
ar
X

iv
:2

30
5.

16
24

0v
1

 [
cs

.L
O

]
 2

5
M

ay
 2

02
3

A Logical Interpretation of Asynchronous

Multiparty Compatibility

Marco Carbone1[0000−1111−2222−3333], Sonia Marin2[1111−2222−3333−4444], and
Carsten Schürmann1[2222−−3333−4444−5555]

1 IT University of Copenhagen, 2300 Copenhagen S, Denmark
{maca,carsten}@itu.dk

2 School of Computer Science, University of Birmingham, B15 2TT Birmingham,
United Kingdom

s.marin@bham.ac.uk

Abstract. Session types are types for specifying the protocols that com-
municating processes must follow in a concurrent system. When compos-
ing two or more well-typed processes, a session typing system must check
whether such processes are multiparty compatible, a property that guar-
antees that all sent messages are eventually received and no deadlock
ever occurs. Previous work has shown that duality and the more general
notion of coherence are sufficient syntactic conditions for guaranteeing
the multiparty compatibility property.
In this paper, following a propositions-as-types fashion which relates ses-
sion types to linear logic, we generalise coherence to forwarders. For-
warders are processes that act as middleware by forwarding messages
according to a given protocol. Our main result shows that forwarders
not only generalise coherence, but fully capture all well-typed multiparty
compatible processes.

Keywords: Linear Logic · Session Types · Process Compatibility.

1 Introduction

Session types, originally proposed by Honda et al. [18], are type annotations
that ascribe protocols to processes in a concurrent system and determine how
they behave when communicating together. Binary session types found a logical
justification in linear logic, identified by Caires and Pfenning [4,3] and later by
Wadler [31,32], which establishes the following correspondences: session types as
linear logic propositions, processes as proofs, reductions in the operational se-
mantics as cut reductions in linear logic, and dualilty as a notion of compatibility
ensuring that two processes communication pattern match.

In binary session types, a sufficient condition for two protocols to be compat-
ible is that their type annotations are dual: the send action of one party must
match a corresponding receive action of the other party, and vice versa. Be-
cause of asynchronous interleavings, however, there are protocols that are com-
patible but not dual. The situation is even more complex for multiparty session

http://arxiv.org/abs/2305.16240v1

2 M. Carbone et al.

types [20], which generalise binary session types to types for protocols with more
than two participants. A central observation is that compatibility of sessions re-
quires a property stronger than duality, ensuring that all messages sent by any
participating party will eventually be collected by another. In [12], Deniélou and
Yoshida proposed the semantic notion of multiparty compatibility. The concept
has then found many successful applications in the literature [12,24,14]. The
question whether this notion “would be applicable to extend other theoretical
foundations such as the correspondence with linear logic to multiparty commu-
nications” has however not been answered since Deniélou and Yoshida’s original
work.

As a first step in defining a logical correspondent to multiparty compatibil-
ity, Carbone et al. [9,6] extended Wadler’s embedding of binary session types
into classical linear logic (CLL) to the multiparty setting by generalising logical
duality to the notion of coherence [20]. Coherence is a compatibility condition:
coherent processes are multiparty compatible, which ensures that their execu-
tion never leads to a communication error. Coherence is characterised proof-
theoretically, and each coherence proof corresponds precisely to a multiparty
protocol specification (global type). An interesting observation is that coher-
ence proofs correspond to a definable subset of the processes typable in linear
logic, so-called arbiters [6]. In retrospect, the concept of coherence has sharpened
our proof-theoretic understanding of how to characterise compatibility in mul-
tiparty session types. However, coherence, similarly to duality, cannot capture
completely the notion of multiparty compatibility.

In this paper, we show that coherence can be generalised to a more expres-
sive logic of asynchronous forwarders. Forwarders are processes that forward
messages between endpoints according to a protocol specification. Forwarders
are more general than arbiters (every arbiter corresponds to a forwarder but not
vice versa) but still can be used to guide the communication of multiple pro-
cesses and guarantee they communicate safely, as done by coherence in [6]. Our
main result is that forwarders fully capture multiparty compatibility which let
us answer Deniélou and Yoshida’s original question positively. In this work, we
show that i) any possible interleaving of a set of multiparty compatible processes
can be represented as a forwarder, and, conversely, ii) if a set of processes can be
composed by a forwarder (describing a possible execution), then such processes
are indeed multiparty compatible.

Operationally, forwarders are a central process that decide how to dispatch
messages between peers, providing a global description of a multiparty proto-
col (hence they can be seen as a generalisation of global types). They capture
the message flow by preventing messages from being duplicated, as superfluous
messages would not be accounted for, and by preventing messages from being
lost, otherwise a process might get stuck, awaiting a message. However, when
data-dependencies allow, forwarders can choose to receive messages from differ-
ent endpoints and forward such messages at a later point, or decide to buffer
a certain number of messages from a given sender. Eventually, they simply re-
transmit messages after receiving them, without computing with them. Intu-

A Logical Interpretation of Asynchronous Multiparty Compatibility 3

itively, this captures an interleaving of the communications between the given
endpoints.

Besides showing that they precisely capture multiparty compatibility, this
paper shows that forwarders can also replace duality or coherence for composing
well-typed processes. We achieve this logically: we replace the linear logic cut rule
with a new rule called MCutF which allows to compose two or more processes
(proofs) using a forwarder as a condition, instead of duality [4] or coherence [6].
Our second main result is that MCutF can be eliminated by proof reductions
that correspond to asynchronous process communications.

Although most of this paper’s interest is on their logical properties, for-
warders have other interesting features related to explaining communication
patterns as they occur in practice, including message routing, proxy services,
and runtime monitors for message flows [22].

Outline and key contributions. The key contributions of this paper include

– a definition of multiparty compatibility for classical linear logic (§ 4);
– a logical characterisation of forwarders that enjoys a sound and complete

correspondence with multiparty compatibility (§ 5);
– a composition mechanism (MCutF) for processes with asynchronous com-

munication that uses forwarders instead of coherence, and guarantees lack
of communication errors (§ 6).

Additionally, § 2 introduces the main concepts on an example and § 3 recaps
types, processes, and CP-typing. § 7 discusses related and future work. Finally,
concluding remarks are in § 8.

2 Preview

We start with a gentle introduction to asynchronous forwarders by informally
describing the classic 2-buyer protocol [19,20], where two buyers intend to buy a
book jointly from a seller. The first buyer sends the title of the book to the seller,
who, in turn, sends a quote to both buyers. Then, the first buyer decides how
much she wishes to contribute and informs the second buyer, who either pays
the rest or cancels the transaction by informing the seller. If the decision was
made to buy the book, the second buyer will provide the seller with an address,
where to ship the book to.

The three participants are connected through endpoints b1, b2, and s re-
spectively: an endpoint acts like a socket where processes can write/read mes-
sages to/from. Each endpoint must be used according to its respective ses-
sion type which gives a precise description of how each endpoint has to act.
For example, b1 : name ⊗ cost

⊥
` cost ⊗ 1 says that buyer b1 first sends

(expressed by ⊗) a value of type name (the book title), then receives (ex-
pressed by `) a value of type cost

⊥ (the price of the book), then sends a
value of type cost (the amount of money she wishes to contribute), and fi-
nally terminates. Here, following classical linear logic, the annotation ⊥ stands

4 M. Carbone et al.

for dual. The behaviour of buyer b2 and seller s can similarly be specified
by session types, respectively b2 : cost

⊥
` cost

⊥
` ((addr ⊗ 1) ⊕ 1) and

s : name
⊥
` cost⊗ cost⊗ ((addr` ⊥) & ⊥).

