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Abstract. Deep learning has proven to be more effective than other
methods in medical image analysis, including the seemingly simple but
challenging task of segmenting individual cells, an essential step for many
biological studies. Comparative neuroanatomy studies are an example
where the instance segmentation of neuronal cells is crucial for cytoarchi-
tecture characterization. This paper presents an end-to-end framework
to automatically segment single neuronal cells in Nissl-stained histolog-
ical images of the brain, thus aiming to enable solid morphological and
structural analyses for the investigation of changes in the brain cytoar-
chitecture. A U-Net-like architecture with an EfficientNet as the encoder
and two decoding branches is exploited to regress four color gradient
maps and classify pixels into contours between touching cells, cell bodies,
or background. The decoding branches are connected through attention
gates to share relevant features, and their outputs are combined to re-
turn the instance segmentation of the cells. The method was tested on
images of the cerebral cortex and cerebellum, outperforming other recent
deep-learning-based approaches for the instance segmentation of cells.

Keywords: Cell Segmentation · Histological Images · Neuroanatomy ·
Brain · Nissl Staining · Deep-Learning · U-Net · EfficientNet · Attention.

1 Introduction

Advancements in microscopy have made it possible to capture Whole Slide Im-
ages (WSIs) and obtain cellular-level details, revealing the intricate nature of
the brain cytoarchitecture. This progress has opened up new avenues for con-
ducting quantitative analysis of cell populations, their distribution, and mor-
phology, which can help us answer a range of biological questions. Comparative
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neuroanatomy studies examine differences in brain anatomy between groups dis-
tinguished by factors like sex, age, pathology, or species, investigating the con-
nections between the brain’s structure and function [1,8,4]. A standard analysis
pipeline involves the use of Nissl stain to label neuronal cells in tissue sections
(histological slices) of brain specimens [6]. These sections are then fixed and dig-
itized as WSIs for examination. WSIs are often characterized by their sheer size
and complexity, making computerized methods necessary for their efficient and
reproducible processing. Automatic cell instance segmentation plays a crucial
role, as it allows to extract features at the single cell level.

In the field of digital pathology, numerous methods have been proposed to
segment cells and nuclei and aid the detection and diagnosis of diseases. These
methods mainly rely on a set of algorithms, including intensity thresholding,
morphology operations, watershed transform, deformable models, clustering,
graph-based approaches [16]. However, cell instance segmentation is very chal-
lenging due to the varying size, density, intensity and texture of cells in different
anatomical regions, with additional artifacts that can easily influence the results.
Recently, deep learning has shown remarkable progress in medical image anal-
ysis, and neural networks have been successfully applied for cell segmentation,
achieving higher quality than traditional algorithms. In the last years, a consid-
erable number of approaches have adopted a semantic segmentation formulation
that employs a U-net-like convolutional neural network architecture [12]. These
methods incorporate customized post-processing techniques, such as marker-
controlled watershed algorithms and morphological operations, to separate cells
instances. Some integrate the formulation with a regression task. Huaqian et. al
[15] propose a framework with an EfficientNet as the U-Net encoder for ternary
classification (contours between touching cells, cell bodies, and background, BG).
Ultimate erosion and dynamic dilation reconstruction are used to determine the
markers for watershed. StarDist [13] regresses a star-convex polygon for every
pixel. CIA-Net [18] exploits two decoders, where each decoder segments either
the nuclei or the contours. Hover-Net [7] uses a Preact-ResNet50 based encoder
and three decoders for foreground (FG)/BG segmentation, cell type segmenta-
tion, and regression of horizontal and vertical distances of pixels from the cell
centroid. Mesmer [9] considers classification into whole contours, cell interiors,
or BG, and regression of the distance from the cell centroid.

