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Abstract. Recent developments in deep neural networks (DNNs) have
led to their adoption in safety-critical systems, which in turn has height-
ened the need for guaranteeing their safety. These safety properties of
DNNs can be proven using tools developed by the verification community.
However, these tools are themselves prone to implementation bugs and
numerical stability problems, which make their reliability questionable.
To overcome this, some verifiers produce proofs of their results which
can be checked by a trusted checker. In this work, we present a novel
implementation of a proof checker for DNN verification. It improves on
existing implementations by offering numerical stability and greater ver-
ifiability. To achieve this, we leverage two key capabilities of Imandra, an
industrial theorem prover: its support of infinite precision real arithmetic
and its formal verification infrastructure. So far, we have implemented a
proof checker in Imandra, specified its correctness properties and started
to verify the checker’s compliance with them. Our ongoing work focuses
on completing the formal verification of the checker and further optimiz-
ing its performance.
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1 Introduction

Applications of deep neural networks (DNNs) have grown rapidly in recent years,
as they are able to solve computationally hard problems. This has led to their
wide use in safety-critical applications like medical imaging [31] or autonomous
aircraft [19]. However, DNNs are hard to trust for safety-critical tasks, notably
because small perturbations in their inputs – whether from faulty sensors or
malicious adversarial attacks – may cause large variations of their outputs, lead-
ing to potentially catastrophic system failures [32]. To circumvent this issue,
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the verification community has developed techniques to guarantee DNN correct-
ness using formal verification, employing mathematically rigorous techniques
to analyze DNNs’ possible behaviours in order to prove it safe and compliant
e.g. [34, 15, 9, 29, 14, 21, 2, 23, 30, 16]. Along with these DNN verifiers, the
community created an annual competition [8] and a standardisation of an ad-
hoc format [3].

Usually, DNN verifiers consider an optimized DNN and prove input-output
properties, e.g., that for inputs within a delimited region of the input space, the
network’s output will be in a safe set. Besides verifying DNNs at a component
level, verification has the power to verify larger systems integrating DNNs. In-
tegration of DNN verifiers in larger verification frameworks has been studied as
well [10], and it requires the DNN verifiers to provide results that can be checked
by the system-level verifier.

Unfortunately, DNN verifiers are susceptible to errors as any other program.
One source of problems is floating-point arithmetic used for their internal cal-
culations. While crucial for performance, floating-point arithmetic also leads to
numerical instability and is known to compromise soundness [18]. As the re-
liability of DNN verifiers becomes questionable, it is necessary to check that
their results are not erroneous. When a DNN verifier concludes there exists a
counterexample for a given property, this result can be easily checked by evaluat-
ing the counterexample over the network and ensuring the property’s violation.
However, when a verifier concludes that no counterexample exists, ensuring the
correctness of this result becomes more complicated.

To overcome this, DNN verifiers may produce proofs for their results, allow-
ing an external program to check their soundness. Producing proofs is a common
practice [25, 4], and was recently implemented on top of the Marabou DNN ver-
ifier [21, 17]. Typically, proof checkers are simpler programs than the DNN ver-
ifiers, and hence much easier to inspect and verify. Moreover, while verifiers are
usually implemented in performance-oriented languages such as C++, trusted
proof checkers could be implemented in languages suitable for verification.

Functional programming languages (FPL), such as Haskell, OCaml and Lisp
are well-suited for this task, thanks to their deep relationship with logics em-
ployed by theorem provers. In fact, some FPLs, such as Agda [26], Coq [1],
ACL2 [22], Isabelle [28] and Imandra [27] are also theorem provers in their own
right. Implementing and then verifying a program in such a theorem prover al-
lows to bridge the verification gap, i.e. minimise the discrepancies that can exist
between the original (executable) program and its verified (abstract) model [7].