Any well-typed processes with respective endpoints b1, b2, and s are going
to execute this protocol correctly because their type specifications are compat-
ible, meaning that they match. In a multiparty setting, such compatibility can
be expressed as coherence [6] and more generally with the semantic notion of
multiparty compatibility [12]. Our theory of forwarders logically captures this
notion of multiparty compatibility precisely, namely that i) anything that has
been received is eventually sent, ii) anything that is sent must have been previ-
ously received, and iii) the order of messages between any two points must be
preserved. A forwarder captures the message flows between two or more differ-
ent endpoints. In the example above, a forwarder process may receive a name
from b1, forward it to s, and then proceed to receiving the price from s, forward
it to b1 and b2, and so on. A forwarder acts as a medium that, according to a
prescribed protocol, dispatches messages processes send. In the 2-buyers case,
for Ps, Pb1 , Pb2 respectively implementing the seller and the two buyers, we can
depict this with the following diagram:

B:buyer1 Buyer2

Seller

Forwarde
r

In order to capture the message flows between several processes, forwarders
need to support buffering, reordering and other properties, which are not nec-
essarily coherent. Consider for example two endpoints x and y willing to com-
municate with the following protocol – called a criss-cross: they both send a
message to each other, and then the messages are received, according to the
following types x : name ⊗ cost ` 1 and y : cost⊥ ⊗ name

⊥ ` ⊥. Such pro-
tocol leads to no error (assuming processes implement an asynchronous seman-
tics), still the two types above are not coherent [6] and not even dual to each
other. On the other hand, we can easily write a forwarder typable in the context
x : name

⊥`cost
⊥⊗⊥, y : cost`name⊗1 formed by their duals, i.e., a process

that first receives on both x and y and then forwards the received messages over
to y and x, respectively.

3 CP and Classical Linear Logic

In this section, we give an introduction to the proposition-as-sessions approach [32].
This comprises the syntax of types and processes and the interpretation of pro-
cesses as sequent proofs in classical linear logic (CLL).

Types. Following the propositions-as-types approach, types, taken to be propo-
sitions (formulas) of CLL, denote the way an endpoint (a channel end) must be

A Logical Interpretation of Asynchronous Multiparty Compatibility 5

used at runtime. Their formal syntax is given by the following grammar:

Types A ::= a | a⊥ | 1 | ⊥ | A⊗A | A`A | A⊕A | A& A |!A |?A (1)

Atoms a and negated atoms a⊥ are basic dual types. Types 1 and ⊥ denote an
endpoint that must close with a last synchronisation. A type A⊗ B is assigned
to an endpoint that outputs a message of type A and then is used as B, and
similarly, an endpoint of type A`B, receives a message of type A and continues
as B. In the situation of a branching choice, A⊕B is the type of an endpoint that
may select to go left or right and continues as A or B, respectively, and A& B

is the type of an endpoint that offers two choices (left or right) and then, based
on such choice, continues as A or B. Finally, !A types an endpoint offering an
unbounded number of copies of a service of type A, while ?A types an endpoint
of a client invoking some replicated/unbounded service with behaviour A.

Duality. Operators can be grouped in pairs of duals that reflect the input-output
duality. Consequently, standard duality (·)⊥ on types is inductively defined as:

(a⊥)⊥ = a 1
⊥ =⊥ (A⊗B)⊥ = A

⊥
`B

⊥ (A⊕B)⊥ = A
⊥&B

⊥ (!A)⊥ =?A⊥

In the remainder, for any binary operators ⊘,⊙ ∈ {⊗,`,⊕,&}, we sometimes
write A⊘B ⊙ C to mean A⊘ (B ⊙ C).

Processes. We use a standard language of processes to represent communicat-
ing entities (including forwarders) which is a variant of the π-calculus [26] with
specific communication primitives as usually done for session calculi. Moreover,
given that the theory of this paper is based on the proposition-as-sessions cor-
respondence with CLL, we adopt a syntax akin to that of Wadler [32]. Each
process can be found on the left-hand side of the turnstyle ⊢ in the conclusion
of each rule in Figure 1. We briefly comment each process term. A link x ↔ y

is a binary forwarder, i.e., a process that forwards any communication between
endpoints x and y. This yields a sort of equality relation on names: it says that
endpoints x and y are equivalent, and communicating something over x is like
communicating it over y. Note that we use endpoints instead of channels [30].
The difference is subtle: the restriction (νxy) connects the two endpoints x and
y, instead of referring to the channel between them. The terms x().P and x[]
handle synchronisation (no message passing); x().P can be seen as an empty in-
put on x, while x[] terminates the execution of the process. The term x[y ⊲ P].Q
denotes a process that creates a fresh name y (hence a new session), spawns a
new process P , and then continues as Q. The intuition behind this communica-
tion operation is that P uses y as an interface for dealing with the continuation
of the dual primitive (denoted by term x(y).R, for some R). Note that output
messages are always fresh, as for the internal π-calculus [27], hence the out-
put term x[y ⊲ P].Q is a compact version of the π-calculus term (νy)xy.(P |Q).
Branching computations are handled by x.case(P,Q), x[inl].P and x[inr].P . The
former denotes a process offering two options (external choice) from which some
other process can make a selection with x[inl].P or x[inr].P (internal choice).
Finally, !x(y).P denotes a persistently available service that can be invoked by
?x[z].Q which will spawn a new session to be handled by a copy of process P .

6 M. Carbone et al.

x ↔ y ⊢ x : a⊥, y : a
Ax

x[] ⊢ x : 1
1

P ⊢ ∆

x().P ⊢ ∆,x : ⊥
⊥

P ⊢ ∆1, y : A1 Q ⊢ ∆2, x : A2

x[y ⊲ P].Q ⊢ ∆1, ∆2, x : A1 ⊗ A2
⊗

P ⊢ ∆, y : A1, x : A2

x(y).P ⊢ ∆,x : A1 ` A2
`

P ⊢ ∆,x : A1

x[inl].P ⊢ ∆,x : A1 ⊕A2

⊕1
P ⊢ ∆,x : A2

x[inr].P ⊢ ∆,x : A1 ⊕ A2

⊕2
P ⊢ ∆,x : A1 Q ⊢ ∆,x : A2

x.case(P,Q) ⊢ ∆,x : A1 & A2
&

P ⊢ ?∆, y : A

!x(y).P ⊢ ?∆, x : !A
!

P ⊢ ∆, y : A

?x[y].P ⊢ ∆,x : ?A
?

P ⊢ ∆

P ⊢ ∆,x : ?A
w

P ⊢ ∆,x : ?A, x : ?A

P ⊢ ∆,x : ?A
c

Fig. 1. Sequent Calculus for CP and Classical Linear Logic

Example 1. For some Pi , Qj , Rk, we provide possible implementations for pro-
cesses Ps, Pb1 , and Pb2 from the 2-buyer example.

Ps = s(book). s[price ⊲ P1]. s[price ⊲ P2]. s.case(s(addr).P3 , P4)
Pb1 = b1[book ⊲ Q1]. b1(price). b1[contr ⊲ Q2].Q3

Pb2 = b2(price). b2(contr). b2[inl].b2[addr ⊲ R1].R2

Note that the order the two buyers receive the price is not relevant.

CP-typing. As shown by Wadler [32], CLL proofs can be associated to a subset
of well-behaved processes, that satisfy deadlock freedom and session fidelity.

Judgements are defined as P ⊢ ∆ with ∆ a set of named types, i.e., ∆ ::=
∅ | x : A,∆. The system, called CP and reported in Figure 1, uses CLL to type
processes.

CP can be extended with a structural rule for defining composition of pro-
cesses which corresponds to the Cut rule from classical linear logic:

P ⊢ Σ, x : A Q ⊢ ∆, y : A⊥

(νxy) (P | Q) ⊢ Σ,∆
Cut

In linear logic this rule is admissible, i.e., the CLL derivations of the two premises
can be combined into a derivation of the conclusion with no occurrence of the
Cut rule. Moreover, this is a constructive procedure, called cut-elimination,
meaning that the proof with cut is inductively transformed into a proof without
cut. The strength of the proposition-as-type correspondence stems from the fact
that it carries on to the proof level, as it was shown that the cut-elimination
steps correspond to reductions in the π-calculus [4,31].

4 Multiparty Compatibility

Duality is a condition that guarantees composed processes (proofs) to be well-
behaved. This can be seen in rule Cut which composes two processes through
endpoints that are dual: cut elimination guarantees that such processes can com-
municate with each other without getting stuck or reaching an error. Multiparty

A Logical Interpretation of Asynchronous Multiparty Compatibility 7

compatibility [12,24,14], a semantic notion that allows for the composition of
multiple processes while guaranteeing the same properties, uses session types as
an abstraction of process behaviours and simulates their execution. If no error
occurs during any such simulation then the composition is considered compati-
ble.

