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Abstract. When taking images of some occluded content, one is of-
ten faced with the problem that every individual image frame contains
unwanted artifacts, but a collection of images contains all relevant in-
formation if properly aligned and aggregated. In this paper, we attempt
to build a deep learning pipeline that simultaneously aligns a sequence
of distorted images and reconstructs them. We create a dataset that
contains images with image distortions, such as lighting, specularities,
shadows, and occlusion. We create perspective distortions with corre-
sponding ground-truth homographies as labels. We use our dataset to
train Swin transformer models to analyze sequential image data. The at-
tention maps enable the model to detect relevant image content and dif-
ferentiate it from outliers and artifacts. We further explore using neural
feature maps as alternatives to classical key point detectors. The feature
maps of trained convolutional layers provide dense image descriptors that
can be used to find point correspondences between images. We utilize this
to compute coarse image alignments and explore its limitations.

Keywords: Swin Transformer· Image Alignment· Image Reconstruction
· Deep Homography Estimation · Vision transformer
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1 Introduction

This paper attempts to solve the problem of image reconstruction and alignment
simultaneously. Specifically, we deal with image sets that contain distortions and
are related by a 2D homography. When taking photos of panoramas or planar
objects, such as magazines, paintings, facades, or documents, the resulting im-
ages often contain unwanted artifacts. The images may contain varying lighting
conditions, shadows, and occlusions. Each artifact corrupts the original content.
In order to combine information from all images, the images have to be aligned,
and the information has to be aggregated. In this work, we utilize deep image
features for image alignment. Furthermore, we use Video Swin Transformers for
spatio-temporal analysis of the aligned image sequences and aggregation. This
paper is a continuation of the work by Kwiatkowski and Hellwich (2022) [9].

We provide the following improvements to the initial paper:

1. We developed a new synthetic dataset. We improve the original data gen-
eration by using a ray-tracing pipeline. The dataset contains more realistic
lighting and shadows. Furthermore, we take images from different perspec-
tives and provide ground-truth homographies. The library can further be
used for image alignment tasks.

2. In addition to solving an image reconstruction task, we also align the images
using their neural feature maps. We use feature maps as dense key point
descriptors and compute matches between images using a cosine similarity
score.

3. Following the success of Vision Transformers (ViT) [7,12] and their exten-
sions to video [1,13] we explore their use for image reconstruction. (Video)
Vision transformers compute spatio-temporal attention maps. They have
been shown to be able to compute spatial features that are on par with Con-
volutional neural networks. Furthermore, transformers are the state of the
art deep learning models for sequential data. Both of these properties are
essential for image reconstruction. A local image feature can only be deter-
mined as an artifact by analyzing the context within the image and across
the image sequence.

4. We explore various forms of aggregating feature maps. We show that com-
puting attention maps over the sequence allows for a better aggregation
compared to the original concept of Deep Sets.

2 Related Work

Deep Image Alignment The classical approach to estimating homographies
uses sparse image descriptors to compute matches between image points [8].
A homography can then be estimated from the matches using random sample
consensus (RANSAC). A variety of methods have been developed to improve
on the classical approach with neural networks. Some methods aim at replacing
image descriptors, such as SIFT[14], with trainable feature maps [2,11,17]. The
advantage of these methods is that they can learn robust image features that
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are distinctive in their corresponding dataset. Additionally, they can be easily
integrated into many classical computer vision pipelines.
Neural networks have also been trained on matching image patches directly
[18,16]. Graph neural networks or transformers enable a model to analyze points
not only individually but in relation to each other. A computed match should
therefore be consistent with neighboring matches; otherwise, it is likely an out-
lier.
One can also describe the estimation of a homography as a regression problem
[5]. The model takes two images as input and outputs eight values that can be
interpreted as the parameters of a homography.

Deep Image Stitching combines information from multiple images. The im-
ages are simultaneously aligned and stitched along overlapping regions. This way,
image alignment and image reconstruction can be combined into a single differ-
entiable end-to-end pipeline [15]. There have also been attempts to use neural
representations of images for image alignment and stitching. BARF [10] uses
neural radiance fields to store 2D or 3D scenes inside a neural network. Dur-
ing the training of the network, both the content of the scene and the relative
orientation of cameras are estimated. BARF uses a form of Bundle Adjustment
that produces very accurate results. However, none of these methods can deal
with outliers and artifacts. Furthermore, BARF does not learn any prior that is
transferable to other image sequences.

