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Abstract. Echocardiography (echo) is an ultrasound imaging modal-
ity that is widely used for various cardiovascular diagnosis tasks. Due
to inter-observer variability in echo-based diagnosis, which arises from
the variability in echo image acquisition and the interpretation of echo
images based on clinical experience, vision-based machine learning (ML)
methods have gained popularity to act as secondary layers of verifica-
tion. For such safety-critical applications, it is essential for any proposed
ML method to present a level of explainability along with good accuracy.
In addition, such methods must be able to process several echo videos
obtained from various heart views and the interactions among them to
properly produce predictions for a variety of cardiovascular measure-
ments or interpretation tasks. Prior work lacks explainability or is limited
in scope by focusing on a single cardiovascular task. To remedy this, we
propose a General, Echo-based, Multi-Level Transformer (GEMTrans)
framework that provides explainability, while simultaneously enabling
multi-video training where the inter-play among echo image patches in
the same frame, all frames in the same video, and inter-video relation-
ships are captured based on a downstream task. We show the flexibility
of our framework by considering two critical tasks including ejection frac-
tion (EF) and aortic stenosis (AS) severity detection. Our model achieves
mean absolute errors of 4.15 and 4.84 for single and dual-video EF es-
timation and an accuracy of 96.5% for AS detection, while providing
informative task-specific attention maps and prototypical explainability.
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1 Introduction and Related Works

Echocardiography (echo) is an ultrasound imaging modality that is widely used
to effectively depict the dynamic cardiac anatomy from different standard views
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[23]. Based on the orientation and position of the obtained views with respect to
the heart anatomy, different measurements and diagnostic observations can be
made by combining information across several views. For instance, Apical Four
Chamber (A4C) and Apical Two Chamber (A2C) views can be used to estimate
ejection fraction (EF) as they depict the left ventricle (LV), while Parasternal
Long Axis (PLAX) and Parasternal Short Axis (PSAX) echo can be used to
detect aortic stenosis (AS) due to the visibility of the aortic valve in these views.

Challenges in accurately making echo-based diagnosis have given rise to
vision-based machine learning (ML) models for automatic predictions. A number
of these works perform segmentation of cardiac chambers; Liu et al. [14] perform
LV segmentation using feature pyramids and a segmentation coherency network,
while Cheng et al. [3] and Thomas et al. [24] use contrastive learning and GNNs
for the same purpose, respectively. Some others introduce ML frameworks for
echo view classification [3,10] or detecting important phases (e.g. end-systole
(ES) and end-diastole (ED)) in a cardiac cycle [7]. Other bodies of work fo-
cus on making disease prediction from input echo. For instance, Duffy et al. [(]
perform landmark detection to predict LV hypertrophy, while Roshanitabrizi et
al. [20] predict rheumatic heart disease from Doppler echo using an ensemble
of transformers and convolutional neural networks. In this paper, however, we
focus on ejection fraction (EF) estimation and aortic stenosis severity (AS) de-
tection as two example applications to showcase the generality of our framework
and enable its comparison to prior works in a tractable manner. Therefore, in
the following two paragraphs, we give a brief introduction to EF, AS and prior
automatic detection works specific to these tasks.

EF is a ratio that indicates the volume of blood pumped by the heart and is
an important indicator of heart function. The clinical procedure to estimating
this ratio involves finding the ES and ED frames in echo cine series (videos) and
tracing the LV on these frames. A high level of inter-observer variability of 7.6%

to 13.9% has been reported in clinical EF estimates [18]. Due to this, various ML
models have been proposed to automatically estimate EF and act as secondary
layers of verification. More specifically, Esfeh et al. [13] propose a Bayesian net-

work that produces uncertainty along with EF predictions, while Reynaud et al.
[19] use BERT [4] to capture frame-to-frame relationships. Recently, Mokhtari et
al. [16] provide explainability in their framework by learning a graph structure
among frames of an echo.

The other cardiovascular task we consider is the detection of AS, which is a
condition in which the aortic valve becomes calcified and narrowed, and is typi-
cally detected using spectral Doppler measurements [21,17]. High inter-observer
variability, limited access to expert cardiac physicians, and the unavailability of
spectral Doppler in many point-of-care ultrasound devices are challenges that
can be addressed through the use of automatic AS detection models. For ex-
ample, Huang et al. [11,12] predict the severity of AS from single echo images,
while Ginsberg et al. [9] adopt a multitask training scheme.