In this paper, we describe our ongoing work to design, implement and ver-
ify a formally-verifiable and infinitely-precise proof checker for DNN verifiers.
We have implemented an adaptation of a checker of UNSAT proofs produced by
the Marabou DNN verifier [21, 17] to Imandra [27], a functional programming
language coupled with its own industrial-strength theorem prover. Three key
features make Imandra a suitable tool: infinite precision real arithmetic, efficient
code extraction and the first-class integration of formal verification. Support for
infinite precision real arithmetic prevents numerical instability. The ability to
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extract verified Imandra code to native OCaml improves scalability as it can
then benefit from the standard OCaml compiler’s optimizations. Finally, with
Imandra’s integrated formal verification, we can directly analyze the correctness
of the proof checker we implement. Note that Imandra as a DNN verifier has
already been researched [12].
Contributions. Contrary to previous implementations prioritising scalability, our
checker can be formally verified by Imandra’s prover and its precision is infinite.
This increases the checker’s reliability and overcomes a main barrier in integrat-
ing DNN verifiers in system-level checkers. Since reliability usually compromises
scalability, our proof checker supports several checking modes, with different
approaches to balance the two. This is done along two orthogonal axes, by op-
tionally: (i) using verified data structures at the expense of computation speed;
(ii) accepting some parts of the proof without checking.

Our ongoing work is currently focused on formally verifying the proof checker.
So far, we have managed to verify that our checker complies with linear algebra
theorems, and we attempt to leverage these results to verify the proof checker
as a whole in the future.
Paper organisation. The rest of this paper is organized as follows. In Section 2
we provide relevant background on DNN verification and proof production. In
Section 3 and Section 4 we respectively describe our proof checker, and our ongo-
ing work towards formally verifying it using Imandra. In Section 5 we conclude
our work, and describe our plans for completing our work and for the future.

2 Background

2.1 DNN Verification

Throughout the paper, we focus on DNNs with ReLU activation functions,
though all our work can be extended to DNNs using any piecewise-linear ac-
tivation functions (e.g., max pooling). We refer the reader to Appendix A for
a formal definition of DNNs and activation functions. An example of a DNN
appears in Fig. 1.
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Fig. 1: A Simple DNN. The bias parameters are all set to zero and are ignored.

The DNN verification problem is the decision problem of deciding whether
for a given DNN N : Rm → R

k and a property P ⊆ R
m+k, there exists an

input x ∈ R
m such that N (x) = y ∧ P (x, y). If such x exists, the verification

query is satisfiable (SAT); otherwise it is unsatisfiable (UNSAT). Typically, P rep-
resents an erroneous behaviour, thus an input x satisfying the query serves as a
counterexample and UNSAT indicates the network acts as expected.
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Due to its linear and piecewise-linear structure, a DNN verification query
can be reduced to an instance of Linear Programming (LP) [11], representing
the affine functions of the DNN, and piecewise-linear constraints that represent
the activation functions and the property. This reduction makes algorithms for
solving LP instances, coupled with a case-splitting approach for handling the
piecewise-linear constraints [5, 20], a prime scheme for DNN verification, which
we call LP-based DNN verifiers.

The widely used Simplex algorithm [11, 20, 13], is typically used by such
verifiers. Based on the problem constraints, the algorithm initiates a matrix
A called the tableau, a variable vector x and two bound vectors u, l such that
l ≤ x ≤ u. The Simplex algorithm then attempts to find a solution to the system:

Ax = 0 ∧ l ≤ x ≤ u (1)

or concludes that none exists. For clarity, we denote u(xi), l(xi) as the upper
and lower bounds of the variable xi, instead of ui, li.
Example 1. Consider the DNN in Fig. 1 and the property P that holds if and
only if (x1, x2) ∈ [−1, 1]2 ∧ y ∈ [2, 3]. We later show a proof of UNSAT for this
query. We assign variables x1, x2, y to the input and output neurons. For all
i ∈ 1, 2, 3 we assign a couple of variables fi, bi for the inputs and outputs of the
neurons vi, where fi = ReLU(bi). We then get the linear constraints and bounds
(where some bounds were arbitrarily fixed for simplicity):

b1 = 2x1, b2 = x2, b3 = f2 − f1, y = f3 (2)