(Vision) Transformers have become the state-of-the-art model for sequential
data [19,6]. Transformers compute attention maps over the whole input sequence.
Each token in a sequence is compared with every other token, which enables
embeddings with a global context. It has been shown that Transformers can also
be applied to image tasks [7,12]. Images can be treated as a sequence of image
patches. The same idea has also been also extended to video [1,13]. Videos can
be split into spatio-temporal patches and processed as a sequence. In this work,
we want to train video transformers to aggregate image sequences. Using spatial
and temporal information, it should be possible to determine whether a patch
contains a defect or an outlier. The reconstruction should then reconstruct the
underlying content by combining partial information from the larger context of
the sequence.

3 Dataset

Figure 1 illustrates the data generation process. We use paintings from the Wiki
Art dataset [4] as our ground-truth labels for reconstruction. Any other image
dataset could also be used, but Wiki Art contains a large variety of artworks
from various periods and art styles. We believe the diversity of paintings makes
the reconstruction more challenging and reduces biases towards a specific type
of image. We take an image from the dataset and use it as a texture on a plane
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in 3D. We randomize the generation of cameras by sampling from a range of 3D
positions. The field of view of the camera is also randomly sampled to create
varying zoom effects. This also creates a variety of intrinsic camera parameters.
We randomly generate light sources. The type of light source is randomly sam-
pled, e.g., spotlight, point light, or area light, their position, and corresponding
parameters, such as intensity or size.
Furthermore, we generate geometric objects and put them approximately in be-
tween the plane and the camera’s positions. We utilize Blender’s ability to apply
different materials to textures. We apply randomized materials to the image tex-
ture and occluding objects. The appearance of occluding object can be diffuse,
shiny, reflective, and transparent. The material properties also change the effect
lighting has on the plane. It changes the appearance of specularities, shadows,
and overall brightness.
Finally, we iterate over the cameras and render the images. Blender’s physically-
based path tracer, Cycles, is used for rendering the final image. Path-tracing
enables more realistic effects compared to rasterization. It allows the simulation
of effects, such as reflections, retractions, and soft shadows, which are not pos-
sible in the original dataset generation pipeline [9].
Using this data generation, we create two datasets. One contains misaligned
images; the other contains aligned images.

Fig. 1. Illustration of a randomly generated scene using Blender. The plane shows a
painting. The white pyramids describe randomly generated cameras; the yellow cone
describes a spotlight. Geometric objects serve as occlusions and cast shadows onto the
plane.
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3.1 Aligned Dataset

We create one dataset that only consists of aligned image sequences. To enforce
the alignment, we use a single static camera that perfectly fits the image plane.
The camera’s viewing direction is set to be perpendicular to the image plane and
centered on the image plane. We adjust the vertical and horizontal field of view
such that only the image can be seen. Furthermore, we generate a ground truth
label by removing all light sources and occluding objects. We only use ambient
illumination for rendering the picture.

Fig. 2. Four randomly generated images that are aligned.
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Fig. 3. The image shows the output of our rendering pipeline when only ambient
lighting is used. The image is free of any artifacts.

Figure 2 shows a sequence of distorted images that are also aligned. Fig-
ure 3 shows the corresponding ground-truth label. We generate ∼ 15000 image
sequences, each containing ten distorted images as our dataset. This dataset
is used for training the image reconstruction task. We create another test set
with 100 sequences, each containing 50 distorted images. We use the test set to
analyze how well our models perform on varying sequence sizes.

3.2 Misaligned Dataset

In addition to the aligned dataset, we generate images with perspective dis-
tortions. For each randomly generated camera, we render an image. In order
to evaluate the image alignment with reconstruction, we also generate a single
ground truth image as described in section 3.1 under ambient lighting condi-
tions. We need a common reference frame that is aligned with the ground-truth
label in order to measure alignment and reconstruction simultaneously. Using
the label directly as input creates an unwanted bias for the model. Therefore,
another aligned image is created that contains distortions.
Figure 4 shows a sequence of distorted images. The first image contains various
artifacts, but it is free of perspective distortions.
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Fig. 4. Four images containing perspective distortions. The first image is aligned with
the camera’s view, but it also contains image distortions.

Homography Since we take images of planar objects, all our images are re-
lated by 2D homographies. A point with pixel coordinates (xi, yi) in image Ii is
projected onto the coordinates (xj , yj) in image Ij with the homography Hij :

λ

xj

yj
1

 =

h11 h12 h13

h11 h22 h23

h31 h32 h33


︸ ︷︷ ︸

Hij

xi

yi
1

 (1)

Hij can be exactly computed from four point-correspondences. Since we know the
camera’s positions in space and their intrinsic parameters, we can calculate the
projection points explicitly. We project each of the four corners Xk k = 1, .., 4

of the paintings into the i-th camera image plane x
(i)
k using their projection

matrices:

x
(i)
k = PXk (2)

= Ki[I|0]
[
Ri ti
0 1

]
Xk k = 1, .., 4 (3)

(Ri, ti) describes the global rotation and translation of the camera, Ki describes

the intrinsic camera parameters. Using the four-point pairs x
(i)
k ↔ x

(j)
k k =
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1, .., 4, we can compute the homography using the Direct Linear Transform
(DLT)[8].