Extended types and queues. In order to define multiparty compatibility to
our logical setting with CLL formulas, we extend the syntax of types (formulas)
with annotations that make explicit where messages should be forwarded from
and to. This is similar to local types !p.T and ?p.T [11] expressing an output
and an input to and from role p respectively. The meaning of each operator and
the definition of duality remains the same as in CP.

Types A ::= a | a⊥ | 1 | ⊥ | A⊗A | A`A | A⊕A | A& A |!A |?A
Local types B ::= a | a⊥ | 1ũ | ⊥u | (A⊗ũ B) | (A`u B)

| !ũB | ?uB | (B ⊕u B) | (B &ũ B)

Annotations are either single endpoints x or a set of endpoints u1, . . . , un.
The left-hand side A of ⊗ and ` are not annotated (they will become dynami-
cally labelled when needed). We will see that units demonstrate some gathering
behaviour which explains the need to annotate 1 with a non-empty list of an
arbitrary number of distinct names. We may write ũ for u1, . . . , un when the size
of the list is irrelevant.

Additionally to annotated types, in order to give a semantics to types, we
introduce queues defined by as Ψ ::= ǫ | A · Ψ | ∗ · Ψ | L · Ψ | R · Ψ | Q · Ψ . Intu-
itively, a queue (FIFO) is a standard ordered list of messages. A message can
be a proposition A, a session termination ∗, a choice L or R, or an exponential
Q. Since every ordered pair of endpoints has an associated queue, we define a
queue environment σ as a mapping from ordered pairs of endpoints to queues:
σ : (x, y) 7→ Ψ . In the sequel, σǫ denotes the queue environment with only empty
queues. The notation σ[(x, y) 7→ Ψ] denotes a new environment where the entry
for (x, y) has been updated to Ψ . Finally, we are ready to define type-context
semantics for an annotated environment, i.e., an environment ∆ where each
formula has been annotated (with a slight abuse of notation, we overload the
category ∆):

8 M. Carbone et al.

Definition 1 (Type-Context Semantics). We define
α
−→ as the minimum

relation on annotated ∆ satisfying the following rules:

∆,x :⊥y •σ[(x, y) 7→ Ψ]
x⊥y
−−−→ ∆ • σ[(x, y) 7→ Ψ · ∗]

x : 1ỹ • σǫ[{(yi,x) 7→ ∗}i]
ỹ1x
−−→ ∅ • σǫ

x : a⊥, y : a • σǫ
x↔y
−−−→ ∅ • σǫ

∆,x : A`
y B • σ[(x, y) 7→ Ψ]

x`y
−−−→ ∆, x : B • σ[(x, y) 7→ Ψ · A]

∆,x : A⊗ỹ B • σ[{(yi, x) 7→ Ai · Ψi}i]
ỹ⊗x[A,{Ai}i]
−−−−−−−−−→ ∆, x : B • σ[{(yi, x) 7→ Ψi}i]

∆,x : A&ỹ B • σ[{(x, yi) 7→ Ψi}i]
x&Lỹ
−−−−→ ∆, x : A • σ[{(x, yi) 7→ Ψi · L}i]

∆,x : A&ỹ B • σ[{(x, yi) 7→ Ψi}i]
x&Rỹ
−−−−→ ∆, x : B • σ[{(x, yi) 7→ Ψi · R}i]

∆,x : A⊕y B • σ[(y, x) 7→ L · Ψ]
y⊕Lx
−−−−→ ∆, x : A • σ[(y, x) 7→ Ψ]

∆,x : A⊕y B • σ[(y, x) 7→ R · Ψ]
y⊕Rx
−−−−→ ∆, x : B • σ[(y, x) 7→ Ψ]

{yi : ?Ai}i, x : !yA • σǫ
x!y
−−→ {yi : ?Ai}i, x : A • σǫ[{(x, yi) 7→ Q}i]

∆,x : ?ỹA • σ[(y, x) 7→ Q · Ψ]
y?x
−−→ ∆, x : A • σ[(y, x) 7→ Ψ]

The rules above capture an asynchronous semantics for typing contexts. We
clarify further with an example of how the semantics above works. Assume we
wish to compose three CP proofs through endpoints ∆ = x : A⊥ ` B, y : A⊥ `

A⊗ C, z : A⊗D. The context says that x is receiving something of type A⊥, y
is receiving something of type A⊥ and then sending something of type A, and,
finally, z is sending something of type A. In order to obtain an execution of
∆, we first dualise and annotate ∆ (for some annotation) to, e.g., ∆⊥ = x :
A⊥ ⊗y B⊥, y : A⊗z A⊥

`
x C⊥, z : A⊥

`
y D⊥. Then, obtain an execution, e.g.,:

∆⊥ • σǫ
z`y
−−→ x : A⊗y B, y : A⊗z A⊥ `x C⊥, z : D • σǫ[(z, y) 7→ A⊥]

z⊗y[A,A⊥]
−−−−−−−→ x : A⊗y B, y : A⊥ `x C⊥, z : D • σǫ

y`x
−−−→ x : A⊗y B, y : C⊥, z : D • σǫ[(y, x) 7→ A⊥]

y⊗x[A,A⊥]
−−−−−−−→ x : B, y : C, z : D • σǫ

Note the general rule for the multiplicative connectors ⊗ and `. In their
multiparty interpretation [6], they implement a gathering communication, where
many Ai⊗Bi can communicate with a single A`B. As a consequence, the Ai’s
are enqueued to a single endpoint which will consume such messages. The effect
of a gathering communication with such connectives is to spawn a new session
with the environment {Ai}i shown in the label. Ideally, we could have enriched
the semantics so that it can work on different contexts running in parallel, where
{Ai}i would be added to. However, since the need for the semantics is to de-
fine compatibility we decided to just observe in the label. Units also have a
similar gathering behaviour. On the other hand, additives and exponentials use
broadcasting.

Using the relation on contexts above, we can define when a set of endpoints
successfully progresses without reaching an error. This can be formalised by the
concept of live path. In the sequel, let α range over all the possible labels of the
relation above. Moreover, let α1, . . . , αn be a path for some annotated∆ whenever

A Logical Interpretation of Asynchronous Multiparty Compatibility 9

there exist ∆1, σ1, . . .∆n, σn such that ∆ • σǫ
α1−→ ∆1 • σ1 . . .

αn−−→ ∆n • σn.

This path is maximal if there is no ∆n+1, σn+1, αn+1 such that ∆n • σn

αn+1

−−−→
∆n+1 • σn+1.

Definition 2 (Live Path). A path α̃ for an environment ∆•σ is live if ∆•σ
α1−→

. . .
αn−−→ ∅ • σǫ.

Intuitively, a maximal path is live whenever we can consume all sends and re-
ceives specified in the type context and all queues are empty, i.e., an error is never
reached. With this notion, we are ready to define multiparty compatibility:

Definition 3 (Multiparty Compatibility). An environment ∆ • σ is ex-
ecutable if all maximal paths α1, . . . , αn for ∆ are live and such that αi =
ỹ⊗ x[A, {Ai}i] implies x : A⊥,

{

yi : A
⊥
i

}

i
is multiparty compatible for some an-

notation. A context ∆ 6= ∅ is multiparty compatible if there exists an annotation
such that ∆⊥ • σǫ is executable.

Multiparty compatibility states that all maximal paths are live, i.e., an error is
never reached. Note that the definition above is well-founded since propositions
get smaller when reduced.