−1 ≤ x1, x2, b2 ≤ 1, 0 ≤ f2 ≤ 1, −2 ≤ b1, b3 ≤ 2, 0 ≤ f1, f3 ≤ 2, 2 ≤ y ≤ 3 (3)

and the piecewise linear constraints: ∀i ∈ 1, 2, 3 : fi = ReLU(bi)
Then, an LP-based DNN verifier initiates the input for the Simplex algorithm:

A =









2 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 0 0 −1 −1 1 0 0
0 0 0 0 0 0 0 −1 1









u =
[

1 1 2 1 2 2 1 3 3
]⊺

x =
[

x1 x2 b1 b2 b3 f1 f2 f3 y
]⊺

l =
[

−1 −1 −2 −1 −2 0 0 0 2
]⊺

In addition to the piecewise-linear constraints ∀i ∈ 1, 2, 3 : fi = ReLU(bi).
One of the key tools used by the Simplex algorithm, and consequently by

DNN verifiers, is dynamic bound tightening. This procedure allows deducing
tighter bounds for each variable and is crucial for the solver’s performance. For
example, using the above equation f3 = y and the bound u(y) = 2, we can
deduce u(f3) = 2, and further use this bound to deduce other bounds as well.
The piecewise-linear constraints introduce rules for tightening bounds as well,
which we call Theory-lemmas. For instance, the output variable f3 of the ReLU
constraint of the above example is upper bounded by the input variable b3, whose
upper bound is 2. The list of supported lemmas appears in Appendix B.

The case-splitting approach is used over the linear pieces of some piecewise-
linear constraints, creating several sub-queries with each adding new information
to the Simplex algorithm. For example, when performing a split over a constraint
of the form y = ReLU(x), two sub-queries are created. One is enhanced with y =
x∧x ≥ 0, and the other with y = 0∧x ≤ 0. The use of case-splitting also induces
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a tree structure for the verification algorithm, with nodes corresponding to the
splits applied. On every node, the verifier attempts to conclude the satisfiability
of the query based on its linear constraints. If it concludes an answer, then this
node represents a leaf. In particular, a tree with all leaves corresponding to an
UNSAT result of Simplex is a search tree of an UNSAT verification query.

2.2 Proof Production for DNN Verification

Proof production for SAT is straightforward using a satisfying assignment. On the
other hand, when a query is UNSAT, the verification algorithm induces a search
tree, where each leaf corresponds to an UNSAT result of the Simplex algorithm
for that particular leaf. Thus, a proof of UNSAT is comprised of a matching proof
tree where each leaf contains a proof of the matching Simplex UNSAT result.
Proving UNSAT results of Simplex is based on a constructive version of the Farkas
Lemma [33], which identifies the proof for UNSAT LP instances. Formally, it was
proven [17] that:

Theorem 1. Let A ∈ Mm×n(R) and l, x, u ∈ R
n, such that A · x = 0 and

l ≤ x ≤ u, exactly one of these two options holds:

1. The SAT case: ∃x ∈ R
n such that A · x = 0 and l ≤ x ≤ u.

2. The UNSAT case: ∃w ∈ R
m such that for all l ≤ x ≤ u, w⊺ ·A ·x < 0, whereas

0 · w = 0. Thus, w is a proof of the constraints’ unsatisfiability.

Moreover, these vectors can be constructed while executing the Simplex algorithm.

To construct the proof vectors, two column vectors are assigned to each
variable xi, denoted fu(xi), fl(xi), which are updated during bound tightening.
These vectors are used to prove the tightest upper and lower bounds of xi de-
duced during the bound tightenings performed by Simplex, based on u, l and
A. This mechanism was designed and implemented [17], on top of the Marabou
DNN verifier [21].