4 Deep Image Alignment

In order to align the images, we chose to use convolutional feature maps as image
descriptors. It has been shown by methods, such as Ransac-Flow [17] or Pixel-
Perfect SfM[11], that it is possible to use convolutional layers as dense keypoint
descriptors. Figure 5 shows two images and their corresponding feature maps.

Fig. 5. A pair of images and their corresponding feature maps.

Let I ∈ RH×W be an image and I ′ = fθ(I) ∈ RH×W×C a feature map from
a convolutional neural network. We can treat each individual pixel in I ′ as a
key point with a descriptor of dimension C Using this approach any image of
resolution (H×W ) can be described as a collection of points described by a data
matrix XI = (x1, · · · , xWH)T ∈ RHW×C . Given two collection of keypoints X1

and X2 we can compute similarity scores Sij between any point xi ∈ X1 and
xj ∈ X2. We use the cosine similarity:

S(xi, xj) =
< xi, xj >

|xi| · |xj |
(4)

S = norm(X2X
T
1 ) (5)
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The score matrix S can be computed and does not require the images to
have the same resolution. Every pixel in one image is compared with every
pixel in another image. We can compute matches by filtering pairs with a max-
imal similarity score. Each point pair should be each other’s best match; oth-
erwise, there is ambiguity between descriptors. If xi = argmaxk S(xk, xj) and
xj = argmaxk S(xi, xk), then (xi, xj) are a match.
The score matrix S and their matches can be computed efficiently. We addi-
tionally follow the implementation of Ransac-Flow by using image pyramids to
make the descriptors and matching more scale invariant. For any image at scale
Is ∈ RsH×sW , we can again compute keypoints XIs ∈ Rk2HW×C . We can con-
catenate the descriptors into a single matrix X ∈ RN×C , where N =

∑
k k

2HW .
We can compute matches as before.
We can use the matches to estimate our homographies as described in 3.2. Using
RANSAC, we can further filter out matches and estimate a homography. Given
a homography described as a function Hij : (x, y) 7→ (x′, y′), we can warp image
Ii(x, y) into Ij(x, y) using Ii(Hij(x, y)).
This is a general approach that can be integrated into any differentiable pipeline.
For our implementation, we use the first three layers of a ResNet that was pre-
trained on ImageNet1K.

5 Architecture

5.1 Deep Residual Sets

For our architecture, we use Deep Residual Sets as our baseline. Deep sets can
be decomposed into an encoder ϕ and a decoder ρ as follows[21]:

f(x1, x2, · · · , xN ) = ρ

(
N∑
i=1

ϕ(xi)

)
(6)

Deep sets have useful properties, such as permutation invariance. In the
original approach, Deep Residual Sets have shown promising results for image
reconstruction[9]. The architecture consists of residual blocks, downsampling,
and upsampling layers. Further average pooling was used to aggregate the em-
beddings along the sequence.
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Fig. 6. Initial architecture (figure taken from[9])

The main disadvantage of deep sets is that they struggle to remove outliers
along the sequence. If an image contains an occlusion, the corresponding em-
bedding of the outlier is pooled into the final embedding. The decoder often
struggles to remove them and can only attenuate these artifacts.
In order to remove outliers, they must first be identified within the sequence us-
ing contextual information. Deep sets analyze each element independently and,
therefore, can’t solve this problem. Transformer models, on the other hand, pro-
vide a better solution for this problem since they compute attention maps over
the whole sequence.

