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Abstract: 

The widespread adoption of Internet of Things (IoT) devices in various application domains has 
significantly improved the quality of life. However, the resource-constrained, heterogeneous, and low-
power nature of these devices poses challenges in ensuring secure communication and authenticity. 
Physical Unclonable Functions (PUFs) offer a solution by creating a unique and device-specific 
identity through manufacturing process variations without requiring additional resources. To 
authenticate IoT devices, a challenge-response pair (CRP) is generated based on the unique 
characteristics of each device. However, the CRPs generated by PUFs often exhibit high correlation, 
making them vulnerable to modeling attacks. Despite the proposal of numerous intricate PUF 
architectures, such as XOR PUF and Interpose PUF (iPUF), the advancement in machine learning 
(ML) algorithms has enabled the modeling of attacks on these PUFs. In this study, experiments 
performed on field programmable gate arrays (FPGAs) demonstrate that the dynamic nature of the 
proposed PUF architecture makes it challenging for prevalent ML models to predict accurate PUF 
responses. Moreover, this work compares the performance of Logistic Regression and multilayer 
perceptron-based modeling attacks on Arbiter PUF, XOR PUF, and a proposed dynamic PUF. The 
experimental results demonstrate that the proposed dynamic PUF architecture outperforms in 
resilience to ML-based attacks and resource utilization, making it a viable option for IoT applications.  
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CHAPTER 1 

INTRODUCTION 

Introduction Hardware Secure Key Storage 

In the digital age, ensuring the security and authenticity of Internet of Things (IoT) devices and 

data is crucial due to sensitive information being shared online, such as in banking and defense. IoT 

devices like monitoring systems, automated cars, medical equipment, home automation, and smart 

infrastructure devices transmit data online.   Furthermore, several IoT devices authenticate a person’s 

identity and can contain personal, social, and banking information.   Therefore, if the security of these 

devices is breached, significant harm can occur. Cryptography secures critical information by 

encrypting and decryption of data by using cryptography keys. Cryptography and authentication 

protocols rely on secure key storage in non- volatile electrically erasable programmable read-only 

memory (EEPROM) and static random-access memory (SRAM). This approach has significant 

resource and area overhead and is susceptible to invasive attacks such as Side-Channel Attacks 

(SCA) and non-invasive attacks proposed in [1]. A compromised cryptographic key can jeopardize the 

authentication process of a device or user, potentially leading to the exposure of critical information. 

Furthermore, these devices can be breached due to the widespread deployment of IoT devices in 

public access areas. Storing a key identifier in a device helps identify the device. However, this 

method must be improved for privacy, authentication, and authorization. To achieve these goals, 

different approaches must be utilized. To address this security issue, a Physical Unclonable Function 

(PUF) is proposed as a more secure and cost-effective solution than conventional key storage 

methods to authenticate a device [2]. PUF relies on manufacturing variations of Integrated Circuits 

(IC) at the nanoscale. The variations are so unique and small that they cannot be replicated even by 

the original manufacturer of the IC. 

Threats and Challenges on IoT Security 

Several IoT devices connect wirelessly over the internet and are usually installed in publicly 

accessible places, making them susceptible to attacks. Several traditional cryptography algorithms for 
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encrypted secure data transmission, such as Advanced Encryption Standard (AES), require ample 

storage. Some IoT devices might have low storage of around 512 bytes, while AES might take 

storage up to 800 bytes [3]. Low-end cipher encryption algorithms such as RC5 have been proposed 

for IoT de- vices. But still, it is susceptible and vulnerable to attacks and requires non-volatile memory 

storage on the device. The cost, area, and vulnerability to invasive and non-invasive attacks are 

problems IoT security faces. Encryption mechanisms using PUF can be easily built on System-on-

Chip (SoC) and Field Programmable-Gate Array (FPGA). PUF requires less area comparatively than 

traditional cryptographic methods. Initially, FPGA was used to make a prototype and simulate designs 

for debugging purposes. But due to customization in FPGA, nowadays FPGA based IoT devices have 

been proposed [4]. However, FPGAs do not have non-volatile on-chip memory making it difficult to 

store keys on the FPGA. Hence, PUF can be a promising solution for encrypting IoT and FPGA 

devices. 

Motivation 

Using the unique manufacturing variation of ICs, PUF serves as the device’s finger- print. PUF 

since its proposal after 2002, there has always been an intense debate on its Unclonability feature. 

The unexpected manufacturing variations are uncontrolled and cannot be cloned in the form of 

duplicate physical ICs. But a Modeling attack on PUF structure has been proposed, which can predict 

the response of PUF devices [4], [6]-[9]. This suggests that the electronic cloning of PUF is possible, 

and the security of IoT and FPGA can be compromised. Since its inception, there has been 

competitive research between attack models and complex PUF architecture. Also, for making 

unpredictable PUF, the intricate designs that were proposed earlier leverage more resources which is 

not beneficial in the case of IoT devices. One way or the other, PUF cannot be proven as a 

commercial and secure device for cryptography and Security. The desired reliability property of PUF 

increases the correlation between CRPs. This constant property of PUF has to be reconsidered, and 

dynamic behavior to avoid chances of correlation is much needed for PUF resiliency against 
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Modeling Attacks. Our research discusses introducing dynamic behavior in PUF and making complex 

PUF against machine learning attacks. 

IoT Authentication Protocol Using PUF 

PUF-based security protocol can authenticate low-energy and smaller IoT devices to reduce 

the resource overhead for cryptography. Authentication using PUF involves two phases: Enrollment 

and Verification. 

Enrollment 

In the enrollment phase, the database of Challenge-Response pairs is generated from the PUF 

device and stored in the authenticated server. This database is assumed to be stored in a secured 

space and cannot be accessed by adversaries. When an authentication request is sent from the client 

PUF, the database CRP is requested and matched against the PUF response. 

Verification 

During the authentication phase of the device, the server sends the challenge from the 

database and collects the response generated by the PUF devices. These responses are compared 

with the response bits in the database. If the generated response matches with the database in the 

server, the device is verified, and a secure connection is established, as shown in Figure 1. For 

added security mechanisms, the server, for authentication purposes, uses one CRPs for only single-

time authentication. Every new authentication will be a new occurrence of the challenge for 

verification purposes. These stages are explained in more detail in Chapter 2. PUF can be used as 

added security primitive with existing cryptography protocols to improve the device’s security.  