Supporting the complete tree structure of the verification algorithm is done
by constructing the proof tree in a similar manner to the search tree — every split
performed in the search directly creates a similar split in the proof tree, with
updates to the equations and bounds introduced by the split. Proving theory
lemmas is done by keeping details about the bound that invoked the lemma
together with a Farkas vector proving its deduction and the new learned bound,
and adding them to the corresponding proof tree node.

3 The Imandra Proof Checker

Our proof checker is designed to check proofs produced by the Marabou DNN
verifier [21], to the best of our knowledge the only proof producing DNN verifier.
When given a Marabou proof of UNSAT as a JSON [6] file, the proof checker
reconstructs the proof tree using datatypes encoded in Imandra.

The proof tree consists of two different node types — a proof node and
a proof leaf. Both node types contain a list of lemmas and a corresponding
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split. In addition, a node contains a list of its children, and a leaf contains a
contradiction vector, as constructed by Theorem 1. This enables the checker to
check the proof tree structure at the type-level. The proof checker also initiates
a matrix A called a tableau, vectors of upper and lower bounds u, l and a list of
piecewise-linear constraints (see Section 2.1).

The checking process consists of traversing the proof tree. For each node,
the checker begins by locally updating u, l and A according to the split, and
optionally checking the correctness of all lemmas. Lemma checking is similar
to checking contradictions, as shown in Example 2 below (see Appendix B for
details).

If the node checked is not a leaf, then the checker will check that all its
childrens’ splits correspond to some piecewise-linear constraint of the problem
i.e. one child has a split of the form y = x ∧ x ≥ 0 and the other of the form
y = 0∧x ≤ 0 for some constraint y = ReLU(x). If the checker certifies the node,
it will recursively check all its children, passing changes to u, l and A to them.

When checking a leaf, the checker checks that the contradiction vector w

implies UNSAT, as stated in Theorem 1. As implied from the theorem, the checker
will first create the row vector w⊺ · A, and will compute the upper bound of its
underlying linear combination of variables w⊺ · A · x. The checker concludes by
asserting this upper bound is negative.

The checker then concludes that the proof tree represents a correct proof if
and only if all nodes passed the checking process.

Example 2. Consider the simple proof in Fig. 2. The root contains a single lemma
and each leaf contains a contradiction vector, which means the verifier performed
a single split. In addition, the proof object contains the tableau A, the bound
vectors u, l, and the ReLU constraints as presented in Example 1.

A, l, u

u(b3) = 1 → u(f3) = 1,
[

0 0 1 0
]⊺

(f3 = b3) ∧ (b3 ≥ 0) (f3 = 0) ∧ (b3 ≤ 0)
[

0 0 0 1
]⊺[

0 0 1 −1 1
]⊺

Fig. 2: A proof tree example.

The proof checker begins by checking the lemma of the root. It does so by
creating the linear combination

[

0 0 1 0
]⊺

·A ·x = −b3−f1+f2. As the lemma is
invoked by the upper bound of b3, the checker uses the equivalent equation b3 =
f2 − f1, which gives the upper bound u(b3) = u(f2)− l(f1) = 1. We can indeed
deduce the bound u(f3) = 1 based on the constraint f3 = ReLU(b3), so the
lemma proof is correct. Then, the checker certifies that the splits f3 = 0∧ b3 ≤ 0
and f3 = b3∧ b3 ≥ 0 correspond to the two splits of f3 = ReLU(b3). The checker
then begins checking the left leaf. It starts by updating l(b3) = 0 and adding the
equation f3 = b3 as the row

[

0 0 0 0 1 0 0 −1 0
]

to A. Then, the checker checks
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the contradiction vector by computing
[

0 0 1 −1 1
]⊺

·A · x = −f1 + f2 − y. The
upper bound of this combination is −l(f1)+u(f2)− l(y) = −1 which is negative,
thus proving UNSAT for the leaf according to Theorem 1. Checking the right leaf
is done similarly. After checking all nodes, the checker asserts the proof tree
indeed proves UNSAT for the whole query.