5.2 Video Swin Transformer

Transformers have been shown to be powerful sequential models [6,19]. Trans-
formers compute attention over a sequence by computing pairwise embeddings
between tokens. This principle allows for very general sequence processing. How-
ever, their main disadvantage is their quadratic memory consumption with re-
gard to the sequence length. Applying them to high-dimensional images is not a
trivial task. Transformers have been successfully applied to vision tasks by using
special partitioning schemes on images[7]. Images aren’t processed pixel by pixel
but rather over larger patches. The original Vision Transformer (ViT) has a low
inductive bias, which allows them to learn more general feature extraction, but
also increases training time. Several architectures have been proposed to improve
the efficiency of vision transformer models.
Swin transformers provide an efficient way to process images and videos as se-
quences [12]. Figure 7 illustrates how a Swin transformer operates. Given is an
image consisting of 8 × 8 pixels. Using a predefined window size, here 4 × 4,
the k-th layer splits the input into 2 × 2 patches. The patches are passed to a
transformer layer, and self-attention maps are computed. In the next layer, the
windows are shifted by half the window size using a cyclic shift. The new patches
are also passed to a self-attention layer. The combination of both layers allows
efficient computation of attention across non-overlapping
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Fig. 7. An illustration of the partitioning scheme of two consecutive Swin layers. The
input of layer k consists of W × W pixels. Using a window size of M × M creates
W
M

× W
M

patches. In layer k + 1 the windows are shifted by M
2
× M

2

The same concept has been extended to video with Video Swin Transformers
[13]. The window size is extended with a time dimension. Given a video with size
T×H×W and a window size P×M×M the video is divided into spatio-temporal
patches of size T

P × H
M × W

M .

5.3 Image Reconstruction using Swin Transformers

Although Deep Residual Sets provide a good baseline for image reconstruction,
their main disadvantage is their lack of contextual information between images.
We would like to alleviate this disadvantage by replacing the pooling layer with
a transformer model. Specifically, we apply a Video Swin Transformer on the
concatenated embeddings of the individual images. Figure 8 illustrates our ar-
chitecture. We use residual blocks for the encoding of each individual image and
for the final decoding. The feature maps are concatenated, processed as a se-
quence, and given into the Swin layers. The Swin transformer is primarily used
for aggregating information across the sequence. We use the downsampling and
upsampling layers within our residual blocks. We do not use any downsampling
or merging layers from the original Swin transformer.
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Fig. 8. The architecture uses residual blocks for encoding and decoding.

We explore three different Swin modules by changing the temporal window
size. We use three models DIAR(1, 7, 7), DIAR(2, 7, 7) and DIAR(3, 7, 7). Our
graphics card could not handle larger patch sizes.

Although the Swin layer computes attention maps over the whole sequence,
it does not aggregate information into a single element as a pooling layer does.
Let [x1, · · · , xT ] ∈ R(T,H,W,C) be the stacked feature maps with dimensionality
(H,W,C). Let [e1, · · · , eT ] = Swin(x) ∈ R(T,H,W,C) be the computed embedding
from the Swin layer. We explore various methods of aggregating the stacked
embeddings into a single feature map for reconstruction.

– Average pooling without embedding (Deep sets): y =
∑

i xi

– Average pooling with embedding: y =
∑

i ei

– Weighted sum: y =
∑

xiσ(e)i , where σ() describes the softmax function.

5.4 Training

All models are trained on the synthetic dataset of aligned sequences. The dataset
contains 15000 image sequences. We use 10% as a validation set. We train our
models on an NVIDIA RTX 3090 with 24 GB memory. We train with a batch
size of 20 for 100 epochs. We use the Adam optimizer with a learning rate of
λ = 0.001.
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6 Evaluation:

6.1 Aggregation

As mentioned in section 5.3 we evaluate different aggregation methods. We com-
pare the original Deep Sets with Swin-based methods. Figure 9 shows the pro-
gression of the models on the validation set performance.

100 200 300 400 500 600

0.045

0.050

0.055

0.060

0.065

0.070

0.075
Deep Sets
Swin Avg
Swin Softmax

Fig. 9. Deep sets clearly fall behind attention-based models. Aggregating the embed-
dings using a weighted sum provides the best reconstruction.

The graphic clearly shows that transformers improve aggregation. The figure
also indicates that computing a softmax and aggregating the individual feature
maps with a weighted sum is superior to average pooling over the Swin embed-
ding. Based on these results, all further Swin models use softmax.
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6.2 Image Reconstruction

We use a test set containing 100 sequences, each with 50 distorted images. To
evaluate our models, we use the metrics root-mean-squared error (RMSE), peak
signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). In
addition to our deep learning methods, we compare them with non-deep learning
methods that provide a reasonable baseline for methods that deal with outlier
removal. The following methods are also evaluated:

– Median of images

– Average of images

– Robust PCA (RPCA)[3],

– Intrinsic image decomposition (MLE)[20]

The figures 10,11 and 12 illustrate the average performance of each model
given different sequence lengths. The deep learning models have a by far lower
RMSE and higher PSNR. All deep learning methods have low SSIM.