Relationship to Previous Definitions. Definition 1 is an adaptation to CLL
of the typing environment reduction (Definition 4.3, [14]) with a little twist:
in order not to overload notation (cf. § 5), we are defining it on the dual of
formulas. For example, following an approach as that of [14], a process with
an endpoint x of type A ⊗y B is meant to store something of type A in the
queue from x to y. In our notation, we dualise the type of x to A⊥ `y B⊥

but keep the same behaviour, i.e., storing something of type A⊥ in the queue
from x to y. Moreover, for the sake of simplicity, we are using a single queue
environment σ as a function from pairs of endpoints to a FIFO, while Ghilezan
et al. [14] use labelled queues attached to each endpoint of the typing context:
the two approaches are equivalent. Finally, our definition being an adaptation to
CLL, uses different language constructs. In particular, we do not combine value
passing and branching, and our ⊗ and ` cases spawn new sessions (hence the
well-founded recursive definition). The original definition of compatibility given
by Deniélou and Yoshida is for communicating automata. Therefore, our starting
point is the adaptation to local types given by Ghilezan et al. [14].

Properties of Multiparty Compatibility. As a consequence of multiparty
compatibility, we can formalise the lack of errors with the following

Proposition 1 (No Error). Let ∆ be multiparty compatible and α1, . . . , αn be

a maximal path for an annotated ∆⊥ such that ∆⊥•σǫ
α1−→ ∆1•σ1 . . .

αn−−→ ∅•σǫ.
Then, for i < n,

1. (a) σi(x, y) = ∗ · Ψ implies that αn = xz̃1y;
(b) σi(x, y) = A · Ψ implies that there exists k > i such that αk = xz̃ ⊗

y[A, {Ai}i];
(c) σi(x, y) = L · Ψ implies that there exists k > i such that αk = x⊕L y;
(d) σi(x, y) = R · Ψ implies that there exists k > i such that αk = x⊕R y;

10 M. Carbone et al.

(e) σi(x, y) = Q · Ψ implies that there exists k > i such that αk = x ? y;
2. (a) ∆i = ∆′

i, x : 1ỹ, then αn = ỹ1x;
(b) ∆i = ∆′

i, x : A⊗ỹ B, then there exists k > i such that αk = ỹ⊗x[{Ai}i];
(c) ∆i = ∆′

i, x : A ⊕y B, then there exists k > i such that αk = y ⊕L x or
αk = y ⊕R x;

(d) ∆i = ∆′
i, x : ?yA, then there exists k > i such that αk = y ? x.

Conditions in (1) state that every message that has been enqueued is even-
tually consumed. On the other hand, conditions in (2) state that every input
instruction is eventually executed. Note also that since we have no infinite com-
putations, we do not need to consider fairness.

Are annotations important? A careful reader may be wondering why the
definitions of type-context semantics and multiparty compatibility are not given
for annotation-free contexts. Unfortunately, doing so would make multiparty
compatibility too strong since we would have to allow for messages to be sent to
different endpoints in different paths. As an example, x : A⊗B⊥, y : A⊗A⊥ `

C⊥, z : A⊥`D⊥ can get stuck if z communicates with x first, violating property
(2b) in Proposition 1. Note that previous definitions of multiparty compatibility
for multiparty session types [24,14] do indeed use annotations.

5 Asynchronous Forwarders

Forwarders form a subclass of processes with some special features but that
are also typable in classical linear logic. I.e., our goal is to identify all those
CP processes that are also forwarders. In order to do so, we must add further
information in the standard CP contexts.

Contexts. What we need is to be able to enforce the main features that charac-
terise a forwarder, namely i) anything received must be forwarded, ii) anything
that is going to be sent must be something that has been previously received,
and iii) the order of such messages between any two points must be preserved.
In order to enforce these requirements, we add more information to the standard
CP judgement. For example, let us consider the input process x(y).P . In CP,
the typing environment for such process must be such that endpoint x has type
A`B such that P has type y : A and x : B. However, the context is not telling
us at all that y is actually a message that has been received and, as such, it
should not be used by P for further communications but just forwarded over
some other channel. In order to remember this fact when we type the subprocess
P , we actually insert y : A into a queue that belongs to endpoint x where we
put all the types of messages received over it. I.e., when typing P , the context
will contain [[Ψ]][uy : A]x : B. That still means that x must have type B and y

must have type A in P , but also that y : A has been received over x (it is in x’s
queue) and we are intending to forward it to endpoint u. Moreover, Ψ contains
the types of messages that have been previously received over x. The forwarders
behave asynchronously. They can input arbitrarily many messages, which are
enqueued at the arrival point, without blocking the possibility of producing an

A Logical Interpretation of Asynchronous Multiparty Compatibility 11

output from the same endpoint. This behaviour is captured by the notion of
queues of boxed messages, i.e. messages that are in-transit.

[[Ψ]] ::= ∅ | [u∗][[Ψ]] | [uy : A][[Ψ]] | [uQ][[Ψ]] | [uL][[Ψ]] | [uR][[Ψ]]

A queue element [ux : A] expresses that x of type A has been received and will
need to later be forwarded to endpoint u. Similarly, [u∗] indicates that a request
for closing a session has been received and must be forwarded to u. [uL] (or [uR])
and [uQ] indicate that a branching request and server invocation, respectively,
has been received and must be forwarded.

The order of messages needing to be forwarded to independent endpoints
is irrelevant. Hence, we consider queue [[Ψ1]][

x. . .][y. . .][[Ψ2]] equivalent to queue
[[Ψ1]][

y. . .][x. . .][[Ψ2]] whenever x 6= y. For a given endpoint x however the order
of two messages [x. . .][x. . .] is crucial and must be maintained throughout the
forwarding. This follows the idea of having a queue for every ordered pair of
endpoints in the type-context semantics in Definition 1. By attaching a queue
to each endpoint we get a typing context

Γ ::= ∅ | Γ, [[Ψ]]x : B | Γ, [[Ψ]]x : ·

The element [[Ψ]]x : B of a context Γ indicates that the messages in [[Ψ]] have
been received at endpoint x. The special case [[Ψ]]x : · is denoting the situation
when endpoint x no longer needs to be used for communication, but still has a
non-empty queue of messages to forward.

When forwarding to many endpoints, we use [ũX] for denoting [u1X] . . . [unX],
with ũ = u1, . . . , un. In this case, we also assume the implicit rewriting [∅X][[Ψ]] ≡
[[Ψ]].

Judgements and rules. A judgement denoted by P Γ types the forwarder
processes P that connects the endpoints in Γ . The rules enforce the asynchronous
forwarding behaviour by adding elements to queues using rules for ⊥ and `,
which forces them to be later removed from queues by the corresponding rules
for 1 and ⊗. The rules are reported in Fig. 2.

Rule Ax is identical to the one of CP. Rules 1 and ⊥ forward a request to
close a session. Rule ⊥ receives the request on endpoint x and enqueues it as
[u∗] if it needs to forward it to u. Note that in the premiss of ⊥ the endpoint is
terminated pending the remaining messages in the corresponding queue being
dispatched. Eventually all endpoints but one will be terminated in the same
manner. Rule 1 will then be applicable. Note that the behaviour of x().P and
x[] work as gathering, several terminated endpoints connect to the last active
endpoint typed with a 1. Rules ⊗ and ` forward a message. Rule ` receives the
message y : A and enqueues it as [uy : A] to be forwarded to endpoint u. Dually,
rule ⊗ applied to a ⊗ sends the messages at the top of the queues of endpoints
ui’s, meaning that several messages are sent at the same time. Messages will be
picked from queues belonging to distinct endpoints, as a consequence, the left
premiss of ⊗ rule spawns a new forwarder consisting of the gathered messages.