Implementation in Imandra, OCaml Extraction and Evaluation. Port-
ing the proof checker from C++ to Imandra necessitates taking into account the
trade-off between scalability and computation.

The choice of data structures for common objects – like vectors – is essential
in the balance between scalability and efficiency [12]. In this work, we experiment
with two different implementations for vectors: native OCaml lists, and sparse
vectors using Imandra’s built-in Map data type, based on binary search trees. The
latter has better performance but the former makes it easier to verify, so for now
our verification efforts focus on the native list implementation (see Appendix C
for more details).

Imandra’s logic includes theories for arbitrary precision integer and real arith-
metic, which are implemented using OCaml’s built-in Zarith library [24]. As a
result, the Imandra implementation of the checker supports arbitrary precision
real arithmetic with low overhead.

Executing code within Imandra’s reasoning environment is helpful during the
implementation and verification process, but is not optimized for performance.
To that end, imandra-extract is a facility to extract native OCaml code that can
be compiled – and optimized – with standard OCaml compilers. The extracted
code retains Imandra’s semantics, meaning that it still uses infinite precision real
arithmetic. An initial comparison of the execution time for checking the same
proofs from the ACAS-Xu benchmark [21] in the C++ implementation and in the
extracted OCaml code with native lists shows that our implementation is about
150 times slower than the original implementation but stays within a reasonable
time, i.e. less than 40 minutes for all the examples ran (see Appendix D). Further
optimizations and a comprehensive benchmark are ongoing work.

4 Specification of the Proof Checker’s Correctness

We aim to verify the two main checks performed by the proof checker when
traversing the proof tree (see Section 3): contradictions and theory lemmas.

Contradictions checking We want to verify that our proof checker identifies cor-
rectly when a contradiction vector is a valid proof of UNSAT, thus satisfying
Theorem 1 (case 2.). Formally, the specification can be given as:

For all contradiction vector w, tableau A, bounds u, l, and bounded input
l ≤ x ≤ u, if the upper bound of wT · A · x is negative, then x cannot satisfy
the constraints A · x = 0 ∧ l ≤ x ≤ u. The Imandra implementation of this
specification is given in Listing 1.1.

7



theorem contra_correct x contra tableau u_bounds l_bounds =

is_bounded x u_bounds l_bounds

&& check_contradiction contra tableau u_bounds l_bounds

==> not ( null_product tableau x)

Listing 1.1: High-level theorem formalising correctness of contradiction checking. The

function check_contradiction is a key component of the proof checker which should

return true iff the linear combination of the tableau and contradiction vectors has a

negative upper bound.

Theory lemmas The goal is to prove that each theory lemma within the proof,
indeed corresponds to one of the theory lemmas (Appendix B).

Proving the specification necessitates guiding Imandra by providing support-
ing lemmas, in our case properties of linear algebra. After proving these inter-
mediary lemmas, Imandra’s proof automation can apply them automatically, or
we can manually specify which lemma to apply.

So far we have defined and proved that our checker is coherent with known
properties of linear algebra (e.g. Listing 1.2). Our current work focuses on build-
ing on top of these lemmas to fully prove the checker’s correctness.

lemma dot_product_coeff x y c =

dot_product x (list_mult y c) = c *. dot_product x y

[@@auto]

lemma dot_product_coeff_eq x y c =

dot_product x y = 0. ==> dot_product x (list_mult y c) = 0.

[@@auto][ @@apply dot_product_coeff x y c]

Listing 1.2: Definition of lemmas proved in Imandra; the first lemma

dot_product_coeff defines the homogeneity of the dot-product operation; it is used

to prove the second lemma by using the apply annotation

5 Conclusion and Future Work

We have implemented a checking algorithm for proofs generated by a DNN ver-
ifier in the functional programming language of Imandra, enabling the checking
algorithm to be infinitely precise and formally verifiable by Imandra’s prover.