0 10 20 30 40 50
#Images

30

40

50

60

70

80

RM
SE

DIAR (1,7,7)
DIAR (2,7,7)
DIAR (3,7,7)
Deep Set
RPCA
Median
AVG
MLE

Fig. 10. The graph shows the average RMSE for different input lengths
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Median
AVG
MLE

Fig. 11. The graph shows the average PSNR for different input lengths

0 10 20 30 40 50
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0.45

0.50

0.55

0.60

0.65

0.70
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0.80
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IM

DIAR (1,7,7)
DIAR (2,7,7)
DIAR (3,7,7)
Deep Set
RPCA
Median
AVG
MLE

Fig. 12. The graph shows the average SSIM for different input lengths
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Fig. 13. The first row shows a distorted sequence. The results below show the recon-
struction of various methods.



DIAR: Deep Image Alignment and Reconstruction using Swin Transformers 17

Fig. 14. The first row shows a distorted sequence. The results below show the recon-
struction of various methods.

6.3 Alignment & Reconstruction:

Finally, we attempt to align a sequence of distorted images and reconstruct them
using an image processing pipeline that consists of differentiable and trainable
components. First, we use a pre-trained ResNet to compute dense feature maps
for each image. Then we compute pairwise matches using cosine similarity. With
the computed matches, we can estimate a homography between each image and
a reference frame. We align each image with the reference frame. Finally, we
apply our trained neural networks for reconstruction. We also apply our other
methods to have a comparison.
We measure the quality of the alignment by using our image metrics on the
reconstructions. Additionally, we can compare the quality of the homography
directly. We use two error metrics to evaluate the alignment error.

1. Given the ground-truth matrix H and an estimate H ′, we can’t directly take
the norm between them. Homographies are equivalent under scale , however |H−
H ′| ≠ |λH−H ′|. We normalize both homographies, such that their determinants
are equal to 1: det(Ĥ) = det(Ĥ ′) = 1. Figure 19 visualizes the distribution of
the error over all images.
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2 Given the ground-truth matrix H and an estimate H ′, we calculate the pro-
jection error. We define four fixed point x1 = (−1,−1), x2 = (1,−1), x3 =
(−1, 1), x4 = (1, 1). We measure the average projection error |Hxi −H ′xi|

The boxplots 15, 16 and 17 show how each reconstruction method deals
with the aligned/misaligned images. The transformer seems to be able to handle
the perspective distortions better. This might be due to the fact that the Swin
transformers learn to understand outliers. They might be better at dealing with
complete misalignment or gross distortions.

Ĥ =
1

3
√
det(H)

H (7)

We then compute the norm between them.

DIAR (1,7,7)

DIAR (2,7,7)

Deep Set

RPCA

Median

AVG

MLE

40 60 80

100

120

140

Fig. 15. Box plot for RMSE for each reconstruction method
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DIAR (1,7,7)

DIAR (2,7,7)

Deep Set

RPCA

Median

AVG

MLE

6 8 10 12 14 16

Fig. 16. Box plot for PSNR for each reconstruction method
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DIAR (1,7,7)

DIAR (2,7,7)

Deep Set
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0.20

0.25

0.30

0.35

Fig. 17. Box plot for SSIM for each reconstruction method
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Fig. 18. The first row shows a sequence of distorted images. The second row shows the
estimated alignment. The results of each reconstruction method are also shown.
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Fig. 19. The box plots illustrate the distribution of projection errors and homography
errors. The box plots on the right are zoomed in order to see the median. The box plot
indicates that the data is skewed and contains large outliers.

7 Conclusion

In this paper, we attempted to solve two problems simultaneously: alignment of
images using deep image features and reconstructing the content from distorted
images. For this, we created a synthetic dataset that contains various distortions
due to lighting, shadows, and occlusion. Furthermore, we added perspective dis-
tortions with corresponding ground-truth homographies. We believe that this
dataset can be particularly useful for developing robust image descriptors and
matching methods due to the variety of distortions and challenging illumination.
We implement a general-purpose method for computing point correspondences
between images using neural feature maps. Similar methods have been also used
in structure-from-motion applications [17,11]. The evaluations show that many
of the images are aligned, but there also are strong outliers. The example in fig-
ure 18 shows that the images are aligned. However, the alignment is too coarse
for an accurate pixel-wise reconstruction. Further refinement has to be made.
A possible improvement is to use bundle adjustment on the computed image
matches to improve the initial estimation.
Additionally, we discussed the use of transformers and attention for image aggre-
gation tasks. We used Swin transformers to analyze the temporal dimension more
efficiently. This allowed us to improve on the original Deep Set architecture[9].
The evaluations showed that transformers enable us to efficiently combine infor-
mation from multiple images while simultaneously avoiding outliers and artifacts.
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