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Abstract. Accurately segmenting brain lesions in MRI scans is criti-
cal for providing patients with prognoses and neurological monitoring.
However, the performance of CNN-based segmentation methods is con-
strained by the limited training set size. Advanced data augmentation is
an effective strategy to improve the model’s robustness. However, they
often introduce intensity disparities between foreground and background
areas and boundary artifacts, which weakens the effectiveness of such
strategies. In this paper, we propose a foreground harmonization frame-
work (ARHNet) to tackle intensity disparities and make synthetic images
look more realistic. In particular, we propose an Adaptive Region Harmo-
nization (ARH) module to dynamically align foreground feature maps to
the background with an attention mechanism. We demonstrate the effi-
cacy of our method in improving the segmentation performance using real
and synthetic images. Experimental results on the ATLAS 2.0 dataset
show that ARHNet outperforms other methods for image harmonization
tasks, and boosts the down-stream segmentation performance. Our code
is publicly available at https://github.com/King-HAW/ARHNet.

Keywords: Stroke segmentation · Lesion-aware augmentation · Adap-
tive image harmonization.

1 Introduction

Accurate brain lesion segmentation is essential for understanding the prognoses
of neurological disorders and quantifying affected brain areas by providing in-
formation on the location and shape of lesions [8]. With advanced deep learning
techniques, various brain lesion segmentation methods based on Convolutional
Neural Networks (CNNs) have been proposed [11,21]. However, a noteworthy
hurdle is the prerequisite of an adequate number of training samples to ensure
the model’s generalization ability. Utilizing small-scale datasets for the segmen-
tation model training can result in over-fitting, thereby limiting its robustness to
unseen samples. Due to the variance of lesion appearance and size, as well as the
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extreme data imbalance between foreground and background voxels, many deep
learning models also struggle to perform the small lesion segmentation task.

To this end, some data augmentation techniques have been proposed that
aim to increase the diversity of the training set, which helps to boost the per-
formance of the segmentation model for unseen images [2]. Often data augmen-
tation is realized by basic image transformations such as rotation and flipping.
As the diversity of the data generated through basic image transformations is
deficient, advanced data augmentation approaches have been developed. For in-
stance, Huo et al. [6] designed a progressive generative framework to synthesize
brain lesions that can be inserted into normal brain scans to create new training
instances. Zhang et al. [20] proposed a lesion-aware data augmentation strat-
egy to increase the sample diversity. However, these methods often inevitably
introduce boundary artifacts that may cause the intensity distribution to shift,
resulting in segmentation performance degradation [19]. Recently, some image
harmonization frameworks [3,10] have been developed to solve the boundary and
style discontinuities between the foreground and background for natural images.
However, these frameworks have limitations when applied to brain MRI scans,
where the smooth transition between the lesion and surrounding tissues is more
critical than natural images.

In this paper, we tackle the problem of foreground intensity and style mis-
match created by data augmentation, so that plausible images can be generated.
As we do not have paired real and simulated images, we create simulated images
by taking real images and introducing foreground disparities to use for training
the image harmonization network (ARHNet). We further present an Adaptive
Region Harmonization (ARH) module to align foreground feature maps guided
by the background style information. Finally, we train a segmentation model
based on the mixture of real and synthetic images produced by ARHNet to
demonstrate its effectiveness for improving down-stream segmentation perfor-
mance.

2 Methodology

The purpose of ARHNet is to harmonize the foreground in augmented images
created by a data augmentation technique such as Copy-Paste [4], to further
serve downstream tasks like segmentation. We try to find a function f such that
fθ(Ĩa,Ma) ≈ Ia. Here, Ĩa is the augmented image, Ia is the corresponding real
image, and Ma is the foreground mask of Ĩa. θ refers to the parameter vector
of f , a.k.a., ARHNet. However, since the augmented image Ĩa does not have
a corresponding real image Ia, we perform foreground intensity perturbation
using a real brain MRI scan I with stroke lesions and its foreground mask M to
create an image Ĩ that simulates Ĩa with a disharmonious foreground. We train
ARHNet using the pairs (Ĩ ,M) → I to learn the parameter vector θ.
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2.1 Overview of ARHNet

Fig. 1 represents our framework (ARHNet) for foreground harmonization, which
comprises four components: a foreground intensity perturbation unit, a boundary
extractor, a generator G, and a discriminator D. Given I and M , I is first
scaled from 0 to 1. Next, the foreground intensity perturbation unit generates a
foreground intensity-perturbed image Ĩ. Intensity perturbation is performed as
follows:

