds in both the inner and
outer loops (80% train, 20% test at each level), for both the regression and classi-
fication tasks. We ensured to group together all the LR stacks of each subject to
avoid data leaking between the training and testing fold. For the regression task,
we evaluated linear regression, gradient boosting, and random forests. For classi-
fication, we considered logistic regression, random forests, gradient boosting, and
AdaBoost. We primarily optimized feature selection strategies and model fitting
parameters. A detailed description of the combinations of models and parame-
ters optimized is available in Table 5 in the Appendix, and selected parameters
are detailed in Table 6. The experiments were implemented with Python 3.9.15
and Scikit-learn 1.1.3 [31].

Baseline models and evaluation. We evaluated three variants of our model.
First of all, we assessed the predictive power of a subset of individual features
that have previously been proposed and used for fetal brain QA/QC (namely,
rank error, rank error full mask volume, centroid, centroid full,
dl slice iqa and dl stack iqa). The individual features were scaled and then
fitted with a linear regression or logistic regression model for prediction. We
then reported the performance of the best-performing feature, which consis-
tently was the dl stack iqa [27]. Secondly, we considered a base variant of our
IQA pipeline, using the same subset of features above. Finally, we considered a
model using all available features, referred to as FetMRQC.

The models were evaluated on two different data configurations. In the in-
domain evaluation, we aimed at quantifying how models would generalize on new
subjects acquired at either sites. We used nested CV to tune the hyperparameters
on the data from one group of subjects from both sites and evaluated the model
on a different group of subjects. In the out-of-domain evaluation, we aimed at
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Fig. 4. Inter-rater correlation: blue
and yellow data are respectively
from CHUV and BCNatal.

Fig. 5. MAE as a function of the size of the train-
ing set. The individual metric, dl stack iqa full

is constant because it only performs inference.

quantifying how models would generalize to new sites. We used nested CV to
tune the hyperparameters on the data from one site and evaluated the model on
the other site.

Our regression results were evaluated using mean absolute error (MAE) and
Spearman rank correlation. Our classification results used F1-score and the area
under the receiver operating characteristic curve (AUC ROC).

3 Results and discussion

FetMRQC ’s reports optimize stack screening and bolster inter-rater
reliability. Figure 4 summarizes the high agreement between the two raters,
with a Pearson correlation coefficient of 0.79 and 0.83 for CHUV and BC-
Natal. On CHUV, 120 series are manually rated below the exclude threshold
Quality < 1), and 414 above. On BCNatal, 151 series are rated excluded, and
393 rated above. The total include-to-exclude ratio is 2.98. The total rating time
was around 5h 40min for Rater 1 (median of 37s per volume), and around 6h10
for Rater 2 (median of 40s per volume).
New IQMs drive FetMRQC ’s performance. Tables 1 and 2 shows that the
additional features substantially increase the performance of the models, both
in the case of regression and classification, and both in- and out-of-domain.
Using more IQMs allows to generalize with fewer training data within
domain. On Figure 5, we see that not only using more features reduces the
overall error on the validation set, but allows to reach a good testing performance
using as little as 30% (∼ 40 subjects, 300 LR series) of the data for training.
FetMRQC ’s classifier is robust when trained on one site and evaluated
on the other. On Table 2, we see that classification is retained when training
on one of the sites and evaluating on the other. Although regression performance
is hurt by the domain gap between sizes, our model still generalizes best.

While dl stack iqa was trained on different data than FetMRQC, the out-
of-domain evaluation provides a fair evaluation, where each method is evaluated
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Table 1. In-domain evaluation
Regression Classification

MAE (↓) Spearman (↑) F1 (↑) AUC (↑)

dl stack iqa 0.72± 0.05 0.37± 0.11 0.85± 0.02 0.53± 0.02
Base 0.58± 0.05 0.60± 0.03 0.88± 0.02 0.71± 0.06
FetMRQC 0.53± 0.09 0.71± 0.05 0.90± 0.02 0.77± 0.07

Table 2. Out of domain evaluation
Regression Classification

MAE (↓) Spearman (↑) F1 (↑) AUC (↑)

dl stack iqa 0.75± 0.03 0.42± 0.10 0.83± 0.04 0.57± 0.07
Base 0.75± 0.01 0.38± 0.03 0.85± 0.02 0.67± 0.06
FetMRQC 0.68± 0.06 0.50± 0.08 0.89± 0.01 0.77± 0.05

Fig. 6. Feature importance averaged on regression (left) and classification models
(right), for the 20 largest contributors. Gray features are not correlated with each
other (|corr| < 0.75). Features with the same color are correlated (> 0.75) with each
other. Hatched features are features that were proposed in this work.