Thesis Organization 

This section outlines the organization of the rest of the thesis to address a better 

understanding of the article. The concept and background of PUF architecture are discussed in the 

next chapter. Furthermore, Chapter 2 includes the working principle and classification of PUF, the 

complex architecture proposed earlier, and quality metrics for PUF. 
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Figure 1. PUF-based Device Authentication [10] 

Chapter 3 of the thesis delves into the potential risks and obstacles PUF devices face. This 

section focuses on the nuances of modeling and traditional attacks, which are elaborated upon in 

detail. Moreover, this chapter expounds on the susceptibility of PUF devices to machine learning 

algorithms, particularly logistic regression, and deep learning neural networks. 

In Chapter 4, we presented new PUF architecture to increase the vulnerability against machine 

learning modeling attacks by introducing reliable noise in the PUF model. This chapter also describes 

the implementation strategy and experimental setup, such as the software and hardware used for the 

research. Furthermore, we have summarized our results against a machine learning attack on the 

proposed PUF, along with resource utilization and quality metrics of the PUF. 
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CHAPTER 2 

PUF BACKGROUND 

PUF Introduction 

There is a slight difference in ICs at the nanoscale range, even though they are manufactured 

from the same wafers. These differences are unique and so random that the original manufacturer 

cannot replicate the same behavior. This unique behavior can generate cryptography secure keys 

using differences in delay, process, frequency, and current [2]. The process variation in ICs is within 

die and die-to-die variations [11]. These variations are caused due unexpected and uncontrolled 

differences in wafers within a die or die-to-die. Dopant concentration within the die is a prominent 

reason for the variation within the die. Thus, these random variations are unique to each device and 

are termed fingerprints of the device. PUF takes the challenge bits (C) as input and produces the 

random response (R) bits depending on the device interconnect. This implies if the same challenge C 

is given to two different IC will produce a different response R. 

The stages for authentication using PUF for IoT devices are depicted in detail in Figure 2. The 

PUF device’s Challenge-Response Pairs (CRPs) are stored in the server’s database in a secure 

environment, and the PUF client is installed on IoT devices. When a request is made from the client, 

the challenge is transmitted from the server to the PUF client device for a secure connection. PUF 

client sends unique response bits compared with the server’s CRP database. If the response 

generated by the device matches the CRP database on the server, the device is considered 

authenticated, as illustrated in Figure 2. For added security, the IoT authentication protocol can be 

designed so that every time unique CRPs are used, if the communication channel is attacked, the 

actual key cannot be predicted due to the random behavior of PUF. The Figure 3 shows that 

responses R1 and R2 generated from two ICs for the same challenge are not identical. 
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Figure 2. Stages for authentication using PUF 

 

 

Figure 3. Response produced on PUF circuit of two different ICs [12]. 

PUF Classification 

The classification of PUF differs depending on the security or material required. It doesn't 

follow explicit classification, but the researcher classified the PUF mainly into two types, classification 

based on the material used and on the security of the device as shown in Figure 4. 
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Figure 4. PUF Classification based on security and material [13] 

Classification Based on Material 

Based on the material used, PUF is further classified into two types: Silicon PUF and Non-

Silicon PUF. Optical PUF, Acoustical PUF, magnetic PUF, and PUF are Non-Silicon PUF. While on 

the other hand, Silicon PUF relies on the process variation of Silicon Devices. Delay Based PUF, 

Memory-based PUF, and other electronic PUF. The Delay based PUF uses the delay condition 

between two identical paths to generate response R. Some PUFs, like Ring Oscillator PUF (RO-

PUF), uses frequency variation to derive CRPs. This research will focus on Silicon PUF that can 

enhance IoT and FPGA security. 

Classification Based on Security 

Depending on the ability to generate the number of CRPs, the PUFs are classified as strong 

and Weak PUFs.  Strong PUFs can generate more CRPs, while weak PUFs generate fewer pairs 

using the same number of resources. Due to the fewer CRPs, the weak PUF accounts for low 

security compared to the strong PUF. The attacker cannot replicate the ICs even for the weak PUF, 
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but due to the lower number of CRPs, it is possible that the attacker can keep a record of all the 

CRPs generated by weak PUF.  APUF, Interpose PUF (iPUF), Double Arbiter PUF (DAPUF), XOR 

PUF and its variants, and Optical PUF are some examples of Strong PUF. In contrast, SRAM PUF, 

RO-PUF, Butterfly PUF, and DRAM PUF are examples of weak PUF.  

Our research focuses on Delay based Silicon PUFs, as they are strong PUFs and capable of 

generating a higher number of CRPs. Some of the delay PUFs, such as RO PUF, are incapable of 

the high number of CRPs. We will discuss it in more detail in the following sections on delay based 

PUF variants. Due to more security in terms of CRPs, strong PUFs are a strong candidate for 

authentication, while weak PUFs can be used as identification, random number generators, and key 

generations. 

Our proposed research focuses delay based APUF due to its ability to generate more CRPs. 

So, we will discuss more in detail on delay based PUF variants in the following section. 

Delay Based PUF Variants 

The PUF that relies on the delay difference between two paths is generalized as delay based 

PUF. RO PUF, Arbiter PUF and its Variants, XOR PUF, and Variants, Double Arbiter PUF [14], 

Anderson PUF and Interpose PUF are some examples of delay based PUF. 

Ring Oscillator PUF 

This PUF uses frequency comparison between two oscillators. Due to variations in ICs, even 

though the identical oscillators are compared, there is a slight difference in frequency. The RO PUF 

was proposed by Suh and Devadas in [10]. As shown in Figure 5, the oscillator frequency is 

compared using the counter. Two multiplexers are used to select the oscillators for frequency 

comparison. The select input is challenge C for the RO PUF, and the output after frequency 

comparison is Response R. The comparison of two oscillator frequencies generates response 10, 

depending on the manufacturing variations. As the number of oscillators is limited for PUF, very few 

responses are generated. For a given N number of oscillators in RO PUF around log2(N !) CRPs, but 

for accuracy and reliability, oscillators can be used only once to avoid correlation between oscillators 
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[10]. The author in [10] states that RO PUF allows easy implementation and is more reliable but 

power consuming. 