Ĩ = [(1 + α) · I + λ]⊙M + I ⊙ (1−M) , (1)

where α ∼ U(−0.3, 0.3), λ ∼ U(−0.3, 0.3). Here α and λ can simulate large inten-
sity variance in augmented images Ĩa generated by advanced data augmentation
approaches like Copy-Paste [4]. “⊙” denotes element-wise multiplication. After
the foreground intensity perturbation, the stroke area is either brighter or darker
compared to the background tissue, which is a boundary mismatch. Next, Ĩ is
passed through G to obtain the intensity difference map. The foreground region
of the intensity difference map is then extracted using M and further added by
Ĩ to get a harmonized image Î. Inspired by [14], we concatenate Î with Ĩ and M
to create the input image pair for D. Here Ĩ and M provide location information
of the foreground, which benefits the adversarial training process and ensures Î
have high fidelity to the ground truth image.

To optimize G and D so that harmonized images Î have realistic texture and
harmonized boundary intensities, three loss functions are deployed during model
training: reconstruction loss Lrec, boundary-aware total variation loss Lbtv, and
adversarial loss Ladv. The reconstruction loss implemented in our framework is
defined as:

Lrec = ∥I − Î∥1. (2)

Reconstruction L1 loss makes the output and ground truth have similar appear-
ances but may cause over-smoothing of images. Therefore, the model tends to
output images with low mean square error but with relatively blurred texture.
To prevent texture blurring we add a discriminator so that the generator will
produce distinct and realistic images. The adversarial loss Ladv is added as ad-
ditional supervision to the training process. In particular, we use hinge loss [9]
instead of the cross-entropy loss to stabilize the training process and prevent the
gradient from vanishing. The Ladv is formulated as follows:

Ladv(D) = EÎ,Ĩ,M [max(0, 1−D(Î , Ĩ ,M))]+EI,Ĩ,M [max(0, 1+D(I, Ĩ,M))], (3)

Ladv(G) = −EÎ,Ĩ,M [D(Î , Ĩ ,M)]. (4)

A loss with only Lrec and Ladv leads to an abrupt boundary between the fore-
ground and background. To encourage the network to give low gradients on
the border area of Î and make the transition from background to foreground
smoother, we present a boundary-aware total variation loss Lbtv. If M̃ is the set
of boundary voxels extracted by the boundary extractor, Lbtv can be defined as:

Lbtv =
∑

(i,j,k)∈M̃

∥Îi+1,j,k − Îi,j,k∥1 + ∥Îi,j+1,k − Îi,j,k∥1 + ∥Îi,j,k+1 − Îi,j,k∥1, (5)
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Fig. 1. The pipeline of ARHNet for adaptive image harmonization for simulated brain
MRI with stroke lesions.

where i, j and k represent the (i, j, k)th voxel in M̃ . By adding the boundary-
aware loss, our framework makes the boundary transition smoother compared
to other methods (see Fig. 3 and 4), which makes the harmonized images more
like those observed on real MRI. Overall, our total loss function is defined as:

Ltotal = λrecLrec + λbtvLbtv + λadvLadv, (6)

where λrec, λbtv and λadv are weighting factors for each term.

2.2 Adaptive Region Harmonization (ARH) Module

To better align the foreground and background feature maps obtained from Ĩ,
we design a new feature normalization paradigm called Adaptive Region Harmo-
nization (ARH) module. As depicted in Fig. 2, the ARH module takes the resized
foreground mask M and the feature maps F as input. Here F ∈ RC×H×W×D and
M ∈ R1×H×W×D, where C, H, W , D indicate the number of feature channels,
height, width, and depth of F , respectively. We first divide the feature maps into
foreground Ff = F ⊙ M and background Fb = F ⊙ (1 − M) according to M .
Then we normalize Ff and Fb using Instance Normalization (IN) [18], and cal-
culate the channel-wise background mean value µ ∈ RC and standard deviation
σ ∈ RC as follows:

µ =
1

sum(1−M)

∑
h,w,d

Fc,h,w,d ⊙ (1−Mh,w,d), (7)

σ =

√
1

sum(1−M)

∑
h,w,d

[Fc,h,w,d ⊙ (1−Mh,w,d)− µ]2, (8)

where sum(·) indicates summing all elements in the map. Different from the
RAIN module [10] that directly applies µ and σ to Ff to align the foreground
to the background, we present a learned scaling parameter strategy, with an
attention mechanism so that the network focuses more on task-relevant areas
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Fig. 2. The structure of our Adaptive Region Harmonization (ARH) module. µ and σ
represent the channel-wise mean value and standard deviation calculated from Fb.

to better learn the consistent feature representation for both foreground and
background.