Compared to previous work, our implementation presents two new guaran-
tees: it avoids numerical instability by using arbitrary-precision real numbers
instead of floating-point numbers; and its correctness can be formally verified as
it is implemented in a theorem prover. As expected, adding safety guarantees
comes at a cost of performance, but the extraction of native OCaml minimises
the overhead compared to the unverified C++ implementation. Furthermore,
using an FPL checker to check proofs produced by a DNN verifier is a first step
towards integrating component-level DNN verification into the system-level.

Our immediate future work is to continue the verification of the proof checker.
In addition, we intend to identify cases where the existing checker implementa-
tion fails (e.g. due to numerical instability) and ours correctly checks the proof.
Investigating further optimizations is also a promising direction by implementing
better performance data structures, such as AVL trees.
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Appendix

A Deep Neural Networks

Formally, a DNN is a function N : Rm → R
k which is a composition of n layers

L0, ..., Ln−1. Each layer Li consists of si ∈ N nodes, denoted v1i , ..., v
si
i .

The assignment for the jth node in the 1 ≤ i < n− 1 layer is computed as

v
j
i = f

(

si−1
∑

l=1

wi,j,l · v
l
i−1 + b

j
i

)

(4)

for some non-linear function f : R → R, called the activation function.
The neurons in the last, output layer are computed in a similar manner,

without using f . The parameters wi,j,l and b
j
i are predetermined and are called

the weights and biases of N , respectively. One of the most common activation
functions is the rectified linear unit (ReLU), defined as ReLU(x) = max(x, 0).

B Checking theory lemmas.

Empirically, the majority of the proof size and the proof checking process is used
for storing the theory lemmas and checking them. Thus, we decided to enable
two checking modes, allowing different balances of scalability and reliability. The
modes are (i) a complete checking mode in which lemmas correctness are checked,
thus prioritising reliability; and (ii) a partial checking mode in which lemmas
claims are used without checking, thus prioritising scalability. In both modes,
the checker iterates through the list of lemmas and updates u, l locally. If the
complete checking mode is enabled, the checker needs to check in each iteration,
that the Farkas vector w corresponds to the details of the bound invoked the
lemma, and that it can be used to by a theory lemma to update the learned
bound. To do so, the checker creates the row vector w⊺ · A, which is equivalent
some linear combination w⊺ ·A ·x := 0 =

∑

j

cj ·xj . Suppose the lemma claims to

prove some (say, upper) bound of variable xi to be of value z. Then, as shown
in [17] the checker checks that for the equation xi =

∑

j 6=i

cj · xj + (ci + 1) · xi,

the upper bound of xi is indeed z. If so, the checker continues to pattern match
the lemma to any of the theory lemmas for some piecewise-linear constraints. In
order to support a lemma, it is required to be hard coded in the checker. Note
that the bound computed using the checking process uses the bound vectors
u, l only, whereas the bound value z can be deduced using bound tightening
performed by the DNN verifier, which can be much tighter than of u, l.

The theory lemmas currently supported by our proof checker are all can an
be learned using a ReLU constraint of the form f = ReLU(b) = max(0, b). In
some cases, these lemma can also be derived using a linear combination, if the
corresponding equation has been introduced (i.e., the equation f = b).

The lemmas are:
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(i) For a positive l(f), l(b) := l(f).
(ii) For a positive l(b), l(f) := l(b).
(iii) For any u(f), u(b) := u(f).
(iv) For non-positive u(b), u(f) := 0.
(v) For a positive u(b), u(f) := u(b).

C Native List v. Sparse Vector Implementation

This appendix details the pros and cons of the two data structures use for im-
plementing vectors: native lists and sparse vectors (with underlying map/BST).

Performance. Access to random elements, an operation that is often used
in the proof checker, is faster for sparse vectors: the complexity for accessing
a random element n in a BST is O(h) (where h is the length of the longest
path from the root) agaisnt O(n) for the inductive native list definition. This
performance advantage can be seen in the benchmark in Table 1, Appendix D.

