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Abstract. Deployment of Deep Neural Networks in medical imaging is
hindered by distribution shift between training data and data processed
after deployment, causing performance degradation. Post-Deployment
Adaptation (PDA) addresses this by tailoring a pre-trained, deployed
model to the target data distribution using limited labelled or entirely
unlabelled target data, while assuming no access to source training data
as they cannot be deployed with the model due to privacy concerns
and their large size. This makes reliable adaptation challenging due
to limited learning signal. This paper challenges this assumption and
introduces FedPDA, a novel adaptation framework that brings the
utility of learning from remote data from Federated Learning into PDA.
FedPDA enables a deployed model to obtain information from source
data via remote gradient exchange, while aiming to optimize the model
specifically for the target domain. Tailored for FedPDA, we introduce a
novel optimization method StarAlign (Source-Target Remote Gradient
Alignment) that aligns gradients between source-target domain pairs by
maximizing their inner product, to facilitate learning a target-specific
model. We demonstrate the method’s effectiveness using multi-center
databases for the tasks of cancer metastases detection and skin lesion
classification, where our method compares favourably to previous work.
Code is available at: https://github.com/FelixWag/StarAlign
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1 Introduction

Effectiveness of Deep Neural Networks (DNNs) relies on the assumption that
training (source) and testing (target) data are drawn from the same distribution
(domain). When DNNs are applied to target data from a distribution (target
domain) that differs from the training distribution (source domain), i.e. there is
distribution shift, DNNs’ performance degrades [13,16]. For instance, such shift
can occur, when a pre-trained DNN model is deployed to a medical institution
with data acquired from a different scanner or patient population than the
training data. This hinders reliable deployment of DNNs in clinical workflows.
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Related Work: Variety of approaches have been investigated to alleviate this
issue. Domain Generalization (DG) approaches assume access to data from
multiple source domains during training. They aim to learn representations that
are invariant to distribution shift, enabling better generalization to any unseen
domain [10, 20, 26]. Due to the great heterogeneity in medical imaging, achieving
universal generalization may be too optimistic. Instead, Domain Adaptation
(DA) methods [4, 12, 16] aim to learn a model that performs well on a specific
target domain. They assume that (commonly unlabelled) target data and labelled
source data is collected in advance and centrally aggregated to train a model from
scratch. Privacy concerns in healthcare limit the scalability of these approaches.

Federated Learning (FL) [25] enables training a single model on multiple
decentralised databases. The original Federated Averaging algorithm (FedAvg) [25]
and its extensions target scenarios where different "nodes" in the federated
consortium have data from different source domains [18,21, 23, 33]. They train a
single model to generalize well across unseen domains. In contrast, approaches
for Personalization in FL [1,15,23,24] learn multiple models, one for each source
domain but do not support adaptation to unseen target domains.

Federated Domain Adaptation (FDA) methods [11, 22, 27] enable DA in a
federated setting. These methods assume abundant unlabelled data on the target
domain and perform distribution matching to enforce domain invariance. They
train a model from scratch for each target which limits their practicality, while
the enforced invariance can lead to loss of target-specific discriminative features.

Post-Deployment Adaptation (PDA) methods (or Test-Time Adaptation or
Source-free DA) seek to enable a pre-trained/deployed model to optimize itself
for the specific target domain by learning only from limited labelled or unlabelled
target data processed after deployment [3, 6, 7, 17, 30, 31]. These methods assume
that deployed models have no access to the source data due to privacy, licensing,
or data volume constraints. In practice, however, adaptation using solely limited
labelled or unlabelled data can lead to overfitting or unreliable results.
Contribution: This work presents a novel PDA framework to optimize a pre-
trained, deployed model for a specific target domain of deployment, assuming
limited labelled data at the deployment node, while remotely obtaining information
from source data to facilitate target-specific adaptation.