 

Figure 5. Architecture of Ring Oscillator PUF [10]. 

Arbiter PUF 

Arbiter PUF (APUF) is mostly researched for its easy implementation and ability to produce 

many CRPs. For n-bit Challenge inputs, the APUF can produce 2n numbers of CRPs. Arbiter PUF 

contains the chain of Multiplexer as shown in Figure 6 was proposed by Lee et al. in [15]. The race 

condition between two identical chains of the multiplexer is sent to the arbiter, i.e., flip-flop. There is a 

difference in the delay of both paths due to the nanoscale manufacturing variation in the ICs, even 

though they are manufactured from the same wafer. These variations are so random to produce a 

different response for different challenge inputs. 

The same Challenge bit C[i], for APUF, is given to select input of the multiplexer of both paths 

as shown in Figure 6. The upper and lower paths are identical, with the same number of multiplexers. 

Figure 7 shows the challenge inputs X of 128- bits, and Response Y is Generated at the end. The 

value of challenge bits alters the path of multiplexers and has a unique delay path for each challenge 

bit. If the upper path has a lower delay and arrives first at the flip-flop, the response 1 will be 

generated, as when the lower path arrives at the clock terminal, the value on D will be 1. While if the 
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lower path arrives earlier, the response 0 will be generated at Y, as the value at D will be 0 due to a 

higher delay at the upper path. 

 

Figure 6. Arbiter PUF 

 

 

Figure 7. Two identical multiplexer paths for APUF [10] 

To generate more unique responses, more path combinations are required. As APUF uses a 

multiplexer for path design, the select input of the multiplexer can be used to switch paths and 

generate a unique delay path for every different combination.  The multiplexer block for switching of 

delay path in multiplexer is depicted in detail in Figure 8. As shown in Figure 8, if the challenge or 

select input to the multiplexer is 1, the path will be cross-coupled, or else the delay path will be in 

parallel. Due to this switching mechanism by a multiplexer, the APUF and other APUF-derived PUFs 

are also classified as multi-challenge PUFs (MCPUFs). While PUFs such as ROPUF and SRAM PUF 

don’t allow configurable challenge bits, they are classified as single-challenge PUFs (SCPUFs) [16]. 
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Figure 8. PUF Switching paths in multiplexer [17] 

The architecture of APUF discussed generates the one-bit response. To generate multiple-bit 

responses using APUF, multiple chains of APUF can be implemented on the circuit. Due to its ability 

to produce more CRPs and, easy implementation, low resource utilization, APUF is a strong 

candidate for authentication purposes. APUF and its variants can also be implemented on FPGA with 

careful floorplanning. 

As FPGA is effortlessly configurable and cheaper than ASIC, we used FPGA for our research 

purpose. To improve the security of APUF, many other robust variants of APUF are proposed, such 

as Double Arbiter PUF (DAPUF) [18], XOR Arbiter PUF Variants [15], and Interpose PUF [19]. These 

strong APUF variants will be discussed in detail in further sections. Furthermore, we will propose a 

dynamic PUF architecture in Chapter 4. 

XOR PUF 

The XOR APUF was initially proposed by Suh and Devadas in [10], to avoid modeling attacks 

on PUF. APUF architecture allowed direct integration of the input and output of PUF, making it easy 

for modeling attacks to learn the behavior of PUF. The idea of XORing the output of multiple PUF, as 

shown in Figure 9, makes the actual output more secure by not exposing the response bit of APUF 

directly. 
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Figure 7. Architecture of n-XOR PUF [20]. 

The Figure 9 shows the architecture of XOR PUF for n number of APUF rows. The responses 

are XORed to get the final XOR. XOR PUF is named depending on the number of rows used to make 

PUF. N-XOR has n rows of APUF, i.e., 2 and 3 rows of XOR are termed 2-XOR PUF and 3-XOR 

PUF. Adding more rows makes the PUF more secure however decreases the stability of response 

bits for PUF. At the time of inception, XOR PUF was supposed to provide resiliency against modeling 

attacks. But later, an ML-based attack was proposed, which could predict the response from XOR 

PUF with an accuracy of over 95%. 

Double Arbiter PUF 

In DAPUF, two or more identical APUFs are used to derive the response bits. The DAPUF, as 

shown in Figure 10, the paths from different chains are used to derive intermediate responses, which 

are r1 and r2. This response can be XORed to produce the complexity of APUF. DAPUF has similar 

architecture and resource utilization to XOR PUF. Figure 10 depicts the architecture of 2-1 DAPUF, 

as two chains of APUF are used to derive r1 and r2 responses. Due to biased responses in APUF, 2-

1, DAPUF has comparatively low uniqueness. 

Along with 2-1, DAPUF to introduce more uniqueness, Machida et al. proposed 3-1 DAPUF. 

The 3-1 DAPUF introduces more randomness, reliability, and uniqueness property in the PUF than 

the 2-1 DAPUF variant. Compared to XOR-PUF, DAPUF showed better results in uniqueness and 

randomness, while XOR-PUF was more reliable [14]. 
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Figure 8. Architecture of 2-1 DA PUF [14] 

Interpose PUF 

Interpose PUF (iPUF) was proposed by Nguyen et al. for advanced security of PUF devices 

against modeling attack [19]. The (x,y)-iPUF is derived from two levels of XOR PUF. The upper level 

consists of x-XOR PUF, and the lower level is derived from y-XOR PUF as shown in Figure 11. 

 

Figure 9. Architecture of (x,y)-Interpose PUF. 

The intermediate response generated from the upper-level x-XOR PUF is interposed with the 

challenge bits of lower-level y-XOR PUF. To interpose one response bit of the upper level to the 

lower layer of XOR PUF, the upper consist of n-bit XOR PUF, while the lower level consists of (n+1) 
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y-XOR PUF. The final response of iPUF is the output of y-XOR PUF, as shown in Figure 11. The x 

and y represent the number of APUFs used to make XOR PUF in the upper and lower levels. 

PUF Quality Metrics 

To assess the performance of the proposed PUF designs, it is crucial to consider several 

essential metrics, as discussed in the following sections. 