Specifically, we calculate an attention map Fa ∈ R1×H×W×D based on the
entire feature maps in the ARH module, to let the module adaptively extract
style information from important areas. Fa is formulated as:

Fa = S(Conv([Fmax, Favg, FConv])), (9)

where S denotes the sigmoid function and Conv denotes the convolution op-
eration. Additionally, we calculate two channel-wised scaling parameters γ ∈
RC×H×W×D and β ∈ RC×H×W×D as:

γ = Conv(Fa), β = Conv(Fa). (10)

γ and β allow element-wise adjustments on σ and µ which represent the global
intensity information extracted from the background feature maps. We fuse γ
and β with σ and µ with two convolutional layers to obtain the foreground
scaling factors γf and βf , which can be calculated as:

γf = Conv(γ + σ), βf = Conv(β + µ). (11)

By applying γf and βf to the foreground feature maps Ff , we finally attain the
aligned feature maps via F̂ = Ff ⊙ (1 + γf ) + βf + Fb.

3 Experiments

3.1 Experiment Settings

Dataset We use the ATLAS v2.0 dataset [8] to evaluate the performance of
ARHNet. ATLAS (short for ATLAS v2.0) is a large stroke dataset, which con-
tains 655 T1-weighted brain MRIs with publicly available voxel-wise annota-
tions. All images were registered to the MNI-152 template with a voxel spacing
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Table 1. Metrics for image harmonization on the ATLAS test set. The best results
are highlighted in bold. fMAE and fPSNR are computed in the foreground.

Method MAE↓ fMAE↓ PSNR↑ fPSNR↑
Composite 0.0014 0.23 39.70 14.62

HM 0.0010 0.14 41.38 16.30
UNet [17] 0.0009 0.11 43.94 18.88

Hinge-GAN [9] 0.0011 0.14 43.44 18.38
UNet-GAN [10] 0.0009 0.12 44.16 19.11

RainNet [10] 0.0007 0.09 45.33 20.30
Ours 0.0006 0.07 46.74 21.74

of 1mm × 1mm × 1mm. According to [5], about half of the images are charac-
terized as small lesion images (foreground voxels ≤ 5,000). In this work we focus
on only these images, corresponding to 320 MRIs. We split the dataset into five
folds, stratified by lesion size to ensure both training and testing sets have the
same data distribution. We randomly select one fold (20%) as the test set and
the remaining four folds are the training set.

Implementation Details ARHNet is implemented within PyTorch [15] and
uses TorchIO [16] for loading data and creating intensity perturbations. To opti-
mize the generator and discriminator, we use two AdamW optimizers [12]. The
initial learning rates for G and D are set to 1e-4, and 5e-5, respectively. The
batch size is set to 16 and total training epochs are 200 for each model. For
input images, we randomly extract a 64 × 64 × 64 patch from the MRI scans
corresponding to the region that contains the stroke annotation(s). The loss
weight factors λrec, λbtv, and λadv are set to 100, 10, 1, respectively. For the
down-stream segmentation task that is used to evaluate our framework, we im-
plement a segmentation model based on Attention UNet [13] in the MONAI
framework [1]. The initial learning rate is set to 1e-3, and the batch size is 4.
For a fair comparison, we train each setting for 30, 000 iterations.

Evaluation Metrics We evaluate the performance of ARHNet on the image
harmonization task and also a down-stream stroke segmentation task. For the
image harmonization task, we use four metrics to measure the fidelity of the
output, i.e., mean absolute error (MAE), mean absolute error of the foreground
region (fMAE), peak signal-to-noise ratio (PSNR), and signal-to-noise ratio of
the foreground region (fPSNR). For the down-stream stroke segmentation task,
we use three metrics to evaluate the segmentation performance: the Dice coeffi-
cient, 95% Hausdorff Distance (95HD), and average surface distance (ASD).