In the case of additives and exponentials, the behaviour is actually broad-
casting, that is, an external choice [uL] or [uR], or a server opening [uQ], resp.,

12 M. Carbone et al.

x ↔ y x : a⊥, y : a
Ax

P Γ, [[Ψ]][u∗]x : ·

x().P Γ, [[Ψ]]x : ⊥u ⊥
x[] {[x∗]ui : ·}i, x : 1ũ

1 (ũ 6= ∅)

P Γ, [[Ψ]][uy : A]x : B

x(y).P Γ, [[Ψ]]x : A`
u B

`

P
{

yi : Ai

}

i
, y : A Q Γ,

{

[[Ψi]]ui : Ai

}

i
, [[Ψ]]x : B

x[y ⊲ P].Q Γ,
{

[xyi : Ai][[Ψi]]ui : Ci

}

i
, [[Ψ]]x : A⊗ũ B

⊗ (ũ 6= ∅)

P Γ, [[Ψ]][ũL]x : A Q Γ, [[Ψ]][ũR]x : B

x.case(P,Q) Γ, [[Ψ]]x : A&ũ B
& (ũ 6= ∅)

P Γ, [[Ψz]]z : C, [[Ψx]]x : A

x[inl].P Γ, [xL][[Ψz]]z : C, [[Ψx]]x : A⊕z B
⊕l

P Γ, [[Ψz]]z : C, [[Ψx]]x : B

x[inr].P Γ, [xR][[Ψz]]z : C, [[Ψx]]x : A⊕z B
⊕r

P {ui : ?Bi}i, [
ũQ]y : A

!x(y).P {ui : ?Bi}i, x : !ũA
! (ũ 6= ∅)

P Γ, [[Ψz]]z : C, [[Ψx]]y : A

?x[y].P Γ, [xQ][[Ψz]]z : C, [[Ψx]]x : ?zA
?

Fig. 2. Proof System for Forwarders

is received and can be used several (at least one) times to guide internal choices
or server requests, resp., later on.

Note how annotations put constraints on how the proof is constructed, e.g.,
annotating x : A ` B with u ensures us that the proof will contain a ⊗-rule
application on endpoint u.

Example 2 (Multiplicative Criss-cross). P := x(u).y(v).y[u′ ⊲ u ↔ u′].x[v′ ⊲ v′ ↔ v].x().y[]
is one of the forwarders that can prove the compatibility of the types involved
in the criss-cross protocol (in § 2), as illustrated by the derivation below.

F1 := u ↔ u′

 u : name
⊥, u′ : name

Ax

F2 := v′ ↔ v

 v′ : cost⊥, v : cost
Ax

F3 := x().y[]

y[] [y∗]x : ·, y : 1
1

F3 x : ⊥y , y : 1x ⊥

x[v′ ⊲ F2].F3 x : cost⊥ ⊗y ⊥y, [xv : cost]y : 1x
⊗

y[u′ ⊲ F1].x[v
′ ⊲ F2].F3 [yu : name

⊥]x : cost⊥ ⊗y ⊥y , [xv : cost]y : name⊗x
1
x

⊗

y(v).y[u′ ⊲ F1].x[v
′ ⊲ F2].F3 [yu : name

⊥]x : cost⊥ ⊗y ⊥y, y : cost`x
name⊗x

1
x

`

P x : name
⊥
`

y
cost

⊥ ⊗y ⊥y, y : cost`x
name⊗x

1
x

`

Example 3. The following is a forwarder for the 2-buyer protocol, for some Ti’s.

b′1(book). s
′[book ⊲ T1]. s

′(price). s′(price). b′1[price ⊲ T2]. b
′
2[price ⊲ T3].

b′1(contr). b
′
2[contr ⊲ T4]. b′2.case(s

′[inl]. b′2(addr). s[addr ⊲ T5]. T6 , T7)

A Logical Interpretation of Asynchronous Multiparty Compatibility 13

Properties of Forwarders. We write xBy for the formula obtained from any
B by removing all the annotations. We state that every forwarder is also a CP
process, the embedding x·y being extended to contexts and queus as:

x[[Ψ]]x : B,Γy = x[[Ψ]]y, x : xBy, xΓy x[[Ψ]]x : ·, Γy = x[[Ψ]]y, xΓy

x[uy : A][[Ψ]]y = y : A, x[[Ψ]]y x[uX][[Ψ]]y = x[u∗][[Ψ]]y = x[[Ψ]]y
where X ∈ {L,R,Q}

Proposition 2. Any forwarder is typable in CP, i.e., if P Γ , then P ⊢ xΓy.

Moreover, forwarders enjoy an invertibility property, i.e., all its rules are in-
vertible. In CLL, the rules ⊗ or ⊕ are not invertible because of the choice involved
either in splitting the context in the conclusion of ⊗ into the two premisses or the
choice of either disjuncts for ⊕. In our case on the other hand, the annotations
put extra syntactic constraints on what can be derived and hence are restricting
these choices to a unique one and as a result the rules are invertible. This is
formalised by the following.

Proposition 3. All the forwarder rules are invertible, that is, for any rule if
there exists a forwarder F such that F Γ , the conclusion of the rule, there is
a forwarder Fi Γi, for each of its premiss, i = 1 or 2.

Proof. For each rule, the proof is standard and follows by induction on F . For
example, for ⊕l, let us suppose that F Γ, [xL][[Ψz]]z : C, [[Ψx]]x : A ⊕z B. If
F = x[inl].F1, then we directly get that F1 Γ, [[Ψz]]z : C, [[Ψx]]x : A.

Otherwise, if F starts with any other process operator, we apply an inductive
step. E.g., let F = u(v).F ′, meaning that Γ = Γ ′, [[Ψu]]u : A`

w B and that F ′

Γ ′, [[Ψu]][
wv : A]u : B, [xL][[Ψz]]z : C, [[Ψx]]x : A ⊕z B. By induction hypothesis

(given that F ′ is a subprocess of F), we know there exists F ′
1 such that F ′

1

Γ ′, [[Ψu]][
wv : A]u : B, [[Ψz]]z : C, [[Ψx]]x : A. From there we can derive F1 =

u(v).F ′
1. The rest of the cases follow in a similar way.

A Note on Compositionality and Cut Elimination. The sequent calcu-
lus we presented enjoys cut elimination. That means that forwarders can be
composed, and their composition is still a forwarder. The way we compose for-
warders follows a standard cut rule augmented with extra machinery to deal
with annotations. Additionally, the cut elimination proof provides a semantics
for forwarders, in the proposition-as-types style. For space reasons, we have not
included its technical development, but it can be found in our extended note [7].

Relation to Multiparty Compatibility. Forwarders relate to transitions in
the type-context semantics introduced in the previous section. In order to for-
malise this, we first give a translation from type-contexts into forwarder contexts:

– tr(∅ • σǫ) = ∅.
– tr(∆,x : A • σ ∪ {(yi,x) 7→ Ψi}i) := [[y1Ψ1]] . . . [[

ynΨn]]x : A, tr(∆ • σ) for a
type environment ∆ = {yi : Ψi}i and a queue environment σ mapping the
endpoints yi;

14 M. Carbone et al.

We use the extended notation [[uΨ]] to signify that all the brackets in [[Ψ]] are
labelled by u.

Lemma 1. Let ∆ • σ be a type-context and Γ = tr(∆ • σ).

1. if there exists α and ∆′ • σ′ such that ∆ • σ
α
−→ ∆′ • σ′ then there exists

a rule from forwarders such that Γ is an instance of its conclusion and
Γ ′ = tr(∆′ • σ′) is an instance of (one of) the premiss(es);

2. otherwise, either ∆ = ∅ and σ = σǫ or there is no forwarder F such that
F Γ .

Proof. Follows from a simple inspection of the transitions in Def. 1 and the rules
in Fig. 2.

Thus, we can conclude this section by proving that forwarders are actually
characterising multiparty compatibility for CP processes (processes that are well-
typed in CLL).

Theorem 1. ∆ is multiparty compatible iff there exists a forwarder F such that
F ∆⊥ where each connective in ∆⊥ is annotated.

Proof (Proof Sketch). See Appendix ?? for the full proof. From left to right,
we need to prove more generally that if ∆ • σ is executable, then there exists a
forwarder F such that F tr(∆•σ), by induction on the size of ∆, defined as the
sum of the formula sizes in ∆. From right to left can be proven by contrapositive,
using Lemma 1 and Proposition 3.

6 Composing Processes with Asynchronous Forwarders

In this section, we show how to use forwarders for logically composing CP pro-
cesses.