Fig. 7. Illustration of usefulness of QC on the SR reconstruction, using NiftyMIC [18],
and NeSVoR [17]. FetMRQC+NiftyMIC successfully removes 6 series out of the 13
available, and FetMRQC+NeSVoR removes 2 out of 5. FetMRQC leads to a substan-
tially greater image quality.

on a different dataset than the one used for training it (see the acquisition
parameters in Table 4).

Different features matter for different tasks. An advantage of feature-
based methods over deep learning-based methods is that their decisions are based
on a combination of simple features, which make them more interpretable. On
Figure 6, we see a comparison of the feature importance for regression and clas-
sification tasks. These were obtained as by averaging the feature importance for
the model selected at each fold of the nested CV. We observe that the impor-
tance of features varies largely with the task at hand. While the closing of the
brain mask (closing mask full) and the nMAE are the most predictive of the
regression quality), the exclusion of slices relies more on the compressibility of
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the centermost slices of the image (rank error center) and the edges of the
brain mask (laplace mask full).
FetMRQC ’s classifier can drastically improve the outcome of SRR
methods. Figure 7 shows how bad quality stacks can drastically impact the
final quality of the SRR, using NiftyMIC [18] and NeSVoR [17]. The images
reconstructed without QC displayed significant artifacts. Conversely, the two
SRR methods showcased improved quality when subpar stacks were excluded.

4 Conclusion

We propose FetMRQC, which adapts the approach of a popular tool, MRIQC,
to implement reliable QA/QC of low-resolution stacks of T2w MRI of the fetal
brain. Using FetMRQC tools, two experts assessed the quality of 1010 stacks with
high inter-rater reliability; and these annotations were then applied to automated
regression (for QA) and classification (QC). Nested cross-validation of a set
of models and hyper-parameters showed how QA and QC can be automated.
Objective and reliable QA/QC procedures are critical to ensure the reliability
and repeatability of neuroimaging studies, and FetMRQC demonstrates how
existing approaches can readily be applied on fetal brain MRI.
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Appendix

Table 3. Detailed description of the metrics proposed for FetMRQC.

Intensity-based metrics

slice loss

Use metrics commonly used for outlier rejection [13, 14, 18] to compute the difference
between slices in the volume. We consider (normalized) mean averaged error, (normalized)
mutual information, normalized cross correlation, (normalized) root mean squared error,
peak signal-to-noise ration, structural similarity and joint entropy.

sstats [8]
Compute the mean, median, standard deviation, percentiles 5% and 95%, coefficient of
variation and kurtosis on brain ROI.

entropy [8] Measure the overall entropy of the image.
bias Level of bias estimated using N4 bias field correction [28]

filter image
Estimate the sharpness by using Laplace and Sobel filters (commonly used for edge
detection)

Shaped-based metrics

closing mask
Morphological closing of the brain mask in the through-plane direction, to detect inter-
slice motion. Report the average difference with the original mask.

filter mask
Estimate the sharpness of the brain mask using Laplace and Sobel filtering. In an ideal
case, the brain mask would be smoothly varying, especially in the through-plane direction.

Table 4. Detailed description of the data from CHUV and BCNatal. Field refers to
the magnetic field of the scanner, TR is the repetition time and TE is the echo time
and FoV is the Field of View. All scanners used a Half-Fourier Acquisition Single-shot
Turbo spin Echo imaging (HASTE) sequence.