– The framework enables a deployed DNN to obtain information from source
data without data exchange, using remote gradient exchange. This overcomes
PDA’s restriction of unavailable access to source data. This combines FL with
PDA into a new framework, FedPDA (Fig. 1). Unlike FL, FedPDA optimizes
a target-specific model instead of a model that generalises to any distribution
(FL) or source distributions (personalized FL). While DA requires central
aggregation of data, FedPDA does not transfer data. FedPDA also differs from
FDA by adapting a pre-trained deployed model at the user’s endpoint, rather
than training a model pre-deployment from scratch with abundant unlabelled
target data and ML developer’s oversight. This addresses the practical need
for reliable adaptation with limited data and technical challenge of optimizing
from a source-specific initial optimum to a target-specific optimum.
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Fig. 1. The FedPDA framework consists of three steps: (1) The model is trained on
source domains (here via FL); (2) The model is deployed to the target domain; (3)
Adaptation is done via gradient alignment between all source-target domain pairs with
StarAlign without cross-domain data exchange.

– Tailored specifically for this setting, we introduce the StarAlign optimization
algorithm (Source-Target Remote Gradient Alignment) for decentralised
multi-domain training. It extracts gradients from source data and aligns
them with target data gradients by maximising the gradient inner product,
to regularize adaptation of a target-specific model.

We evaluate the method through extensive experiments on two medical datasets:
cancer metastases classification in histology images using Camelyon17 with 5
target domains [2], and a very challenging setting for skin lesion classification using
a collection of 4 databases (HAM [29], BCN [9], MSK [8], D7P [19]). In numerous
settings, our method achieves favourable results compared to state-of-the-art
PDA, (personalized) FL, FDA and gradient alignment methods.

2 Background

Problem setting: We consider the general case with a set of S source domains
{D1, . . . ,DS} and one target domain DT , where T =S+1. Each domain’s dataset
Dk := {(xk

i , y
k
i )}

nk
i=1 is drawn from a data distribution pk, where xi is an image

and yi the corresponding label. We assume there are little available labels in the
target domain, |DT | ≪ |Dk|,∀k ∈ [1, S].

In a setting with multiple source domains, optimizing a DNN’s parameters θ
is commonly done with Empirical Risk Minimization (ERM), by minimizing a
cost RK for each domain Dk, which is the expectation of a loss L over Dk:

min
θ

RERM (θ) :=
1

S

S∑
k=1

Rk(θ) =
1

S

S∑
k=1

E(x,y)∼Dk
[L(θ;x, y)]. (1)

This can be performed via centralised training (e.g. DG methods) or approximated
via FL when {D1, . . . ,DS} are distributed and without data sharing. In our
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experiments we focus on the latter challenging case. We assume model θ is pre-
trained and ‘deployed’ to a target domain where limited labelled DT is available.
Due to domain shift pT ̸= pk,∀k ∈ [1, S], we assume θ may not generalize to the
target domain. Next, we describe our algorithm for adapting θ to pT .

3 Method

Using only limited labelled target data DT for PDA is likely to give unreliable
results. Therefore, our FedPDA framework, enables a deployed model to obtain
information from source data using remote gradient exchange via FL (Fig. 1).
To achieve this, our StarAlign algorithm for FedPDA aligns gradients of all
domains with target domain gradients by maximising their inner product. This
ensures that source-derived gradients promote learning features that are relevant
to the target domain.

3.1 Theoretical Derivation of Source-Target Alignment

First, we derive our algorithm in the theoretical setting where source and target
data {D1, . . . ,DS ,DT } are available for centralised training. The subsequent
section presents our distributed algorithm for remote domains, developed to
approximate the optimization (Eq. 2) in the theoretical setting. We form pairs
between each domain and target DT to extract target-relevant information
from each source domain. For the k-th pair we minimise the combined cost
RkT (θ)=Rk(θ)+RT (θ). To align gradients Gk = EDk

[∇θLk(θ;x, y)] of the k-th
domain and the target domain GT = EDT

[∇θLT (θ;x, y)], we maximize their
inner product GT ·Gk. Hence over all pairs, we minimize the total cost:

RStarAlign
total =

1

S+1

S+1∑
k=1

RAlign
kT (θ) =

1

S+1

S+1∑
k=1

(RkT (θ)− δGT ·Gk) , (2)

with δ a hyperparameter. Using dot product’s distributive property we get:

RStarAlign
total = RT (θ) +

1

S+1

S+1∑
k=1

Rk(θ)− δGT ·
S+1∑
k=1

Gk

S+1
(3)

This allows us to interpret the effect of optimizing Eq. 2. We minimize the
target domain’s cost, regularized by the average cost over all domains, which
mitigates overfitting the limited data DT . The third term forces the average
gradient over all domain data,