Multiparty Process Composition. We start by focusing on the structural
rule that can be added to CP, namely the Cut, as seen in Section 3. Rule Cut

corresponds to parallel composition of processes. The implicit side condition that
this rule uses is duality, i.e., we can compose two processes if endpoints x and
y have a dual type. Carbone et al. [6] generalise the concept of duality to that
of coherence. Coherence, denoted by �, generalises duality to many endpoints,
allowing for a cut rule that composes many processes in parallel

{Ri ⊢ Σi, xi : Ai}i≤n
G � {xi : Ai}i≤n

(νx̃ : G) (R1 | . . . | Rn) ⊢ {Σi}i≤n

MCut

The judgement G � {xi : Ai}i≤n intuitively says that the xi : Ai’s are compatible
and the execution of the Ri will proceed without any error. Such a result is
formalised by an MCut elimination theorem analogous to the one of CP. We
leave G abstract here: it is a proof term and it corresponds to a global type
(see [6]).

A Logical Interpretation of Asynchronous Multiparty Compatibility 15

Our goal here is to replace the notion of coherence with an asynchronous
forwarder Q, yielding the rule

{Ri ⊢ Σi, xi : Ai}i≤n
Q

{

xi : A
⊥
i

}

i≤n

(νx̃ : Q) (R1 | . . . | Rn) ⊢ {Σi}i≤n

MCutF

Asynchronous forwarders are more general than coherence: every coherence proof
can be transformed into an arbiter process [6], which is indeed a forwarder, while
there are judgements that are not coherent but are provable in our forwarders
(see Example 2). In the rule MCutF, the role of a forwarder (replacing coher-
ence) is to be a middleware that decides whom to forward messages to. This
means that when a process Ri sends a message to the middleware, the message
must be stored by the forwarder, who will later forward it to the right receiver.
Since our goal is to show that MCutF is admissible (and hence we can elimi-
nate it from any correct proof), we extend such rule to account for messages in
transit that are temporarily held by the forwarder. In order to do so, we use the
forwarders queues and some extra premises and define MCutQ as:

{Pj ⊢ ∆j , yj : Aj}j≤m
{Ri ⊢ Σi, xi : Bi}i≤n

Q
{

[[Ψi]]xi : B
⊥
i

}

i≤n
, {[[Ψi]]xi : ·}n<i≤p

(νx̃ : Q[ỹ ⊳ P1, . . . , Pm]) (R1 | . . . | Rn) ⊢ {∆j}j≤m
, {Σi}i≤n

We have three types of process terms: Pj ’s, Ri’s and Q. Processes Ri’s are the
processes that we are composing, implementing a multiparty session. Q is the
forwarder whose role is to certify compatibility and to determine, at run time,
who talks to whom. Finally, processes Pi’s must be linked to messages in the
forwarder queue. Such processes are there because of the way ⊗ and ` work in
linear logic. This will become clearer when we look at the reduction steps that
lead to cut admissibility. This imposes a side condition on the rule, namely that

⋃

i≤p

Ψi \ {∗} =
{

yj : A⊥
j

}

j≤m

Note that we need to introduce a new syntax for this new structural rule: in the
process (νx̃ : Q[ỹ ⊳ P1, . . . , Pm]) (R1 | . . . | Rn), the list P1, . . . , Pm denotes
those messages (processes) in transit that are going to form a new session after
the communication has taken place. In the remainder we (slightly abusively)
abbreviate both {P1, . . . , Pm} and (R1 | . . . | Rn) as P̃ and R̃ respectively.

Semantics and MCutF-admissibility. We now formally show that MCutF

is admissible, yielding a semantics for our extended CP (with MCutF) in a
proposition-as-types fashion. In order to do so, we consider some cases from
the multiplicative fragment (see appendix for all cases). In the sequel, Γ =
{

[[Ψi]]xi : B
⊥
i

}

i≤n
, {[[Ψi]]xi : ·}n<i≤p and Γ−k = Γ \

{

[[Ψk]]xk : B⊥
k

}

. Also, we

omit (indicated as “ . . .”) the premises of the MCutQ that do not play a role in
the reduction at hand, and assume that they are always the same as above, that
is, {Pj ⊢ ∆j , yj : Aj}j≤m

and {Ri ⊢ Σi, xi : Bi}i≤n.

16 M. Carbone et al.

Send Message (⊗). This is the case when a process intends to send a message,
which corresponds to a ⊗ rule. As a consequence, the forwarder has to be ready
to receive the message (to then forward it later):

P ⊢ ∆, y : A R ⊢ Σ, x : B

x[y ⊲ P].R ⊢ ∆,Σ, x : A⊗B
⊗

. . .

Q [[Ψ]][xk y : A⊥]x : B⊥, Γ

x(y).Q [[Ψ]]x : A⊥
`

xk B⊥, Γ
`

(νxx̃ : x(y).Q[ỹ ⊳ P̃]) (x[y ⊲ P].R | R̃) ⊢ ∆,Σ, {∆j}j≤m
, {Σi}i≤n

MCutQ

The process on the left is ready to send the message to the forwarder. By the
annotation on the forwarder, it follows that the message will have to be forwarded
to endpoint xk, at a later stage. Observe that the nature of ⊗ forces us to
deal with the process P : the idea is that when the forwarder will finalise the
communication (by sending to a process R′ owning endpoint xk) process P will
be composed with R′. For now, we obtain the reductum:

P ⊢ ∆, y : A R ⊢ Σ, x : B . . . Q [[Ψ]][xk y : A⊥]x : B⊥, Γ

(νxx̃ : Q[y, ỹ ⊳ P, P̃]) (R | R̃) ⊢ ∆,Σ, {∆j}j≤m
, {Σi}i≤n

MCutQ

Receive Message (`). At a later point, the forwarder will be able to complete
the forwarding operation by connecting with a process ready to receive (` rule):

P ⊢ ∆, z : A⊥ . . .

R ⊢ Σ, y : A,x : B

x(y).R ⊢ Σ, x : A`B
`

S z : A, y : A⊥ Q [[Ψx]]x : B⊥, Γ

x[y ⊲ S].Q [[Ψx]]x : A⊥ ⊗xk B⊥, [xz : A][[Ψk]]xk : B⊥
k , Γ − k

⊗

(νxx̃ : x[y ⊲ S].Q[z, ỹ ⊳ P, P̃]) (x(y).R | R̃) ⊢ ∆,Σ, {∆j}j≤m
, {Σi}i≤n

Key ingredients are process P with endpoint z of type A⊥, endpoint xk in the
forwarder with a boxed endpoint z with type A, and process x(y).R ready to
receive.

After reduction, we obtain the following:

(νyz : S) (R | P) ⊢ Σ,∆, x : B . . . Q [[Ψx]]x : B⊥, Γ

(νxx̃ : Q[ỹ ⊳ P̃]) ((νyz : S) (R | P) | R̃) ⊢ ∆,Σ, {∆j}j≤m
, {Σi}i≤n

MCutQ

Where the left premiss is obtained as follows:

R ⊢ Σ, y : A, x : B P ⊢ ∆, z : A⊥ S z : A, y : A⊥

(νyz : S) (R | P) ⊢ Σ,∆, x : B
MCutQ

meaning that now the message (namely process P) has finally been delivered
and it can be directly linked to R with a new (but smaller) MCutQ.

These reductions (the full set can be found in Appendix ??) allow us to prove
the key lemma of this section.

Lemma 2 (MCutQ Admissibility). If {Pj ⊢ ∆j , yj : Aj}j≤m
and

{Ri ⊢ Σi, xi : Bi}i≤n and Q
{

[[Ψi]]xi : B
⊥
i

}

i≤n
, {[[Ψi]]xi : ·}n<i≤p then there ex-

ists a process S such that (νx̃ : Q[ỹ ⊳ P̃]) R̃ ⇒∗ S and S ⊢ {∆j}j≤m
, {Σi}i≤n.

Proof (Proof Sketch). By lexicographic induction on (i) the sum of sizes of the
Bi’s and (ii) the sum of sizes of the Ri’s. Some of the key and base cases have
been detailed above; the others can be found in Appendix ??. The commutative

A Logical Interpretation of Asynchronous Multiparty Compatibility 17

cases are straightforward and only need to consider the possible last rule applied
to a premiss of the form Ri ⊢ Σi, xi : Bi.

We can finally conclude with the following theorem as a special case.