Our framework is distinguished from prior echo-based works on multiple
fronts. First, to the best of our knowledge, our model is the first to produce
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attention maps on the patch, frame and video levels for echo data, while allowing
multiple videos to be processed simultaneously as shown in Fig. 1. Second, unlike
prior works that are proposed for a single cardiovascular task, our framework is
general and can be modified for a variety of echo-based metrics. More concretely,
the versatility of our framework comes from its multi-level attention mechanism.
For example, for EF, temporal attention between the echo frames is critical to
capture the change in the volume of the LV, while for AS, spatial attention to
the valve area is essential, which is evident by how the model is trained to adapt
its learned attention to outperform all prior works. Lastly, we provide patch and
frame-level, attention-guided prototypical explainability.
Our contributions are summarized below:

e We propose GEMTrans, a general, transformer-based, multi-level ML frame-
work for vison-based medical predictions on echo cine series (videos).

e We show that the task-specific attention learned by the model is effective
in highlighting the important patches and frames of an input video, which
allows the model to achieve a mean absolute error of 4.49 on two EF datasets,
and a detection accuracy score of 96.5% on an AS dataset.

e We demonstrate how prototypical learning can be easily incorporated into
the framework for added multi-layer explainability.

2 Method

2.1 Problem Statement

The input data for both EF and AS tasks compose of one or multiple B-mode
echo videos denoted by X € REXTXHXW ‘where K is the number of videos per
sample, T' is the number of frames per video, and H and W are the height and
width of each grey-scale image frame. For EF Estimation, we consider both the
single video (A4C) and the dual video (A2C and A4C) settings corresponding to
K =1 and K = 2, respectively. Our datasets consist of triplets {zls, Y, Ylog }
where i € [1,...,n] is the sample number. y’; € [0, 1] is the ground truth EF value,
Yiog € {0, 1}V is the binary LV segmentation mask, and z? € REXT*HxW
are the input videos defined previously. The goal is to learn an EF estimation
function fu : REXTXHXW s R For AS Classification, we consider the dual-
video setting (PLAX and PSAX). Here, our dataset D,s = {X,s, Yas} consists
of pairs {z’, v}, where 2!, are the input videos and y’; € {0,1}* is a one-hot
label indicating healthy, mild, moderate and severe AS cases. Our goal is to learn
fas : REXTXHXW _ R4 that produces a probability over AS severity classes.

2.2 Multi-Level Transformer Network

As shown in Fig. 1, we employ a three-level transformer network, where the levels
are tasked with patch-wise, frame-wise and video-wise attention, respectively.
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Fig.1: GEMTrans Overview - The multi-level transformer network processes
one or multiple echo videos and is composed of three main components. Spatial
Transformer Encoder (STE) produces attention among patches in the same im-
age frame, while Temporal Transformer Encoder (TTE) captures the temporal
dependencies among the frames of each video. Lastly, Video Transformer En-
coder (VTE) produces an embedding summarizing all available data for a patient
by processing the learned embedding of each video. Different downstream tasks
can then be performed using this final learned embedding. During training, both
the final prediction and the attention learned by different layers of the frame-
work can be supervised (not all connections are shown for cleaner visualization).

3>

Spatial Transformer Encoder (STE) captures the attention among patches

within a certain frame and follows ViT’s [5] architecture. As shown in Egs. (1)
and (2), the Spatial Tokenizer (ST) first divides the image into non-overlapping
p X p sized patches before flattening and linearly projecting each patch:

Bt = [The,1, Tht,25 o0 Thoyt, HW/p2] = foateh (Tr,e, D); (1)
Thot = [Tt 1, Thop 20 s Th . prwype] = Jiin (flatten(2y, ), (2)
where p is the patch size, k € [1,..., K] is the video number, ¢ € [1,...,T] is the
frame number, fpatches : RHEXW y REW/p*xpxp splits the image into equally-

sized patches, and fji, : RP’ — R? is a linear projection function that maps the
flattened patches into d-dimensional embeddings. The obtained tokens from the
ST are then fed into a transformer network [25] as illustrated in Egs. (3) to (6):

hi + = [Clsspatiat; T o] + Epos

hi, = MHA(LN(hy ") + b, 1€l L];
iy =MLP(LN () +hi,, 1€l .. L]
Pkt = LN(h/c,uo)a
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where clsspatial € R< is a token similar to the [class] token introduced by Devlin
et al. [1], Epos € R? is a learnable positional embedding, MHA is a multi-head
attention network [25], LN is the LayerNorm operation, and MLP is a multi-
layer perceptron. The obtained result z ; € R? can be regarded as an embedding
summarizing the t;;, frame in the k;; video for a sample.

Temporal Transformer Encoder (TTE) accepts as input the learned
embeddings of the STE for each video z;,1..7 and performs similar operations
outlined in Eqs. (3) to (6) to generate a single embedding v, € R? representing
the whole video from the ky, view. Video Transformer Encoder (VTE)
is the same as TTE with the difference that each input token v, € R? is a
representation for a complete video from a certain view. The output of VTE is
an embedding u’ € R? summarizing the data available for patient i. This learned
embedding can be used for various downstream tasks as described in Sec. 2.5.