Uniqueness 

As PUF is proposed on the concept that every ICs have unique manufacturing behavior, the 

response generated from PUF must be unique to the device. That suggests if the same challenge is 

applied to two different PUFs, it must produce different challenge bits. The Hamming Distance (HD) 

between responses of multiple PUF devices used for deriving uniqueness. For a one-bit response 

PUF function, the ideal value of PUF for Uniqueness is 50%. If two chips, i and j (such that i ̸= j), 

generates n number of response bits Ri and Rj for the same challenge C, the uniqueness among k 

chips is evaluated by the authors Maiti, Gunreddy, and Schaumont as 

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 =
2

𝑘(𝑘−1)
∑ ∑

𝐻𝐷(𝑅𝑖 ,𝑅𝑗)

𝑛

𝑘
𝑗=𝑖+1

𝑘−1
𝑖=1 × 100% (1) 

Uniformity 

PUF generates responses of 1 or 0; the randomness/uniformity property of PUF is the ability of 

PUF to not produce the same response bits for all given challenges. The randomness property 

ensures that PUF does not produce identical response bits for every challenge. The uniformity 

property ensures that the proportion of 1’s and 0’s in the response bits is evenly distributed for all the 

given challenges. In an ideal scenario, PUF responses should exhibit a randomness of 50%. 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =
1

𝑛
∑ 𝑅𝑖,𝑙
𝑛
𝑙=1 × 100% (2) 

Reliability 

Reliability, also called the steadiness of the PUF function, is the ability to reproduce response 

bits. As PUF circuits account for variations in ICs, there are chances of impact on response bits due 

to environmental noise. An ideal PUF must always produce the same response bit for the same 

challenge. It should not change due to temperature or other environmental noise. Ideally, the value 
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for the Reliability/Steadiness of the PUF function is 100%. Intra Hamming Distance (HDINTRA) 

calculated using the response of device ’i’ at different conditions [21]. Equation for HDINTRA given as 

𝐻𝐷𝐼𝑁𝑇𝑅𝐴 =
1

𝑚
∑

𝐻𝐷
𝑅𝑖,𝑅𝑖,𝑡

′

𝑛
𝑚
𝑡=1 × 100% (3) 

Where Ri and Ri,j are responses of device ’i’ at different environmental conditions or voltages. 

The equation defines reliability as, 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100%− 𝐻𝐷𝐼𝑁𝑇𝑅𝐴 (4) 

As PUFs are mainly designed for low-cost IoT devices, cost and resource utilization has also 

become the prominent quality metrics for PUFs. With the advent of advanced ML algorithms, it was 

possible to replicate the PUF behavior. So, for security concerns, along with three fundamentals of 

PUF devices, PUF must also be evaluated for these properties. 
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CHAPTER 3 

ATTACKS ON PUF 

The first PUF was proposed assuming that PUF can be used for IoT security and encryption. 

The unclonable and unpredictability was the pillar on which the PUF mechanism was suggested as a 

solution for cryptography and identification. It is almost impossible to replicate the IC at the nanoscale 

even by its original manufacturer. This belief is true for cloning the IC physically. Even if the attacker 

tries to clone the IC, it requires extensive lab equipment and time, which cannot be done in public 

areas. But it was possible to replicate the uncontrollable behavior of ICs by training CRPs on Machine 

Learning (ML) Modeling algorithms. The PUF is not unclonable anymore as its behavior can be 

modeled using ML algorithms. In this section, we will discuss the possible attacks on the security of 

PUF. 

The attacks on any ICs are broadly classified into two types invasive and non-invasive attacks. 

We will discuss the basics of this attack to understand the scope of a possible attack on a PUF 

device. Successful modeling attack on PUF is discussed in detail in other sections. 

Invasive Attacks 

For an invasive attack, the attacker requires access to the original IC that needs to be 

attacked. We will discuss two infamous invasive attacks on ICs in the following subsections. 

Physical Attacks 

The physical attack involves physically characterizing ICs for intrinsic behavior at the transistor 

and gate levels. To characterize the IC behavior Tajik et al. proposed photonic emission-based 

analysis of PUF function [22]. This type of attack is expensive, and exploiting the PUF behavior using 

this attack may sometimes damage the PUF device. 

Cloning Attacks 

For a cloning attack, the attacker tries to clone the ICs with identical behavior, with the same 

manufacturing variation. This kind of attack requires expensive lab equipment and is harder to 

achieve a successful attack. The authors of Zeitouni et al. have proposed an easy cloning attack 
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based on the remanence decay method [23] on SRAM PUF. However, due to complex and 

nanoscale delay connectivity in delay-based PUF, it is still challenging to clone the PUF devices. 

Side Channel Analysis 

Side Channel Analysis (SCA) exploits the physical information of the ICs, such as leakage 

current, power consumption, junction temperature, and electromagnetic radiations, to extract 

encrypted cryptographic keys. Several types of research exploit SCA analysis attacks on PUF 

function [24]. The SCA attack on PUF and its resiliency against such attack is discussed by Aghaie 

and Moradi on iPUF [25]. Aghaie and Moradi proposes a Boolean masking method to counter SCA 

attacks on PUF. Later Radha Krishnan presented secure techniques with less resource overhead by 

using AES [26]. SCA on PUF can be avoided by Boolean masking, obfuscation, and AES techniques. 

The current attack strategy, as we discussed, relies on having access to the device in a controlled lab 

environment. Some proposed attacks carry inherent risks or can be mitigated by proactively 

implementing countermeasures. However, it’s essential to acknowledge that modeling attacks on 

PUFs (Physical Unclonable Functions) are a substantial risk as they don’t require direct access to the 

device during the attack. An attacker can launch a successful attack by modeling the PUF device 

earlier by recording CRPs to predict its behavior accurately. Therefore, addressing modeling attacks 

on PUFs should be a priority in developing effective countermeasures. This will help to enhance the 

security of PUF-based systems and safeguard against potential threats. So, the proposed modeling 

attacks on PUF are addressed in the following section. 

Modeling Attacks  

The machine learning bases modeling attacks on PUF can be sub-classified as semi-invasive 

attacks. This type of attack requires the adversaries to record CRPs using the original PUF device 

that needs to be attacked. This attack assumes that the attacker can access the PUF device and 

generate CRPs for making a dataset and training the ML model. The phases of modeling attacks 

using ML algorithms are shown in Figure 12. The attacker collects the CRP data by breaking into the 

connection channel of the PUF client and server. The data is then pre-processed and transformed to 



18 

 

fit into the model and predict the client PUF response. The following section discusses two prominent 

attacks: ML and LR-based modeling attacks. 