Theorem 2 (MCutF Admissibility). If {Ri ⊢ Σi, xi : Ai}i≤n and Q
{

xi : A
⊥
i

}

i≤n
then there exists a process S such that (νx̃ : Q) (R1 | . . . | Rn) ⇒

∗

S and S ⊢ {∆j}j≤m
, {Σi}i≤n.

7 Related Work

Our work takes [6] as a starting point. Guided by CLL, we set out to explore
if coherence can be broken down into more elementary logical rules which led
us to introduce forwarders. As a result, forwarders provide a more general no-
tion of compatibility. An earlier unpublished version of this work [8] proposes
synchronous forwarders, i.e., the restriction of forwarders with only buffers of
size one. In that case, we show that we can always construct a coherence proof
from a synchronous forwarder. However, synchronous forwarders fail to capture
all the possible interleaving of an arbiter (encoding of coherence to processes).

Caires and Perez [3] also study multiparty session types in the context of
intuitionistic linear logic by translating global types to processes, called mediums.
Their work does not start from a logical account of global types (their global
types are just syntactic terms). But, as previous work [6], they do generate
arbiters as linear logic proofs, which are special instances of forwarders. In this
work, we generalise this approach to characterise exactly which processes can
justify the compatibility of several processes. In a more recent work, van den
Heuvel and Pérez [29] use routers in order to provide a decentralised analysis of
multiparty protocols. Routers act as point-to-point forwarders but their types,
called relative types, carry extra information on causality of events that are not
local. As in [3], this approach is confined to global types and is therefore not
complete wrt multiparty compatibility.

Another logical interpretation of multiparty compatibility is proposed by
Horne [21]. It uses the additonal expressivity of BV, a generalisation of CLL
with a non-commutative sequential operator, but only considers a fragment that
is expressible in the sequent calculus, unlike their previous work which relied on
the full strength of deep inference [10]. It also allows one to consider compatible
processes beyond duality but only for simply typed processes, which cannot
spawn other processes. The main advantage of this approach is the fact that
annotations are not needed (but can be recovered in the typing).

Sangiorgi [27], probably the first to treat forwarders for the π-calculus, uses
binary forwarders, i.e., processes that only forward between two channels, which
are equivalent to our x ↔ y. We attribute our result to the line of work that
originated in 2010 by Caires and Pfenning [4], where forwarders à la Sangiorgi
were introduced as processes to be typed by the axiom rule in linear logic. Van
den Heuvel and Perez [17] have recently developed a version of linear logic that

18 M. Carbone et al.

encompasses both classical and intuitionistic logic, presenting a unified view on
binary forwarders in both logics.

Gardner et al. [13] study the expressivity of the linear forwarder calculus, by
encoding the asynchronous π-calculus (since it can encode distributed choice).
The linear forwarder calculus is a variant of the (asynchronous) π-calculus that
has binary forwarders and a restriction on the input x(y).P such that y can-
not be used for communicating (but only for forwarding). Such a restriction is
similar to the intuition behind our forwarders, with the key difference that their
methodology would not apply to some of our session-based primitives.

Barbanera and Dezani [2] study multiparty session types as gateways that
work as a medium among many interacting parties, forwarding communications
between two multiparty sessions. Such mechanism reminds us of our forwarder
composition: indeed, in their related work discussion they do mention that their
gateways could be modelled by a “connection-cut”.

Recent work [22,15] proposes a variant of linear logic that models identity
providers, monitors that are like our forwarders but restricted to between two
channels. Identity providers are asynchronous, i.e., they allow unbounded buffer-
ing of messages before forwarding. Our forwarders can be seen as a generalisation
to multiparty monitors. Multiparty monitors are also addressed by Hamers and
Jongmans [16], but not in a linear logic context.

Our forwarding mechanism may be confused with that of locality [25], which
is addressed logically by Caires et al. [5]. Locality requires that received channels
cannot be used for inputs (which must occur at the location where the channel
was created). In our case, we do not allow received channels to be used at all
until a new forwarder is spawned.

8 Conclusions and Future Work

We showed that forwarders are a logical characterisation of multiparty compat-
ibility and they can safely replace coherence for composing all well-typed com-
patible communicating processes. Below, we discuss some aspects of forwarders
and identify possible future extensions.

Improving Multiparty Compatibility? Multiparty compatibility concerns
the error-free composition of processes that communicate by enqueueing/dequeueing
messages into/from pair-wise distinct FIFO queues. This work is not about im-
proving multiparty compatibility, unlike, e.g., [14]. In this paper, we take the
definition of multiparty compatibility and give it a logical characterisation, in
the spirit of the research line started in [4]. Forwarders are derived from our
logical characterisation, this is our novel contribution.

Are Forwarders Centralised? Following the approach taken for arbiters [6]
and mediums [3], forwarders provide an orchestration of the message flows be-
tween the composed processes. In order to step to a fully decentralised setting, it
is necessary to redefine rule MCut such that i) queues are no longer embedded in
forwarders and ii) annotations in the forwarders are transferred to the composed
processes. This two steps are immediate and the correctness of this follows, also

A Logical Interpretation of Asynchronous Multiparty Compatibility 19

immediately, by Theorem 1, since the type-context semantics in Definition 1 is
indeed fully decentralised. Note that a similar decentralisation approach is also
done for coherence in [6].

Cut Elimination for Forwarders. An unpublished longer version of this
work [7] addresses forwarder composition through a CUT rule for forwarders.
Due to annotations, such rule requires some subtle technical details for which
there was no space in this paper. This CUT rule for forwarders is proven to be
admissible through an algorithm of CUT elimination which mimics how messages
are transferred from one forwarder to another.

Process Language. Our process language is based Wadler’s CP [32], with-
out polymorphic communications. We conjecture that our forwarders can be
smoothly extended to polymorphic types ∃X.A and ∀X.A. As future work, we
plan to consider a further extension to support recursion in the style of Ton-
inho et al. [28]. That will require an extended notion of multiparty compatibility
dealing with infinite paths as done by Ghilezan et al. [14].

Variants of Linear Logic. In this paper, we have chosen to base our the-
ory on CLL for two main reasons. Coherence is indeed defined by Carbone et
al. [6] in terms of CLL and therefore our results can immediately be related
to theirs without further investigations. An earlier version of forwarders was
based on intuitionistic linear logic, but moving to CLL required fewer rules and
greatly improved the presentation. Nevertheless, our results should be easily re-
producible in intuitionistic linear logic. A different approach could be to include
non-commutative operators which could encode our FIFO queues, e.g., using the
work on non-commutative subexponentials by Kanovich et al. [23]. We leave this
as future work.

Beyond Linear Logic. Another interesting avenue would be to understand
how the queueing mechanism of forwarders can be treated within the graphical
proof system of [1]. Indeed, they observed that queues of length greater than 3
could not be expressed as linear logic formulas so they designed a proof system
that works not only on LL formulas (or even its generalisation with a sequential
operator called BV) but on more general graphs.

Variants of Coherence. Our results show that forwarders are a generalisation
of coherence proofs. Indeed, coherence would correspond to the notion of syn-
chronous forwarders [8], the restriction of forwarders with only buffers of size
one. As a follow-up, we would like to investigate, whether other syntactic re-
strictions of forwarders also induce interesting generalised notions of coherence,
and, as a consequence, generalisations of global types.

Acknowledgements We would like to thank Frank Pfenning for initially sug-
gesting the idea of characterising arbiters as linear logic proofs, and Nobuko
Yoshida and Ross Horne for stimulating discussions.