∑S+1
k=1

Gk

S+1 , to align with the gradients from the
target domain GT . We clarify that domain pairs summed in Eq. 2 include the
pair target-to-target with RTT and GT ·GT terms. This ensures that the average
gradient of all domains

∑S+1
k=1

Gk

S+1 in Eq. 3 always has a component along the
direction of GT , avoiding zero or very low dot products, for instance due to
almost perpendicular gradients in high dimensional spaces, leading to smoother
optimization trajectory. We found this effective in preliminary experiments.
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Algorithm 1 Centralised gradient alignment for source-target domain pairs
1: θT : Model pre-trained on source data {D1, . . . ,DS}, deployed to Target
2: for j = 1, 2 . . . do
3: for Dk ∈ {D1, . . . ,DS ,DT } do
4: θ̂k ← θT ; θk ← θT ▷ Create copies of deployed model θT
5: dT ∼ DT ▷ Sample batch from domain T
6: θ̂k← θ̂k − α∇θ̂k

L(θ̂k; dT ) ▷ Compute gradient of dT and update model
7: dk ∼ Dk ▷ Sample batch from domain k
8: θ̂k← θ̂k − α∇θ̂k

L(θ̂k; dk) ▷ Compute gradient of dk and update model

9: θk ← θk + β(θ̂k − θk) ▷ 1st order approximation update
10: θT ← 1

S+1

∑S+1
k=1 θk ▷ Update model with avg. over domains

Directly optimising dot-products in Eq. 2 is computationally expensive as it
requires second-order derivatives. Instead, minimizing Eq. 2 is approximated via
Alg. 1 and first-order derivatives in L4-L9. This is based on the result in [28]
that the update step β(θ̂− θ) (L9 ) approximates optimisation of Eq. 2 for a pair
of domains. β is a scaling hyperparameter. This was used in [28] for centralised
multi-source DG, aligning gradients of source-source pairs to learn a general model
(no target). Here, we minimize Eq. 2 to align source-target pairs of gradients and
learn a target-specific model.

3.2 Source-Target Remote Gradient Alignment for FedPDA

We assume a model pre-trained on source data {D1, . . . ,DS} is deployed on a
computational node with access to target data DT but not source data. Below,
we describe the case when each source dataset {D1, . . . ,DS} is held in a separate
compute node (e.g. federation). We now derive the distributed StarAlign Algo-
rithm 2, approximating minimization of Eq. 2 without data exchange between
nodes.

The aim is to approximate execution of Alg. 1 on the target node. Lack of
access to source data, however, prevents calculation of source gradients in L8 of
Alg. 1. Instead, we approximate the gradient of each source domain Ds separately,
by computing the average gradient direction gs on the specific source node. For
this, we perform τ local optimisation steps on source node s and average their
gradients, obtaining gs. By transferring gs from each source node to the target
node, we can approximate the updates in L8 of Alg. 1 on the target node.

Alg. 2 presents the distributed StarAlign method that aligns gradients
between all source-target domain pairs. First, target and source node models get
initialised with the pre-trained model θT (L1 ). Each source node s computes its
average gradient direction gs and communicates it to the target node (L3-L9 ).
After receiving the average gradient directions of source domains, the target
node performs the interleaving approximated updates (L14-15 ) for source and
target domain gradients for each domain pair for τ steps. L16 implements the
case of the target-target pair (Sec. 3.1) with a second actual update rather than
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Algorithm 2 Distributed StarAlign algorithm for FedPDA
1: θT : Model pre-trained on source data {D1, . . . ,DS}, deployed to Target node
2: for j = 1 to E do ▷ where E total communication rounds
3: for Ds ∈ {D1, . . . ,DS} in parallel do ▷ Performed at each Source node
4: θs ← θT ▷ Obtain latest model from Target node
5: for i = 1 to τ do ▷ Local iterations
6: ds ∼ Ds ▷ Sample batch
7: gis ← ∇θsL(θs; ds) ▷ Compute gradient
8: θs ← θs − αgis ▷ Update model
9: gs = 1