Verification. Native lists have the benefits of having verified functions and
properties available out of the box. However, operations on native lists often have
to consider the case of lists of different length. This can be done in the code with
error handling, or in the verification phase by adding preconditions on list lengths
to all verification goals. As a result code complexity and reasoning difficulty are
increased. Sparse lists are total functions, so there is no need to verify dimensions
of vectors and matrices; however, we need to prove basic properties before we
can start reasoning about them. For now our we have focused our verification
effort on native lists.

Listings 1.3 and 1.4 show the implementation of the same function using
native lists and sparse vectors. Notice that the native list implementation uses
explicit induction (in the function comput_row_upper_bound’) and has to include
the case where lists have different lenghts in its pattern matching, whereas the
sparse vector implementation has more succinct (and more efficient) random
element access using M.get, and the size of vectors is irrelevant.

D Evaluation on ACAS-Xu Proofs

This table shows the performance for checking proofs generated by Marabou on
several verification tasks from the ACAS-Xu benchmark [20]. Each task is iden-
tified by a network identifier (e.g. N(2,9) and a property number (e.g. p3). The
performance for the existing proof checker for Marabou proofs written in C++
[17] is compared with our implementation in Imandra. Our implementation is
evaluated with different vector implementations (native lists and sparse vectors,
as discussed in Section 3) and in both verification modes, with and without
checking the theory lemmas’ correctness (as discussed in Section 3).

The best mode of our implementation is using sparse vectors with no theory
lemmas checking; it is about twice as slow as the original implementation. The
best performing full checking of the proof, using native lists, is about 150 times
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(* compute the upper bound for a tableau row represented as

list of reals *)

let compute_row_upper_bound (row: real list ) ( upper_bounds :

real list ) (lower_bounds : real list ) =

let rec compute_row_upper_bound ’ inner_row ub lb res =

match inner_row , ub , lb with

| [], [], [] -> res

| r::rs , u::us , l::ls -> if r <. 0.

then

compute_row_upper_bound ’ rs us ls (res +. (l *. r))

else

compute_row_upper_bound ’ rs us ls (res +. (u *. r))

(* Handle error cases (list length mismatch ) *)

| _::_, [], [] | [], _::_, [] | [], [], _::_ | [], _

::_, _::_ | _::_, [], _::_ | _::_, _::_, [] -> res

in

compute_row_upper_bound ’ row upper_bounds lower_bounds 0.;;

Listing 1.3: Definition of the function to compute the upper bound of a tableau row

using native lists

(* compute the upper bound for a tableau row represented

as a M.t / sparse vector *)

let compute_row_upper_bound (row: (’a, ’b) M.t) upper_bounds

lower_bounds =

let linear_comb_keys = row.keys in

let acc_func acc var =

let value = M.get var row in

if value <. 0.

then

acc +. (M.get var lower_bounds ) *. value

else

acc +. (M.get var upper_bounds ) *. value

in

let sum = List .fold_left acc_func 0. linear_comb_keys in

sum

Listing 1.4: Definition of the function to compute the upper bound of a tableau row

using sparse vectors
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ACAS- C++[17] Imandra (native lists) Imandra (sparse vectors)

Xu tasks Full No lemmas Full No lemmas Fulll

N(2, 9) p3 5.130 167.078 878.075 15.125 4784.866
N(2, 9) p4 5.658 206.675 1019.770 11.208 8817.575
N(3, 7) p3 10.557 299.608 1493.763 24.979 1638.844
N(5, 7) p3 2.568 58.288 311.096 50.365 12276.323
N(5, 9) p3 15.116 424.816 2210.472 30.611 6265.039

Table 1: Comparison of the execution speed for checking a DNN verifier’s proofs
for verification tasks from the ACAS Xu benchmark.

slower than the C++ checker. This performance loss doesn’t come as a surprise
as the arbitrary precision reals is computationally harder than dealing with fixed
precision floating point numbers.

One useful insight for our ongoing optimization work is that the sparse vector
mode is faster than the native list mode when theory lemmas are checked, but
slower when they are not. This guides us to find inefficient code in the latter
configuration.
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