2.3 Attention Supervision

For EF, the ED/ES frame locations and their LV segmentation are available.
This intermediary information can be used to supervise the learned attention
of the transformer. Therefore, inspired by Stacey et al. [22], we supervise the
last-layer attention that the cls token allocates to other tokens. More specifically,
for spatial attention, we penalize the model for giving attention to the region
outside the LV, while for temporal dimension, we encourage the model to give
more attention to the ED/ES frames. More formally, we define ATTN P2l ¢

cls

[0, 1]#W/P* and ATTN™Poral ¢ 1017 to be the Ly-layer, softmax-normalized
spatial and temporal attention learned by the MHA module (see Eq. (4)) of STE
and TTE, respectively. The attention loss is defined as

/ _ rted  les .
ysog - OR(yscg3 yscg)’ (7)
spatial (ATTN?{):?&I - 0)2, if y;eg s = 0 (outside LV)
Lattn, s — ’ ’ . (8)
0, otherwise;
temporal | (ATTNE™POrl _1)2 - if ¢ € [ED, ES|
Lattn, v = ’ . 9)
0, otherwise;
2 .
Lattn = )\terxlporalzg;ll;ﬁgf?al + )\SpatiaIESH:VlV/p Lz};)?rtltasl, (10)

where yled yles € {0, 1}HW/ P* are the coarsened versions (to match patch size)

of Yseg at the ED and ES locations, OR is the bit-wise logical or function, ed/es
indicate the ED/ES temporal frame indices, and Atemporal, Aspatial € [0, 1] control
the effect of spatial and temporal losses on the overall attention loss. A figure is
provided in the supp. material for further clarification.

2.4 Prototypical Learning

Prototypical learning provides explainability by presenting training examples
(prototypes) as the reasoning for choosing a certain prediction. As an example,
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in the context of AS, patch-level prototypes can indicate the most important
patches in the training frames that correspond to different AS cases. Due to
the multi-layer nature of our framework and inspired by Xue et al. [20], we
can expand this idea and use our learned attention to filter out uninformative
details prior to learning patch and frame-level prototypes. As shown in Fig. 1, the
STE and TTE’s attention information are used in prototypical branches to learn
these prototypes. It must be noted that we are not using prototypical learning
to improve performance, but rather to provide added explainability. For this
reason, prototypes are obtained in a post-processing step using the pretrained
transformer framework. Prototypical networks are provided in the supp. material.

2.5 Downstream Tasks and Optimization

The output embedding of VTE denoted by v € R™*? can be used for various
downstream tasks. We use Eq. (11) to generate predictions for EF and use an
L2 loss between gt and y’; for optimization denoted by Les. For AS severity
classification, Eq. (12) is used to generate predictions and a cross-entropy loss is
used for optimization shown as L,g:

ot = o(MLP(u))  gef € R™™; (11)
fas = softmax(MLP(u))  §as € R™*%; (12)
Loverall = Lef or as + Lattna (13)

where o is the Sigmoid function. Our overall loss function is shown in Eq. (13).

3 Experiments

3.1 Implementation

Our code-base, pre-trained model weights and the corresponding configuration
files are provided at https://github.com/DSL-Lab/gemtrans. All models were
trained on four 32 GB NVIDIA Tesla V100 GPUs, where the hyper-parameters
are found using Weights & Biases random sweep [2]. Lastly, we use the ViT
network from [15] pre-trained on ImageNet-21K for the STE module.

3.2 Datasets

We compare our model’s performance to prior works on three datasets. In sum-
mary, for the single-video case, we use the EchoNet Dynamic dataset that con-
sists of 10,030 AP4 echo videos obtained at Stanford University Hospital [18]
with a training/validation/test (TVT) split of 7,465, 1,288 and 1,277. For the
dual-video setting, we use a private dataset of 5,143 pairs of AP2/AP4 videos
with a TVT split of 3,649, 731, 763. For the AS severity detection task, we
use a private dataset of PLAX/PSAX pairs with a balanced number of healthy,
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mild, moderate and severe AS cases and a TVT of 1,875, 257, and 258. For all
datasets, the frames are resized to 224 x 224. Our use of this private dataset is
approved by the University of British Columbia Research Ethics Board, with an
approval number H20-00365.