 

Figure 10. ML-based modeling attack on PUF [27]. 

Logistic Regression 

The logistic regression model is a powerful statistical tool to identify patterns and relationships 

between input data and output labels. In the context of PUF, where the CRPs do not exhibit linear 

relationships, the logistic regression model has been demonstrated to be particularly effective. 

Previous studies have shown the suitability of logistic regression, mainly when using the RProp 

optimization algorithm, for PUF-based authentication, with reported accuracy rates of around 99% for 

Arbiter PUFs (APUFs) [8]. This research used the linear additive delay model to generate APUF 

CRPs, which was considered a reliable simulation model for delay based PUF devices in earlier days. 

The LR attack by Rührmair et al. was later modified in year 2015 to lower the training time of the 

model with around 1 to 6.5 hours for large XOR PUF circuits Tobisch and Becker. The LR-based 

modeling attack had higher training time and low accuracy on breaking iPUF, Feed-Forward PUF, 

and XOR PUF [4], [8]. 

Artificial Neural Network 

Artificial Neural Network (ANN) is an ML algorithm that uses layers of perceptron/neurons to 

predict the response bits using challenge bits. ANN contains multiple layers of perceptron (also 
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referred to as neurons), with each perceptron having some values of weights and biases, as shown in 

Figure 13. The value of weights and biases are defined by training the model on the dataset and 

updated to predict the output. The main goal of the multi-layer perceptron method (MLP) is to map the 

input data with the output label. Backpropagation and optimizers increase the accuracy of the output 

label’s prediction. Backpropagation is a technique that involves calculating the gradients, later used 

for updating the weights and biases of neural networks by optimizers to obtain a correct prediction. 

The layers of ANN can be subdivided into three main layers of neurons: the input layer, the hidden 

layers, and the output layer. Once the ideal model achieves good accuracy on the training set, it is 

expected to perform well on unseen data. 

 

Figure 11. Deep Learning Neural Network Architecture. 

The first attack using Deep Learning (DL) modeling was proposed by Ikezaki, Nozaki, and 

Yoshikawa in 2016 [9]. The authors in this research used the raw dataset of CRPs to train the model. 

Unfortunately, the attack had low accuracy of around 58%, i.e., near to random guess probability of 

50%.  Earlier in Chapter 2, it was discussed that complex architecture of PUF such as Feed Forward 

Arbiter PUF, XOR PUF, and iPUF was proposed for resilience against machine learning attacks. The 
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first attack model using multi-layer perceptron ANN was proposed in 2017 by Alkatheiri and Zhuang 

on Feed Forward Arbiter PUF with a maximum accuracy of around 96%, which was secure against 

modeling attack by Rührmair et al. [6] [8]. Later in year 2018, an MLP-based attack on XOR PUF was 

proposed by Aseeri, Zhuang, and Alkatheiri with a shallow attack time [30]. This attack by Aseeri, 

Zhuang, and Alkatheiri successfully break into large XOR PUF with an attack time of around two 

hours. In year 2019, Santikellur, Bhattacharyay, and Chakraborty proposed successful attacks on 

APUF and its complex variants, such as IPUF and XOR PUFs. The work by Santikellur, 

Bhattacharyay, and Chakraborty showed prediction accuracy of over 97% on XOR PUF and IPUF 

[28]. After that, Wisiol et al. in the year 2021, modified the model proposed by Aseeri, Zhuang, and 

Alkatheiri to reduce the complexity of the model [7]. The research by Wisiol et al. was faster and more 

robust in predicting the responses of iPUF [19], Double Arbiter PUF [14], XOR PUF with a lesser 

number of CRPs [7]. The main difference in the model by Wisiol et al. was tanh activation function 

was used instead of ReLU. Also, the model has fewer neurons than the model proposed by Aseeri, 

Zhuang, and Alkatheiri. The details of the optimizer and layers used for both MLP model is in Table 1. 

The iPUF discussed in Chapter 2 was proposed as robust architecture to tackle modeling attacks on 

iPUF. But the splitting attack on iPUF was proposed by Wisiol et al. by dividing the attack model for 

the upper and lower chain of Interpose-PUF with an accuracy of more than 95% [29]. 

Table 1. Multi Layer Perceptron Parameters 

Parameters MLP 2018 [30] MLP 2021 [7] CNN 

Optimizer ADAM ADAM ADAM 

Learning Rate 1×10−3 1×10−3 1×10−3 

Activation Function ReLU tanh ReLU and Softmax 

 

Convolution Neural Network 

The Convolution Neural Network (CNN) is robust architecture mainly for image prediction. The 

very first successful CNN architecture was proposed by Lecun et al., which became the revolution for 
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modern-age ML techniques [31]. This research uses Machine Learning Based modeling attacks using 

Deep Learning Convolution Neural Networks (CNN). CNN is more efficient than other deep learning 

models, especially on image data. To the best of our knowledge, the application of Convolutional 

Neural Networks (CNN) to predict the response bits of Arbiter PUFs (APUFs) has yet to be previously 

explored. 

We researched to predict the response of PUF-based authentication using 2d CNN deep 

learning techniques. For this modeling attack using two-dimensional CNN, we need to convert and 

reshape the binary challenge bits into a two-dimensional array of 8x8 size and map with response bits. 

The CNN model under consideration features two convolution layers, three dropout layers, and one 

dense layer. The activation function used throughout the model is ReLU, except for the final layer, 

which utilizes a softmax activation function. The input shape for this model is (8,8,1), and the feature 

size for the first convolution layer is (3,3). The model utilizes challenge bits as the input sample and 

response bits generated from an FPGA as the output labels. The CNN model is designed to avoid 

over-fitting on the training data set by using dropout layers and regularization on the hidden layers. 