τ

∑τ
i=1 g

i
s ▷ Compute avg. gradient and SEND to Target node

10: for k ∈ {1, . . . , S, T} do ▷ Code below is performed at Target node
11: θk ← θT ; θ̂k ← θT
12: for i = 1 to τ do ▷ Local iterations
13: dT ∼ DT ▷ Sample batch
14: θ̂k ← θ̂k − α∇θ̂k

L(θ̂k; dT ) ▷ Compute gradient on dT and update

15: if k ̸= T then θ̂k ← θ̂k − αgk ▷ Update with average gradient
16: else Repeat L13-14: Resample d′T ∼DT , update θ̂k← θ̂k−α∇θ̂k

L(θ̂k; d′T )
17: θk ← θk − β(θ̂k − θk) ▷ 1st order approximation update
18: θT = 1

S+1

∑S+1
k=1 θk ▷ Update θT and SEND to Source nodes

approximation. Finally, L17 performs the first-order approximation update. Note,
that we perform this update step after τ steps, which we found empirically to
give better results than performing it after each interleaving update. This process
is repeated for E communication rounds.

4 Experiments

Cancer detection: We use Camelyon17 [2] dataset. The goal is to predict
whether a histology image contains cancer (binary classification). The data was
collected from 5 different hospitals, which we treat as 5 domains.
Skin lesion diagnosis: We train a model to classify 7 skin lesion types in
dermatoscopic images. To create a multi-domain benchmark, we downloaded four
public datasets acquired at 4 medical centers: HAM [29], BCN [9], MSK [8] and
D7P [19]. Due to missing classes in MSK and D7P, we combine them in one that
contains all classes. Therefore we experiment with 3 domains.

4.1 Experimental setup

Setup: For all experiments we use DenseNet-121 [14]. We perform ‘leave-one-
domain-out’ evaluations, iterating over each domain. One domain is held-out as
target and the rest are used as source domains. Each domain dataset is divided
into train, validation and test sets (60,20,20% respectively). The training sets
are used for pre-training and in FedPDA for source domains. As we investigate
how to adapt with limited labelled data in the target domain, we only use 1.8%
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Table 1. Test accuracy (%) on tumour detection (3 seeds averaged).

Method DT Target domain

Pre-Train Adapt Lab. Unlab. Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Average

FedAvg None × × 88.0 80.5 76.2 85.4 75.2 81.1
None From scratch ✓ × 92.7 88.4 92.9 91.3 94.7 92.0
FedBN None (avg. DS BN stats) × × 50.3 53.8 70.7 50.0 74.3 59.8
FedBN None (DT BN stats) × ✓ 89.4 84.5 89.6 91.4 84.8 87.9
FedBN Fine-tuning ✓ × 93.1 88.2 93.7 95.8 97.2 93.6
FedBN Supervised TENT ✓ × 92.8 86.8 91.6 94.1 93.1 91.7
FedBN FedPDA: FedBN ✓ × 91.7 75.7 94.7 83.3 55.2 80.1
FedBN FedPDA: PCGrad ✓ × 93.8 90.0 94.9 95.1 95.0 93.8
FedBN FedPDA: StarAlign ✓ × 95.0 91.4 96.8 96.8 94.5 94.9

None FDA-KD3A × ✓ 94.3 91.4 90.4 93.6 94.3 92.8

of a target domain’s dataset as labelled for PDA on Camelyon17, and 6% for
skin-lesion. The process is then repeated for other target domains held-out.
Metrics: Each setting is repeated for 3 seeds. From each experiment we select
5 model snapshots with best validation performance and report their average
performance on the test set (averaging 15 models per setting). The two classes
in Camelyon17 are balanced, therefore we report Accuracy (Tab. 1). Skin-lesion
datasets have high class-imbalance and hence Accuracy is inappropriate because
methods can increase it by collapsing and predicting solely the majority classes.
Instead, we report Weighted Accuracy (Tab. 2) defined as:

∑C
c=1

1
C accc, where C

the number of classes and accc represents accuracy for class c.
Methods: The ‘Pre-Train’ column in Table 1 and 2 indicates the pre-deployment
training method, employing FedAvg [25] or FedBN [23] with τ = 100 local iterations
per communication round. FedBN pre-training is used thereafter as it outperformed
FedAvg when BN statistics were adapted (DT BN stats below). Column ‘Adapt’
indicates the post-deployment adaptation method. ‘Lab’ and ‘Unlab’ indicate
whether labelled or unlabelled target data are used for adaptation. We compare
StarAlign with: no adaptation (None), training the model just on target data
(from scratch), FedBN without adaptation using average Batch Normalization
(BN) statistics from source domains (avg. DS BN stats) and when estimating
BN stats on unlabelled DT data (DT BN stats) [23], and fine-tuning the
model using only target labelled data. We also compare with the PDA method
TENT [31], adapted to use labelled data (supervised) via cross entropy instead of
unsupervised entropy for fair comparison, and the state-of-the-art FDA method
KD3A [11] (using whole training set as unlabelled). We also attempt to perform
FedPDA by simply integrating the target domain node into the federated system
and resuming FedBN starting from the pre-trained model (FedPDA: FedBN),
and with another gradient alignment method, a variant of PCGrad [32], which
we made applicable for FedPDA. PCGrad projects gradients that point away from
each other onto the normal plane of each other. StarAlign uses τ =100, and
β=0.01 or β=0.2 for Camelyon17 and skin lesion tasks respectively, configured
on validation set.
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Table 2. Test weighted accuracy (%) on skin lesion diagnosis (3 seeds averaged).

Methods DT Target domain

Pre-Train Adapt Lab. Unlab. BCN HAM MSK & D7P Average

FedAvg None × × 26.0 37.6 25.2 29.6
None From scratch ✓ × 34.8 40.0 24.5 33.1
FedBN None (avg. DS BN stats) × × 26.6 34.8 24.3 28.6
FedBN None (DT BN stats) × ✓ 35.4 39.7 29.5 34.9
FedBN Fine-tuning ✓ × 37.6 46.2 25.5 37.8
FedBN Supervised TENT ✓ × 40.1 47.9 29.2 39.0
FedBN FedPDA: FedBN ✓ × 39.6 49.9 31.2 40.2
FedBN FedPDA: PCGrad ✓ × 38.4 48.3 22.4 36.4
FedBN FedPDA: StarAlign ✓ × 44.4 53.6 33.5 43.8

None FDA-KD3A × ✓ 41.4 47.4 31.8 40.2

4.2 Results and discussion

Camelyon17 results - Table 1: StarAlign achieves the highest average
accuracy over 5 hospitals among all methods, only outperformed in 1 out of 5
settings. In our FedPDA framework, replacing StarAlign with the prominent
gradient alignment method PCGrad, degrades the performance. This shows the
potential of our proposed gradient alignment method.
Skin lesion diagnosis results - Table 2: We observe that performance of all
methods in this task is lower than in Camelyon17. This is a much more challenging
task due to very high class-imbalance and strong domain shift3. It is extremely
challenging to learn to predict the rarest minority classes under the influence of
domain shift from very limited target data, which influences weighted-accuracy
greatly. Accomplishing improvements in this challenging setting demonstrates
promising capabilities of our method even in highly imbalanced datasets.

StarAlign consistently outperforms all compared methods. This includes PDA
methods that cannot use source data (target fine-tuning and Supervised TENT)
and the state-of-the-art FDA method KD3A, showing the potential of FedPDA.
When FedPDA is performed with StarAlign, it outperforms FedPDA performed
simply with a second round of FedBN training when the target node is connected
to the FL system along with source nodes. FedBN can be viewed as Personalised
FL method, as it learns one model per client via client-specific BN layers. Results
demonstrate that learning one target-specific model with StarAlign yields better
results. It also outperforms FedPDA with PCGrad, showing our gradient alignment
method’s effectiveness. This shows StarAlign’s potential to adapt a model to a
distribution with high class imbalance and domain shift.

5 Conclusion

This work presents FedPDA, a framework unifying FL and PDA without data
exchange. FedPDA enables a pre-trained, deployed model to obtain information
3 Our baselines achieve Accuracy 75-90% on source domains of the skin lesion task,

comparable to existing literature [5], indicating they are well configured.
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from source data via remote gradient communication to facilitate post-deployment
adaptation. We introduce StarAlign which aligns gradients from source domains
with target domain gradients, distilling useful information from source data
without data exchange to improve adaptation. We evaluated the method on two
multi-center imaging databases and showed that StarAlign surpasses previous
methods and improves performance of deployed models on new domains.
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