3.3 Results

Quantitative Results: In Tables 1 and 2, we show that our model outperforms
all previous work in EF estimation and AS detection. For EF, we use the mean
absolute error (MAE) between the ground truth and the predicted EF values,
and R? correlation score. For AS, we use an accuracy metric for four-class AS
severity prediction and binary detection of AS. The results show the flexibility of
our model to be adapted for various echo-based tasks while achieving high levels
of performance. Qualitative Results: In addition to having the superior quan-
titative performance, we show that our model provides explainability through
its task-specific learned attention (Fig. 2a) and the learned prototypes (Fig. 2b).
More results are shown in the supp. material. Ablation Study: We show the
effectiveness of our design choices in Table 3, where we use EF estimation for the
EchoNet Dynamic dataset as our test-bed. It is evident that our attention loss
described in Sec. 2.3 is effective for EF when intermediary labels are available,
while it is necessary to use a pre-trained ViT as the size of medical datasets in
our experiments are not sufficiently large to build good inductive bias.

Table 1: Quantitative results for EF on the test set - LV Biplane dataset
results for models not supporting multi-video training are indicated by ”-”. MAE
is the Mean Absolute Error and R? indicates variance captured by the model.

Model EchoNet Dynamic LV Biplane
MAE [mm] ||R? Score 1|MAE [mm] ||R? Score 1
Ouyang et al. [18] 7.35 0.40 - -
Reynaud et al. [19] 5.95 0.52 - -
Esfeh et al. [13] 4.46 0.75 - -
Thomas et al. [24] 4.23 0.79 - -
Mokhtari et al. [106] 4.45 0.76 5.12 0.68
Ours 4.15 0.79 4.84 0.72

4 Conclusions and Future Work

In this paper, we introduced a multi-layer, transformer-based framework suit-
able for processing echo videos and showed superior performance to prior works
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Table 2: Quantitative results for AS on the test set - Severity is a four-class
classification task, while Detection involves the binary detection of AS.

Accuracy [%] 1
Model Severity ‘ Detection
Huang et al. [12] | 73.7 94.1
Bertasius et al. [1]| 75.3 94.8
Ginsberg et al. [9]| 74.4 94.2
Ours 76.2 96.5

EF Severe AS

Healthy
(a) Learned Patch-Level (b) Learned Patch-Level Prototypes - Learned

Attention - We visualize prototypes use STE’s attention to properly focus on
the learned attention of STE, the valve area for a healthy and severe AS case. We
where for EF, the model is fo-  can see that in the healthy case, the aortic valve is

cusing on the walls of the LV,  thin and not calcified. However, in the severe case,
while for AS, the model learns  the calcification of aortic valve is apparent (i.e. the
to attend to the valve area, valve appears bright in the image). Frame-level and
which is clinically correct. EF prototypes presented in supp. material.

Fig. 2: Explainability through learned attention and prototypes.

Table 3: Ablation study on the validation set of EchoNet Dynamic - We see
that both spatial and temporal attention supervision are effective for EF esti-
mation, while the model does not converge without pretraining the ViT. MAE
is the Mean Absolute Error and R? indicates variance captured by the model.

Model |MAE [mm] ||R? Score 1
No Spatial Attn. Sup. 4.42 0.77
No Temporal Attn. Sup. 4.54 0.76
No ViT Pretraining 5.61 0.45

Ours 4.11 0.80
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on two challenging tasks while providing explainability through the use of pro-
totypes and learned attention of the model. Future work will include training a
large multi-task model with a comprehensive echo dataset that can be dissemi-
nated to the community for a variety of clinical applications.
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Fig. 1: Attention Supervision - For EF, the spatial attention is penalized if
attention is given outside the union of the LV mask for ED and ES. The temporal
attention is also encouraged to give more attention to ED/ES locations.
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learned local tokens zj; € RAW/P*xd of STE are used. M patches with the
highest attention are included and the rest are eliminated. Remaining patches
are compared with B learnable prototypes for each class P, = {p;, . bB:’f -1 € R4
producing a similarity vector s € REX® where C is the number of classes. Fully
connected layers map these similarity scores to the output. For temporal proto-
types, the frame-level tokens z; , of TTE are given as input. M’ frames with high
temporal attention are kept and compared with H learnable prototypes and the
similarity scores produce the output.
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Fig. 3: Additional Patch-Level Proto-
types for AS - Left figures demonstrate
discarded patches based on the acquired
attention of STE. Patches with low at-
tention are eliminated. The right figures
display the areas that correspond to the
learned prototypes. In both the healthy
and severe cases, there is a notable em-
phasis on the aortic valve.
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Fig. 4: Frame-Level Prototypes for
AS - Two instances of frame-level pro-
totypes are visualized for healthy and se-
vere AS. The majority of frame-level pro-
totypes are indicative of end-systole and
mid-systole stage of the heart cycle in
which the restriction of valve’s motion
and detection of the aortic valve’s calci-
fication is easier.
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Fig. 5: Patch-Level Prototypes for EF - This figure visualizes the patch-level
prototypes that represent the LV in ES and ED frames. This suggests that these
frames are the most significant in contributing to the final estimation of EF,
which is clinically correct since the ratio of the volume of blood in ED and ES
are used to find EF.
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