CHUV
Model (Siemens) Field [T] (nsubjects, nLR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Aera 1.5 (34, 281) 1200 90 1.12× 1.12× 3.3 35.8
MAGNETOM Sola 1.5 (17, 138) 1200 90 1.1× 1.1× 3.3 35.8
MAGNETOM Vida 3 (2, 14) 1100 101 0.55× 0.55× 3 35.2
Skyra 3 (8, 77) 1100 90 0.55× 0.55× 3 35.2
Avanto 1.5 (1, 5) 1000 82 1.2× 1.2× 4 30.0

BCNatal
Model (Siemens) Field [T] (nsubjects, nLR) TR [ms] TE [ms] Resolution [mm3] FoV [cm]

Aera 1.5 (16,158)
- (6, 80) 1500 82 0.55× 0.55× 2.5 28.2
- (4, 34) 1000 137 0.59× 0.59× 3.5 22.7 / 30.2
- (4, 33) 1000 81 0.55× 0.55× 3.15 28.2
- (2, 11) 1200 94 1.72× 1.72× 4.2 35.8/44.0

MAGNETOM Vida 3 (11, 56) 1540 77 1.04× 1.04× 3 20.0
TrioTim 3 (59,322) // 4 outliers

- (24, 97) 1100 127 0.51× 0.51× 3.5 26.1
- (15, 108) 990 137 0.68× 0.68× 3.5− 6.0 26.1
- (14, 71) 2009 137 0.51× 0.51× 3.5 26.1
- (1, 14) 3640 137 0.51× 0.51× 3.5 26.1

Table 5. Parameters automatically optimized by the inner loop of the nested CV.

Model step Parameters

Remove correlated features Threshold ∈ {0.8, 0.9}; Disabled

Data Scaling
Standard scaling, Robust scaling,

No scaling

Winnow algorithm Enabled, Disabled
PCA Enabled, Disabled

Regression models
Linear regression, Gradient
boosting, Random Forest

Classification models
Logistic regression, Random Forest,

Gradient Boosting, AdaBoost
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Table 6. Selected hyperparameters for the different nested cross validation procedures.
The in-domain experiment uses 5-fold nested cross-validation, while the out-of-domain
experiment splits data by site (CHUV and BCNatal) and as a result has only two folds.
The list of possible parameters is provided in Table 5.

In-domain – Regression

Remove feat. Scaling Winnow PCA Model

Base

✗ Standard ✓ ✓ Random Forest
0.9 Standard ✓ ✗ Random Forest
0.8 Standard ✓ ✗ Random Forest
0.8 Standard ✓ ✗ Gradient Boosting
0.8 Standard ✓ ✗ Random Forest

FetMRQC

✗ Robust ✓ ✓ Random Forest
✗ Robust ✓ ✓ Gradient Boosting
0.8 None ✓ ✗ Random Forest
0.9 Robust ✓ ✗ Gradient Boosting
✗ None ✓ ✗ Random Forest

Out-of-domain – Regression

Remove feat. Scaling Winnow PCA Model

Base
0.9 Robust ✓ ✗ Gradient Boosting
✗ None ✓ ✓ Random Forest

FetMRQC
0.9 None ✓ ✓ Lin. Regression
✗ Robust ✓ ✗ Random Forest

In-domain – Classification

Remove feat. Scaling Winnow PCA Model

Base

0.8 Robust ✓ ✓ Random Forest
✗ None ✓ ✓ Random Forest
✗ Standard ✓ ✗ Random Forest
0.8 Standard ✓ ✗ Random Forest
✗ Standard ✓ ✗ Random Forest

FetMRQC

✗ Standard ✓ ✓ Gradient Boosting
0.9 Robust ✓ ✓ Random Forest
0.8 Robust ✓ ✗ Gradient Boosting
0.9 Standard ✓ ✓ Lin. Regression
✗ Standard ✓ ✗ Gradient Boosting

Out-of-domain – Classification

Remove feat. Scaling Winnow PCA Model

Base
0.8 Standard ✓ ✗ Random Forest
0.8 Standard ✓ ✓ Random Forest

FetMRQC
0.9 Standard ✓ ✗ Random Forest
0.8 Standard ✓ ✗ Random Forest

Table 7. Correlation matrix between all 75 IQMs, evaluated on the entire dataset.
Blue refers to negative correlations, and red to positive ones.
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