3.2 Experimental Results

Comparison of Image Harmonization Results We quantitatively compare
the foreground image harmonization results of ARHNet on the ATLAS test
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Fig. 3. Qualitative comparison between different harmonization methods.

set with other non-learning- and learning-based methods. Results are shown
in Table 1 where “Composite” means we do not use any image harmonization
method but directly calculating the metrics based on the images with foreground
disparities which are inputs for all other methods. It gives the worst results
as expected. If we adapt the foreground intensity to be consistent with the
background based on Histogram Matching (“HM” in Table 1), we can achieve
better results, but still worse than all of the learning-based methods evaluated.

Four learning-based methods are implemented as comparisons. Here “UNet”
refers to the UNet model trained with only the reconstruction loss Lrec. “Hinge-
GAN” means the UNet model trained with only the adversarial loss Ladv. “UNet-
GAN” denotes the UNet model is trained under the supervision of Lrec and Ladv.
“RainNet” is a generator that consists of the RAIN module [10], also only Lrec

and Ladv are used for backpropagation. From Table 1, we can find that our
method outperforms other methods on all metrics, proving the efficacy and ra-
tionality of ARHNet. Furthermore, compared with RainNet, our method achieve
a big improvement of 1.41 dB in PSNR and 1.44 dB in fPSNR.

We present qualitative results in Fig. 3 and 4. In Fig. 3 we can observe that
ARHNet can achieve realistic harmonization images no matter if the foreground
is brighter or darker than the background (top two rows: darker, bottom two
rows: brighter). Also, the boundaries in our results are smoother than other
methods. Additionally, we show the image harmonization results on composite
brain MRI scans in Fig. 4. By zooming in on the boundary area, it is easy to
observe that composite images harmonized by ARHNet are more realistic than
RainNet, which demonstrates the superiority of our method again.

Comparison of Down-Stream Segmentation Performance We report
quantitative measures of the down-stream lesion segmentation performance for
different training sets in Table 2. For each setting, we keep the batch size the
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Fig. 4. Visualization results on composite brain MRI scans which are used for the
down-steam segmentation task.

Table 2. Segmentation performances
under different training data settings.

Additional Data Dice↑ ASD↓ 95HD↓
- 23.84 48.85 85.67
200 real 25.05 48.93 88.08
200 by [20] 32.38 40.11 77.78
200 by Ours 36.41 25.14 49.30

Table 3. Ablation studies on different
feature normalization methods.

Method MAE↓ fMAE↓ PSNR↑ fPSNR↑
BN [7] 0.0007 0.09 45.80 20.79
IN [18] 0.0008 0.09 45.68 20.66

RAIN [10] 0.0008 0.10 43.89 18.87
Ours 0.0006 0.07 46.74 21.74

same and train for 30,000 iterations for a fair comparison. “-” denotes no ad-
ditional data is used for model training. “200 real” means 200 images with big
lesions (foreground voxels > 5,000) from the original ATLAS v2.0 dataset are
utilized as additional training samples. “200 by [20]” refers to using CarveMix
to generate additional 200 images for model training. “200 by Ours” means we
first use Copy-Paste [4] strategy to create 200 composite images, then we use
ARHNet to adjust the foreground intensity to harmonize the images. As shown
in Table 2, our method achieves the best segmentation result and brings a large
performance gain of 12.57% in Dice compared to not using any additional data.

Ablation Study We also investigate the performance gain achieved by our
ARH module, results are shown in Table 3. We can find that if we keep all other
settings unchanged and only replace the ARH module with InstanceNorm or
BatchNorm, higher PSNR is reached compared to RainNet (see in Table 1). This
demonstrates the effectiveness of some of the additional elements we presented in
this work, such as boundary-aware total variation loss and the foreground inten-
sity perturbation unit. However, if we replace the ARH module with the RAIN
module, the result is the worst among all normalization methods. This is likely
because the RAIN module only considers the entire style of the background, and
therefore cannot align the foreground feature maps properly.
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4 Conclusion

In this paper, we propose an Adaptive Region Harmonization Network (ARHNet)
that can effectively harmonize a target area and make the style of foreground and
background consistent in this region. This framework can be utilized to harmo-
nize synthetic samples generated by other data augmentation methods, and make
these images more realistic and natural. Harmonized augmented samples can be
further utilized in down-stream segmentation tasks to improve the segmentation
model’s generalization ability. Extensive experimental results demonstrate that
our proposed method can generate style-consistent images and is effective for
segmenting small stroke lesions on T1-weighted MRI.
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