These dropout layers work by randomly deactivating a certain percentage of the hidden neurons, 

thereby reducing the complexity of the model and preventing over-fitting. Additionally, the model 

utilizes a softmax activation function in the output layer and employs a sparse categorical cross-

entropy loss function. The accuracy of the CNN model in predicting response bits is lower than that of 

the ANN model. Also, training the CNN model requires a higher training time than the ANN. The 

parameters used for the CNN-based modeling attack are depicted in Table 1. The maximum 

accuracy of the 2d CNN model on the 100k CRP dataset was around 72% for 2-XOR PUF and 73% 

for APUF, which is close to a random guess of 50%. The 2-d CNN model that is believed to perform 

very well on two-dimensional image data doesn’t perform well on CRPs prediction. 

In conclusion, MLP and LR-based attacks were highly robust in predicting the response bits, 

even for the complex architecture. Though modeling attack initially requires device access to record 

CRPs, they are still a potential threat to the unclonable feature of PUF. More randomness in response 
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generation can help reduce modeling attacks on PUF devices. We will discuss our proposed concept 

of how adding reliable noise in PUF can confuse machine learning algorithms in Chapter 4. 
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CHAPTER 4 

PROPOSED DELAY-BASED PUF 

Motivation 

The machine learning algorithm is used in a modeling attack to predict the behavior of 

PUFs based on their static and linear behavior. As PUF responses are directly derived from the 

challenge inputs of PUF, CRPs are highly correlated. The correlation of response R with challenge 

bit C should deviate as a countermeasure for the modeling attack. In the past, several researchers 

attempted to introduce dynamicity into the PUF function. One such software based Dynamic PUF 

(DPUF) incorporated dynamicity, which was proposed by Xiong et al. in the year 2019. This software 

utilized the timing of the query and the physical properties of the PUF to generate dynamic response 

bits [32], [33]. However, this research did not truly involve adding dynamicity at the hardware level. In 

2022, Wang et al. proposed a hardware-based dynamically configurable hybrid (DCH) PUF 

architecture using LFSR. However, the introduced PUF was not resource-constrained and utilized 

more hardware resource than the underlying basic PUF [34]. The ultimate goal of adding complexity 

and dynamicity to PUFs with limited resources remains a challenge. In the following section, we 

introduce the concept of a dynamic architecture with limited resources by incorporating the idea of 

reliable noise. 

Proposed Arbiter Skip Dynamic APUF 

For non-linearity in PUF responses, PUF architecture such as Feed Forward and XOR PUF 

was proposed at the cost of area and resource. We suggest a novel PUF architecture titled the 64-bit 

Arbiter-Skip Dynamic PUF (DPUF). We will refer to this architecture as DPUF in the rest of the article. 

This PUF proposes adding reliable and unpredictable noise to the PUF response, as shown in Figure 

14. 
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Figure 12. Concept of Proposed Dynamic PUF. 

To introduce noise in Arbiter PUF, we have added chain of APUF with fewer multiplexer units, 

which runs in parallel with the main chain of multiplexers. The noise added due to other chain biases 

in some of the responses makes it difficult for the modeling attacks to predict the exact correlation 

between challenge and response bits. 

The challenge bits for the parallel skip arbiter are chosen from the original challenge bits. The 

intermediate response generated from the arbiter-skip PUF is passed to a 1:2 demultiplexer unit 

(Demux). Depending on the select input of the Demux, the intermediate response is sent to the main 

flip-flop. The ’select’ input for the Demux is randomly generated from the main chain of 64 MUX using 

a flip-flop that works as an arbiter. Both the Demux output and the final MUX output are XORed 

together. The result is biased when the intermediate response is 1, but when it is 0, the PUF functions 

like a normal arbiter PUF. When the intermediate response bit 1 is generated from the Arbiter skip 

chain, as shown in Figure 15, the result will be biased depending on the select input of Demux. 

Assuming the randomness of PUF to generate 50% 1’s and 0’s for both intermediate and main arbiter 

PUF, then approximately 10% of the final response will be biased, making a complex biased pattern 

for any modeling attack. The DPUF has less prediction accuracy and is immune to modeling attacks 

than other complex PUFs like XOR PUF variants and Interpose PUF. 
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Figure 13. Arbiter Skip DPUF Architecture. 

Implementation 

To evaluate the metrics, the DPUF and APUF is implemented on FPGA. We have opted for 

FPGA due to its easy reconfiguration compared to the fabrication of ICs, making it cost-effective. The 

implementation steps of the PUF function on FPGA are as shown in Figure 16. The first step involves 

RTL designing of PUF function using HDL and design synthesis of PUF. After running the design 

synthesis, the PUF structure is ready to program on FPGA. Due to the non-identical path, delay can 

vary due to wire length differences. To avoid this and ensure the performance of PUF on FPGA, the 

third step requires floorplanning of design on the FPGA board. After careful floorplanning, 

implementation is done in next step, and FPGA is programmed using bitstream files. After 

programming the FPGA, the functionality of PUF must be checked. After a successful functionality 

check of PUF design, the CRPs are exported for performance evaluation or database generation. 
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Figure 14. Steps of PUF implementation. 

Experimental Setup 

The APUF and Arbiter Skip DPUF Architecture were implemented on Xilinx Artix-7 100T board 

using the Xilinx Vivado tool, and all challenges were captured at room temperature. For performance 

metrics and training ML models, thousands of CRPs are required. A control unit shown in Figure 17 is 

designed to generate random challenge bits automatically using Linear Feedback Shift Register 
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(LFSR) and pass them to APUF. The control unit has three main modules, namely LFSR, PUF, and 

RAM, which generate a random response bit based on their delay characteristics. Floorplanning is 

done using the Xilinx Vivado tool to ensure accurate response pairs for the Arbiter PUF. The Vivado 

tools automatically redesign the synthesis according to behavioral logic. But the PUF functionality 

cannot be distinguished by behavioral logic as, ideally, the circuit output should remain constant for 

the identical path. The auto-synthesis tool of Vivado needs to be ensured that it does not change the 

path design of PUF according to behavioral logic. The ILA tool made debugging the APUF, real-time 

designing, and recording CRPs easier. For evaluating the resiliency of modeling attacks against PUF, 

around 1 million CRPs were recorded. The RAM block is used to provide identical challenge bits 

multiple times to assess the performance of the PUF. Xilinx’s Integrated Logic Analyzer (ILA) tool 

captures around 131K randomly generated responses from PUF and LFSR-generated challenge bits 

in one round. To record accurate CRPs, ILA must be triggered, and the capture setup must be 

optimized to record CRPs only when new challenge bits are updated. The waveform for CRPs 

recorded using ILA is depicted in Figure 18. 