Since in histological images the boundaries between cells that are in con-
tact are often incomplete or ambiguous and they can appear between cells with
differing characteristics and orientations, we recognized the pivotal role of cor-
rectly predicting these boundaries for accurate cell separation. Therefore, we
have developed an approach that focuses on enhancing the prediction of con-
tours. Specifically, we propose NCIS as an end-to-end framework to automati-
cally segment individual neuronal cells in Nissl-stained histological images of the
brain. NCIS employs an U-Net-like architecture, which synergistically combines
solutions from [15,7,18] to classify pixels as contours between touching cells, cell
body, or BG, and to regress four color gradient maps that represent distances of
pixels from the cell centroid and that are post-processed to get a binary mask of
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contours. Since cells are often slanted and there are configurations where smaller
cells burrow into the concavities of larger ones, we hypothesized that the predic-
tion of diagonal gradients together with horizontal and vertical ones could help
to strengthen the approach. NCIS was created to examine the cytoarchitecture
of brain regions in diverse animals, including cetaceans, primates, and ungu-
lates. The primary objective is to conduct comparative neuroanatomy studies,
with a particular emphasis on diseases that impair brain structure and func-
tionality, such as neurodegeneration and neuroinflammation. We tested NCIS
on images of the auditory cortex and cerebellum, outperforming other recent
deep-learning-based approaches for the instance segmentation of cells.

2 Dataset

The data of this study are a set of 53 2048x2048 histological images extracted
from Nissl-stained 40x magnification WSIs of the auditory cortex of Tursiops
truncatus, also known as the bottlenose dolphin. Brain tissues were sampled from
20 specimens of different subjects (new-born, adult, old) stored in the Mediter-
ranean Marine Mammals Tissue Bank (http://www.marinemammals.eu) at the
University of Padova, a CITES recognized (IT020) research center and tissue
bank. These specimens originated from stranded cetaceans with a decomposi-
tion and conservation code (DCC) of 1 and 2, which align with the guidelines
for post-mortem investigation of cetaceans [10]. The images were divided into 3
subsets: 42 images for training, 5 for validation and 6 for testing.

To assess the generalizability of the proposed method on cerebral areas not
seen during training, we considered an independent 2048x2048 Nissl-stained his-
tological image of the cerebellum of the bovine [4]. In this case, the animal
was treated according to the present European Community Council directive
concerning animal welfare during the commercial slaughtering process and was
constantly monitored under mandatory official veterinary medical care. Com-
pared to the training set, the additional image is characterized by the presence
of a higher density granular layer of touching or overlapping cells with small
dimensions and predominantly circular shape and a thin Purkinje cell layer with
relatively larger and sparse pear-shaped cells.

All images were annotated using QuPath [2] software, resulting in 24, 044
annotated cells of the auditory cortex, and 3, 706 of the cerebellum.

3 Method

The proposed NCIS framework for automatic instance segmentation of neuronal
cells can be observed in Fig. 1. An image of arbitrary size is divided into patches
of size 256x256 via a tiling step with 50% overlap between patches. Patches are
individually fed to the deep learning model, NCIS-Net, whose architecture is
shown in Fig. 2. The model outputs for each patch are combined via a untiling
step to get 7 outputs with size equal to that of the original image. Finally, a
series of post-processing steps is applied to generate the instance segmentation.

http://www.marinemammals.eu
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Fig. 1: An overview of the overall NCIS approach for neuronal cell instance seg-
mentation in Nissl-stained whole slice images.

3.1 NCIS-Net

Fig. 2: An overview of the architecture of the proposed NCIS-Net.

Architecture The proposed NCIS-Net has a U-Net-like structure, as shown in
Fig. 2. The down-sampling, feature extracting branch of the encoder is based
upon a state-of-the-art network, EfficientNet-B5, whose building blocks are ar-
rays of mobile inverted bottleneck MBConv optimized with neural architecture
search [14]. NCIS-Net is characterized by two decoding branches for a classi-
fication and regression task. The first branch performs three-class pixel classi-
fication. Its output is a three-channel image with probabilities for boundaries
between touching cells, cell bodies, and BG, respectively. The union of the first
two classes constitutes the FG. The second branch regresses four color gradient
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maps. Its output is a four-channel image, where each channel represents a color
gradient map with vertical, horizontal, and diagonal directions. As illustrated in
Fig. 2, in a gradient map, each individual cell is represented by a color gradient
where pixel values increment from the minimum of −1 (blue in the figure) to
the maximum of 1 (yellow in the figure) according to the prescribed direction
(vertical from left to right, horizontal from top to bottom, diagonal from bottom
left to top right and diagonal from top left to bottom right). 0 corresponds to the
cell centroid. Four skip connections leveraging attention gates [11] connect the
encoder branch to each decoder branch, promoting a focused exploitation of the
features encoded at different resolutions. Skip connections with attention gates
are also introduced between the two decoder branches to favor feature sharing.