20 M. Carbone et al.

References

1. Acclavio, M., Horne, R., Mauw, S., Straßburger, L.: A graphical proof theory of log-
ical time. In: 7th International Conference on Formal Structures for Computation
and Deduction (FSCD 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik
(2022)

2. Barbanera, F., Dezani-Ciancaglini, M.: Open multiparty sessions. In: Bartoletti,
M., Henrio, L., Mavridou, A., Scalas, A. (eds.) Proceedings 12th Interaction and
Concurrency Experience, ICE 2019, Copenhagen, Denmark, 20-21 June 2019.
EPTCS, vol. 304, pp. 77–96 (2019). https://doi.org/10.4204/EPTCS.304.6 ,
https://doi.org/10.4204/EPTCS.304.6

3. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary the-
ory, and beyond. In: Albert, E., Lanese, I. (eds.) Formal Techniques for Dis-
tributed Objects, Components, and Systems - 36th IFIP WG 6.1 International
Conference, FORTE 2016, Held as Part of the 11th International Federated Con-
ference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete,
Greece, June 6-9, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9688,
pp. 74–95. Springer (2016). https://doi.org/10.1007/978-3-319-39570-8_6,
https://doi.org/10.1007/978-3-319-39570-8_6

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CON-
CUR. pp. 222–236 (2010)

5. Caires, L., Pfenning, F., Toninho, B.: Linear logic propo-
sitions as session types. Math. Struct. Comput. Sci. 26(3),
367–423 (2016). https://doi.org/10.1017/S0960129514000218 ,
https://doi.org/10.1017/S0960129514000218

6. Carbone, M., Lindley, S., Montesi, F., Schürmann, C., Wadler, P.: Coher-
ence generalises duality: A logical explanation of multiparty session types. In:
Desharnais, J., Jagadeesan, R. (eds.) 27th International Conference on Con-
currency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada.
LIPIcs, vol. 59, pp. 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, Germany (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.33,
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

7. Carbone, M., Marin, S., Schürmann, C.: Forwarders as process compatibility, log-
ically. CoRR abs/2112.07636 (2021), https://arxiv.org/abs/2112.07636

8. Carbone, M., Marin, S., Schürmann, C.: Synchronous forwarders. CoRR
abs/2102.04731 (2021), https://arxiv.org/abs/2102.04731

9. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. In: CONCUR. pp. 412–426 (2015)

10. Ciobanu, G., Horne, R.: Behavioural analysis of sessions using the calculus of struc-
tures. In: International Andrei Ershov Memorial Conference on Perspectives of
System Informatics. pp. 91–106. Springer (2015)

11. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. MSCS 760, 1–65 (2015)

12. Deniélou, P., Yoshida, N.: Multiparty compatibility in communicating automata:
Characterisation and synthesis of global session types. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M.Z., Peleg, D. (eds.) Automata, Languages, and Program-
ming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part II. Lecture Notes in Computer Science, vol. 7966, pp.
174–186. Springer (2013). https://doi.org/10.1007/978-3-642-39212-2_18,
https://doi.org/10.1007/978-3-642-39212-2_18

https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.4204/EPTCS.304.6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://arxiv.org/abs/2112.07636
https://arxiv.org/abs/2102.04731
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-39212-2_18

A Logical Interpretation of Asynchronous Multiparty Compatibility 21

13. Gardner, P., Laneve, C., Wischik, L.: Linear forwarders. Inf. Comput.
205(10), 1526–1550 (2007). https://doi.org/10.1016/j.ic.2007.01.006 ,
https://doi.org/10.1016/j.ic.2007.01.006

14. Ghilezan, S., Pantovic, J., Prokic, I., Scalas, A., Yoshida, N.: Precise subtyping
for asynchronous multiparty sessions. Proc. ACM Program. Lang. 5(POPL), 1–28
(2021). https://doi.org/10.1145/3434297 , https://doi.org/10.1145/3434297

15. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) Programming Languages and Systems - 27th European Sym-
posium on Programming, ESOP 2018, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10801, pp.
771–798. Springer (2018). https://doi.org/10.1007/978-3-319-89884-1_27,
https://doi.org/10.1007/978-3-319-89884-1_27

16. Hamers, R., Jongmans, S.: Discourje: Runtime verification of communication
protocols in clojure. In: Biere, A., Parker, D. (eds.) Tools and Algorithms
for the Construction and Analysis of Systems - 26th International Confer-
ence, TACAS 2020, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30,
2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12078, pp.
266–284. Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_15,
https://doi.org/10.1007/978-3-030-45190-5_15

17. van den Heuvel, B., Pérez, J.A.: Session type systems based on linear logic: Classical
versus intuitionistic. In: Balzer, S., Padovani, L. (eds.) Proceedings of the 12th
International Workshop on Programming Language Approaches to Concurrency-
and Communication-cEntric Software, PLACES@ETAPS 2020, Dublin, Ireland,
26th April 2020. EPTCS, vol. 314, pp. 1–11 (2020)

18. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type disciplines
for structured communication-based programming. In: ESOP. pp. 22–138 (1998)

19. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco,
California, USA, January 7-12, 2008. pp. 273–284. ACM (2008)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types.
JACM 63(1), 9 (2016), also: POPL, 2008, pages 273–284

21. Horne, R.J.: Session subtyping and multiparty compatibility using circular se-
quents. In: In 31st International Conference on Concurrency Theory (CONCUR
2020). p. 12 (2020)

22. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for
higher-order session types. In: Bodík, R., Majumdar, R. (eds.) Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016. pp. 582–594. ACM (2016). https://doi.org/10.1145/2837614.2837662 ,
https://doi.org/10.1145/2837614.2837662

23. Kanovich, M.I., Kuznetsov, S.L., Nigam, V., Scedrov, A.: A logical
framework with commutative and non-commutative subexponentials. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) Automated Reasoning
- 9th International Joint Conference, IJCAR 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings. Lecture Notes in Computer Science, vol. 10900, pp.

https://doi.org/10.1016/j.ic.2007.01.006
https://doi.org/10.1016/j.ic.2007.01.006
https://doi.org/10.1016/j.ic.2007.01.006
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3434297
https://doi.org/10.1145/3434297
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1007/978-3-030-45190-5_15
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1145/2837614.2837662

22 M. Carbone et al.

228–245. Springer (2018). https://doi.org/10.1007/978-3-319-94205-6_16,
https://doi.org/10.1007/978-3-319-94205-6_16

24. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification
- 31st International Conference, CAV 2019, New York City, NY, USA, July 15-
18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561,
pp. 97–117. Springer (2019). https://doi.org/10.1007/978-3-030-25540-4_6,
https://doi.org/10.1007/978-3-030-25540-4_6

25. Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi.
Mathematical Structures in Computer Science 14(5), 715–767 (2004).
https://doi.org/10.1017/S0960129504004323

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Infor-
mation and Computation 100(1), 1–40,41–77 (Sep 1992)

27. Sangiorgi, D.: pi-calculus, internal mobility, and agent-passing
calculi. Theor. Comput. Sci. 167(1&2), 235–274 (1996),
https://doi.org/10.1016/0304-3975(96)00075-8

28. Toninho, B., Caires, L., Pfenning, F.: Corecursion and non-divergence in session-
typed processes. In: Maffei, M., Tuosto, E. (eds.) Trustworthy Global Computing
- 9th International Symposium, TGC 2014, Rome, Italy, September 5-6, 2014.
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8902, pp.
159–175. Springer (2014). https://doi.org/10.1007/978-3-662-45917-1_11,
https://doi.org/10.1007/978-3-662-45917-1_11

29. van den Heuvel, B., Pérez, J.A.: A decentralized analysis of multi-
party protocols. Science of Computer Programming p. 102840 (2022).
https://doi.org/https://doi.org/10.1016/j.scico.2022.102840 ,
https://www.sciencedirect.com/science/article/pii/S0167642322000739

30. Vasconcelos, V.T.: Fundamentals of session types. Inf. Comput. 217, 52–70 (2012)
31. Wadler, P.: Propositions as sessions. In: ICFP. pp. 273–286 (2012)
32. Wadler, P.: Propositions as sessions. Journal of Functional Programming 24(2–3),

384–418 (2014), also: ICFP, pages 273–286, 2012

https://doi.org/10.1007/978-3-319-94205-6_16
https://doi.org/10.1007/978-3-319-94205-6_16
https://doi.org/10.1007/978-3-319-94205-6_16
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/https://doi.org/10.1016/j.scico.2022.102840
https://doi.org/https://doi.org/10.1016/j.scico.2022.102840
https://www.sciencedirect.com/science/article/pii/S0167642322000739

This figure "preview.jpeg" is available in "jpeg"
 format from:

http://arxiv.org/ps/2305.16240v1

http://arxiv.org/ps/2305.16240v1

	A Logical Interpretation of Asynchronous Multiparty Compatibility