 

Figure 17. Control unit for generating PUF CRPs. 
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Figure 18. ILA waveform for RPs in Vivado 

FPGA Implementation Strategy 

The PUF function exhibits non-reliable behavior when implemented on an FPGA. Proper 

floorplanning must be considered to ensure a reliable PUF implementation on FPGA. Especially in the 

case of delay based PUF, both multiplexer paths must share identical routing. If both paths are not 

similar, the connecting wire influences the delay. The floorplanning of APUF with two exact routes on 

the Artix-7 100T board is shown in Figure 19.  

Still, as FPGA lacks wire routing configuration, it becomes quite complex to implement an 

identical path on FPGA. We tried to lower the path difference by using floor planning and reducing the 

wiring delay difference. The APUF and its variants can generate a higher number of CRPs due to the 

switching of cross-coupled and parallel paths due to the select line of the multiplexer. The 

implementation of this multiplexer is depicted in Figure 20 more precisely. As discussed earlier, most 

of the design tools, including Vivado, auto-optimize Hardware Descriptive Language Code (HDL) 

according to the behavior of the design. As PUF exhibits manufacturing variation, the behavior model 

cannot simulate its behavior. To avoid auto-optimization by Vivado DONT_TOUCH attribute of the 

Vivado tool is used. This attribute allows all the logic from the HDL code without optimization. 
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Figure 19. Floorplanning of APUF on Artix-7 FPGA. 

 

 

Figure 20. Implementation of Multiplexer Switch on Artix-7 FPGA. 

Attack Model 

The resiliency of the proposed dynamic PUF was analyzed for Logistic Regression and MLP-

based modeling attacks. Instead of developing the attack model from scratch, we have used the 

attack model developed earlier on pypuf library [35]. The pypuf is a Python library developed by 

researchers to enhance the research work in PUF, especially in modeling attacks. This library also 

offers the CRPs dataset for iPUF, XOR PUF variants, and APUF. We have used the iPUF and XOR 

PUF variants dataset, while the CRPs for APUF and proposed PUF design were recorded from the 
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implemented design on FPGA. The attack model by pypuf library is used. The modeling attack using 

logistic regression developed by Tobisch and Becker while using MLP developed by Wisiol et al. [4], 

[7]. The attack model in pypuf [35] requires preprocessing the CRPs dataset for the model in bipolar 

format -1,1 instead of 0,1 for better accuracy. So, we have processed our recorded CRPs and 

converted into desired format for the model published in pypuf. 

Results 

As previously discussed, researchers have proposed complex PUF architectures to increase 

their resistance against modeling attacks. However, this approach often results in higher resource 

utilization, which can be expensive. For instance, an n-XOR PUF variant necessitates n additional 

chains of multiplexers, which can consume substantial resources. To tackle this problem, researchers 

have investigated different techniques to decrease resource utilization while ensuring security. We 

propose a dynamic architecture by adding reliable noise to the previously proposed APUF 

architecture. The DPUF results in deviation of generated response, which creates significant 

resistance against modeling attack. The experiment involved modeling attacks using the pypuf library 

on n-XOR PUF, APUF, and proposed DPUF, with the one-bit response and 64-bit challenge bits.  

The findings revealed that an MLP based attack outperformed an LR attack in predicting 

response bits. The MLP attack was compared on 10k, 100k, and 1 million CRPs of 4-XOR, 5-XOR, 

and 6-XOR with DPUF, as depicted in Figure 21. The graph shows that the prediction accuracy for all 

PUF designs, except 6-XOR PUF, was around 60% for 10k challenges, with 6-XOR PUF having a 

prediction accuracy of around 50%. When trained on 100k CRPs, the model predicted the 4 & 5-XOR 

variants with over 95% accuracy, DPUF at around 78%, while 6-XOR remained close to 55%. 

However, when the MLP model trained with 1 million CRPs, it successfully predicted the response of 

all mentioned XOR variants with over 95% accuracy. Nonetheless, DPUF’s accuracy remained close 

to 80%, even with one million CRPs. This demonstrates that DPUF poses a more significant 

challenge to MLP-based algorithms, making it more difficult to predict response bits than XOR PUFs. 
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Figure 21. Prediction Accuracy of XOR and proposed PUF using MLP attack 

In addition to the MLP-based attack, we assessed the resiliency of DPUF against LR attacks, 

considered one of the most successful attacks on PUF functions. The results of the LR-based 

modeling attack on DPUF and APUF are shown in Table 2. Furthermore, we compared the results of 

the MLP and LR-based attacks with those of the Arbiter PUF design for 10k, 100k, 500k, and 1 million 

CRPs. We observed that the maximum accuracy for the LR attack on DPUF was 77.97% for 1 million 

CRPs, whereas that of APUF was over 98%. In Figure 22, we compare the proposed PUF’s 

resilience with n-XOR PUF against the LR attack. The results reveal that DPUF outperforms 4-XOR 

PUF in terms of resistance to LR attack. However, 5 and 6 XOR PUFs exhibited greater immunity 

towards LR attack compared to the proposed dynamic PUF. The analysis revealed that DPUF 

outperforms APUF in terms of resiliency against both types of modeling attacks, as demonstrated by 

the comparison results. 
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Table 2. Prediction Accuracy of proposed DPUF with APUF on Test Data for MLP and LR attack 

 MLP LR 

CRPs APUF DPUF APUF DPUF 

10k 72.90% 64.00% 88.00% 51.00% 

100k 88.40% 79.99% 94.61% 75.20% 

500K 98.28% 81.09% 95.22% 75.02% 

1M 98.99% 81.11% 98.36% 77.97% 

 

 

Figure 22. Prediction Accuracy of XOR and proposed PUF using LR attack 

In addition to the attacks, we evaluated the desired performance metrics of the proposed 

DPUF, including randomness, reliability, and uniqueness. Our analysis revealed that the dynamic 

structure of DPUF is highly reliable, with a reliability of 98%. Moreover, the distribution of 1s and 0s in 

the response bit is almost uniform, indicating a randomness of 46.81%, as shown in Table 3. We 

found that the proposed DPUF has a relatively low uniqueness property, as the uniqueness was 

measured at 7.03%. However, it is worth noting that our analysis was based on a comparison of the 