Loss function NCIS-Net is trained through the backpropagation algorithm
applied to a loss function L = LPC + LGR that jointly optimizes the encoder,
pixel classification (PC) and gradient regression (GR) branches, with

LPC = λ1C + λ2D1 + λ3D2, LGR = λ4M1 + λ5M2 (1)

where λ1 = λ3 = λ4 = λ5 = 2, λ2 = 1 are weighting factors set via hyperpa-
rameter validation. C is the categorical cross-entropy between the ground truth
(GT) and ŶPC , the output of the PC branch. Dk is the Dice loss for class k:

Dk = 1−
2
∑N

i=1(YPC,i,kŶPC,i,k) + ϵ∑N
i=1 YPC,i,k +

∑N
i=1 ŶPC,i,k + ϵ

(2)

where N is the total number of pixels in the input image, ϵ is a smoothness
constant. Specifically, D1 and D2 in Eq. 1 are the Dice losses for contours and
cell bodies, respectively. M indicates a mean squared error loss. M1 is the mean
squared error loss between the GT (YGR) and the predicted output ŶGR of the
GR branch, while M2 is defined as:

M2 =
1

N · J

N∑
i=1

J∑
j=1

(∇jYGR,i,j −∇j ŶGR,i,j)
2 (3)

where J is the number of gradient maps (4 in our case) and ∇ is the derivative
operator. Note that for each gradient map, finite derivatives are taken by con-
volving the map with 5x5 Sobel kernels with orientation and direction matching
that of the corresponding gradient map, as illustrated in Fig. 1.

Training Data batches are created from the training set of 2048x2048 images.
Images are picked randomly with replacement and a series of random augmenta-
tions including rotations, flipping, deformations, intensity variations, and blur-
ring, are applied to each selected image and corresponding three-class semantic
and cell instance segmentation GT masks, when necessary. GT gradient maps
are computed at this stage based on the transformed instance segmentation
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GT masks. Random cropping is then applied to the transformed images to get
256x256 images to be fed to the network. By utilizing this approach, it is highly
likely that the batches used during each epoch will not only have varying trans-
formations but also distinct cropped original images, ultimately aiding in the
prevention of overfitting. All models are trained with the TensorFlow 2 frame-
work in two phases. In the first phase the encoder, pre-trained on the Image-Net
dataset [5], is frozen, while in the second fine tuning phase the encoder is un-
frozen, with the exception of batch normalization layers. Each phase continues
for a maximum of 50 epochs with early stopping (patience of 8 epochs, 400
batches per epoch, batch size of 16). The validation set for early stopping is cre-
ated from the validation set of 2048x2048 images by cropping them into 256x256
with no overlapping and no augmentations. We use the AMSGrad optimizer with
clipnorm of 0.001 and a learning rate of 10−3 in the first phase and 10−5 in the
second phase. The deep learning model architecture, training and inference code
will be made available upon acceptance on GitHub.

3.2 Untiling and Post-Processing

Patches from the same image are blended together via interpolation with a sec-
ond order spline window function that weights pixels when merging patches [3].

Within each of the color gradient map, pixels between different cells should
have a meaningful difference. Therefore, Sobel kernels are utilized to get the
following contour map:

CPC,i = max(∇1ŶGR,i,1,∇2ŶGR,i,2,∇3ŶGR,i,3,∇4ŶGR,i,4) (4)

where ŶGR,i,j , j = 1, ..., 4, is normalized between 0 and 1. CPC,i is thresholded
on a per-image basis via the triangle method [17], so that ones in the thresholded
binary version CPC,i,th correspond to contours. A binary mask is defined with
pixels set to 1 if they are most likely to belong to cell bodies based on the outputs
of both decoders (ŶPC,i,2>ŶPC,i,1 and ŶPC,i,2>ŶPC,i,3 and CPC,i,th = 0). Con-
nected components smaller than 80 pixels are removed. The mask is eroded with
a disk-shaped structuring element of radius 4 to force the separation of touch-
ing cells that are only partially separated. The resulting connected components
bigger than 3 pixels are used as markers for the marker-controlled watershed
algorithm applied to the topological map given by the complement of ŶPC,i,2.
A foreground binary mask is obtained as ŶPC,i,1+ŶPC,i,2>ŶPC,i,3. After holes
filling and morphological opening to smoothen the cell boundaries, it is used to
constrain the watershed labelling. Segmentations are refined via morphological
closing and opening, ensuring that boundaries between cells are maintained.