PUF’s response on only two Artix-7 boards. Evaluating a PUF’s reliability and uniqueness requires 

significant resources. For instance, to measure the reliability at various temperatures, a temperature 

control unit is necessary. Similarly, assessing the uniqueness property of DPUF would necessitate 
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testing the PUF on multiple devices rather than just Artix-7 FPGA devices. The PUF was evaluated 

for all these three metrics on 5000 CRPs. LFSR cannot be used to assess PUF for these metrics as it 

requires the same challenge bits to compare the generated response bits. We used FPGA ram to 

provide the same challenge bits for the same PUF to different chips or for other environmental 

conditions to the same chip. The uniqueness for DPUF was recorded at 7.03%, while the ideal value 

for uniqueness is 50%. Research by Hori et al. indicates that Artix-7 Boards possess low uniqueness 

properties for delay-based PUF. The Uniqueness of 9.42 % was recorded by Gu, Hanley, and O’Neill 

for conventional APUF [36], [37]. Several researchers have reported that the uniqueness property in 

FPGA yields poor results [21], [38]. The primary reason for this limitation in the uniqueness property 

of FPGA might be due to the lack of routing inside the slices of FPGA. As the delay difference caused 

by routing is much greater than that of multiplexers manufacturing variations the, it is challenging to 

implement ideal PUF on FPGA. Also, it should be noted that we have calculated the uniqueness, 

reliability, and uniformity of the proposed PUF for one-bit response between two devices. To evaluate 

these PUF metrics more accurately, the metrics must be evaluated for multiple-bit response between 

more than two devices. 

Table 3. Quality Metrics of Dynamic PUF 

Metrics DPUF 

Randomness/Uniformity 46.81 % 

Reliability 98% 

Uniqueness 7.03% 

 

The PUF is proposed as the technique with low resource and area utilization for cryptography 

in IoT or FPGA devices. But to increase the resiliency against modeling attacks many complex 

architectures were proposed that utilize higher resources comparatively to APUF. We have 

implemented some complex PUF architecture such as XOR PUF and iPUF on Artix-7 FPGA board 

along-with DPUF to compare the resource utilization. The resource utilization with number of Look Up 
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Table (LUTs) utilized by different PUFs on FPGA is recorded in Table 4. The arbiter skip DPUF is 

compared with previously proposed complex PUF architectures in terms or resource utilization in 

Figure 23 in reference to APUF. The DPUF utilizes around 27% more resources compared to the 

APUF, while n-XOR PUF variants utilize over 100% to 300% more resources. As iPUF is derived 

from XOR PUF, it utilizes comparatively higher resources than all the proposed PUF architecture. As 

depicted in Figure 23, the (3,3)-iPUF utilizes over 510% resource than the basic APUF. 

Table 2. Resource utilization of Dynamic PUF, XOR PUF and IPUF on FPGA 

 LUTs SLICE SLICE REG 

DPUF 162 55 3 

APUF 127 49 1 

2 XOR 257 69 2 

3 XOR 385 114 3 

4 XOR 513 136 4 

(2,2) IPUF 518 141 4 

(2,3) IPUF 648 175 5 

(3,3) IPUF 776 205 6 

 

 

Figure 23. Comparison of Resource Utilization increase with APUF  
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

Conclusion 

The PUF architecture was proposed as a low-cost alternative to traditional cryptography 

methods such as AES to address issues like SCA, cloning, and other attacks on IoT devices. 

However, the high correlation between CRP generated by PUF led to the proposal of a modeling 

attack using machine learning, which compromises the security of IoT devices. Despite being 

designed to thwart machine learning algorithms, complex architectures such as iPUF and XOR PUF 

have the drawbacks of higher resource usage and susceptibility to modeling attacks, despite their 

complexity. This study has discussed previously proposed modeling attacks on PUF designs with 

higher accuracy. We implemented a 2-D CNN model to evaluate its effectiveness in predicting 

response bits, but MLP and LR attacks proved to be more efficient than they were, requiring additional 

training time. 

Moreover, we have discussed the PUF and its resiliency against modeling attacks. Among the 

demonstrated attacks, the MLP attack outperformed LR based modeling attack in terms of training 

time and prediction accuracy for all PUF designs. We have introduced the novel concept of adding 

reliable noise in delay-based Arbiter PUF for resistance against modeling attacks with low resource 

utilization. The accuracy of predicting one-bit response using MLP or LR attacks was around 96% on 

the previously proposed complex PUF architectures. However, the accuracy results of DPUF show 

that attack accuracy has decreased to 81.1% for MLP attacks and 77.97% for LR attacks on DPUF. 

The proposed Arbiter-skip PUF increased the complexity of PUF with extremely low resource 

utilization compared to the earlier proposed complex PUF architectures. The resource utilization is 

reduced by 87% compared to (3,3)-iPUF. 

Overall, the proposed dynamic PUF showed better results for vulnerability against modeling 

attacks with extremely low resource utilization. This method enables the implementation of the PUF 
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architecture on small IoT devices where IC size is a significant constraint while also addressing 

security concerns. 

Discussion 

However, the proposed architecture needs to be further evaluated for basic quality metrics of 

PUF for multiple devices under different temperature conditions. In particular, the uniqueness 

property needs to be assessed for other FPGA devices and ASIC fabrication. Furthermore, adding 

reliable noise can be tried by adding different PUF architectures instead of using basic APUF to 

increase complexity and reduce resource utilization. Further research on this architecture and 

implementation on multiple FPGA and IC fabrications will provide a clear understanding of resiliency 

towards modeling attack and quality metrics of PUF. We strongly believe that our study opens further 

research in dynamic PUF. 

The third promising concept would be that this PUF architecture can be used as a building 

block of previously proposed complex architecture such as XOR and iPUF as shown in Figure 24 and 

25. Currently, the iPUF uses the XOR PUF, which requires multiple chains of APUFs, increasing 

resource utilization. This idea must be evaluated for ML resiliency and PUF basic quality metrics. 

These promising findings suggest that the proposed dynamic PUF could be a viable solution for 

enhancing the security of resource-constrained device. 

 

Figure 24. n-XOR PUF using DPUF 
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Figure 25. iPUF using DPUF 
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