4 Results

4.1 Evaluation Metrics

To evaluate the semantic segmentation performance on test images, we utilize the
Dice Coefficient (Dice). Instance segmentation performance is evaluated accord-
ing to the average precision with threshold 0.5 (AP@0.5). Predicted instances
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Table 1: Segmentation performance of the proposed NCIS method and compared
approaches. #P indicates the number of network trainable parameters.

Methods Auditory Cortex Cerebellum
#P(M) Dice AP@0.5 Dice AP@0.5

Huaqian et. al [15] 40.15 0.915 0.782 0.708 0.329
Hover-Net [7] 44.98 0.912 0.780 0.792 0.230
Mesmer [9] 25.50 0.862 0.657 0.801 0.156

NCIS - no attention 58.07 0.920 0.810 0.801 0.458
NCIS 61.91 0.925 0.814 0.768 0.402

are compared to the GT and a match (true positive, TP) is established if a GT
object exists whose intersection over union (IoU) is greater than 0.5. Unmatched
objects are counted as false positive (FP) and unmatched GT objects are false
negatives (FN). The average precision is then given by AP = TP/(TP+FP+FN).

4.2 Experimental Results

We evaluated NCIS, Huaqian et. al [15], Hover-Net [7], and Mesmer [9] on images
of the auditory cortex. The Dice coefficient for all methods (except Mesmer) is
higher than 0.912, as shown in Table 1, highlighting that U-net-like architectures
can produce reliable results for semantic segmentation regardless of the specific
architecture. Huaqian et. al, based on three-class pixel classification, and Hover-
Net, based on binary pixel classification and regression of two distances from
the cell centroid, achieve similar performance. NCIS, which focuses on contours
predictions through three-class pixel classification and regression of four dis-
tances (or color gradients) from the cell centroid, displays the best performance
in terms of both semantic and instance segmentation accuracy. NCIS - no atten-
tion, the NCIS version with no attention gates, also performs well compared to
the other methods but slightly worse than NCIS. Mesmer, which regresses the
distance from the cell centroid to determine markers instead of contours during
the post-processing, performs substantially worse.

When testing the methods on the cerebellum, an area not seen during train-
ing, we can observe lower performance overall, as expected. Interestingly, NCIS
- no attention is the overall top performer, indicating that attention may be
detrimental if the training set does not adequately represent the test set. For
semantic segmentation, Mesmer is on par with NCIS - no attention, followed by
Hover-Net. NCIS is the second-best for instance segmentation.

The qualitative outcomes for three example tiles are presented in Fig. 3.
The segmentation of NCIS appears to be visually appealing, being smoother
and more conforming to ground truth. Common segmentation errors include cell
merging and inaccurate identification of artifacts as cells. For the cerebellum, all
approaches struggle on the higher density granular layer, but the Purkinje cells,
which closely match the cells encountered during training, are correctly isolated.
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GT Huaqian et. al Hover-Net Mesmer NCIS

Fig. 3: Qualitative results for two sample tiles from the Auditory Cortex (top
and center) and Cerebellum (bottom) datasets. GT is shown in the first column.

5 Discussion

Currently, there are limited techniques tailored for the segmentation of neuronal
cells in Nissl-stained histological slices of the brain. To address this issue, we
propose a new segmentation framework, called NCIS, which employs a dual-
decoder U-Net architecture to enhance contour prediction by combining three-
class pixel classification and regression of four color gradient maps. Our model
outperforms existing state-of-the-art methods on images of the auditory cortex,
demonstrating its ability to effectively deal with the challenges of neuronal cell
segmentation (cells with variable shapes, intensity and texture, possibly touch-
ing or overlapping). If tested on an area of the brain not seen during training,
the NCIS semantic segmentation accuracy is promising, but the instance seg-
mentation performance indicates the need to enrich the training set. We believe
that the number of NCIS-Net parameters could be reduced without compromis-
ing performance through minor architectural changes (e.g., summation instead
of concatenation in skip connections).

NCIS could be particularly useful in processing histological WSIs of different
species for comparative neuroanatomy studies, potentially contributing to the
understanding of neurodegenerative and neuroinflammatory disorders.
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