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Abstract. Few-shot semantic segmentation (FSS) offers immense po-
tential in the field of medical image analysis, enabling accurate object
segmentation with limited training data. However, existing FSS tech-
niques heavily rely on annotated semantic classes, rendering them un-
suitable for medical images due to the scarcity of annotations. To address
this challenge, multiple contributions are proposed: First, inspired by
spectral decomposition methods, the problem of image decomposition is
reframed as a graph partitioning task. The eigenvectors of the Laplacian
matrix, derived from the feature affinity matrix of self-supervised net-
works, are analyzed to estimate the distribution of the objects of interest
from the support images. Secondly, we propose a novel self-supervised
FSS framework that does not rely on any annotation. Instead, it adap-
tively estimates the query mask by leveraging the eigenvectors obtained
from the support images. This approach eliminates the need for man-
ual annotation, making it particularly suitable for medical images with
limited annotated data. Thirdly, to further enhance the decoding of the
query image based on the information provided by the support image, we
introduce a multi-scale large kernel attention module. By selectively em-
phasizing relevant features and details, this module improves the segmen-
tation process and contributes to better object delineation. Evaluations
on both natural and medical image datasets demonstrate the efficiency
and effectiveness of our method. Moreover, the proposed approach is
characterized by its generality and model-agnostic nature, allowing for
seamless integration with various deep architectures. The code is publicly
available at GitHub.
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1 Introduction

Computer vision tasks such as localization and segmentation, which require a
detailed understanding of image structure, can achieve good results when ap-
proached with fully-supervised deep learning methods. Although the success of
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supervised deep learning methods depends heavily on the availability of a large
amount of well-annotated data [5,3], collecting and annotating such data is costly
and challenging, as it requires to be performed manually by a domain expert.
The other equally problematic challenge with fully-supervised models is their
inflexibility when confronted with new classes of segmentation targets (e.g., dif-
ferent and novel lesion types) [21,12]. This is a significant challenge, as training a
new model for every new segmentation class is impractical and time-consuming.
To address the aforementioned problems, few-shot semantic segmentation (FSS)
has been proposed. The core concept of FSS is a potent approach that effec-
tively minimizes the requirement for extensive annotation, enabling precise pre-
dictions of unobserved classes using only a limited number of guiding examples.
By capitalizing on FSS, a model can create a discriminative representation of a
previously unknown class using a small set of labeled examples (support). This
acquired representation can then be employed to accurately predict the outcomes
for unlabeled examples (query), without the need for any model retraining. This
approach significantly alleviates the annotation burden and empowers the model
to swiftly generalize and adapt to new unseen classes (e.g., new lesions)

Several approaches have been proposed to tackle the FSS problem. One ap-
proach involves the use of a mask average pooling strategy, which effectively
removes irrelevant features based on information from the support masks [32].
Another improvement proposed by Wang et al. [29] is the introduction of a novel
prototype alignment regularization between support and query images, resulting
in better generability for new classes. Additionally, in other recent works [31],
researchers have utilized deep attention mechanisms to learn attention weights
between support and query images, enabling improved label propagation. In spite
of the promising outcomes observed in applying few-shot learning paradigms to
the segmentation of natural images [33], their utilization in medical image seg-
mentation remains limited. This limitation is due to the scarcity of annotated
classes, which hinders the network’s ability to generalize and to prevent over-
fitting [30]. The concept of few-shot segmentation on medical images was ini-
tially introduced by [19]. The authors proposed the use of adversarial learning
to segment brain images, leveraging only one or two labeled brain images, draw-
ing inspiration from successful semi-supervised approaches [25]. Feyjie et al. [8]
introduced a novel approach that incorporates a semi-supervised mechanism
within the conventional few-shot learning framework. This approach leverages
the availability of abundant unlabeled datasets to predict skin lesion masks for
previously unseen samples. In recent work, to further benefit from unlabelled
data, Ouyang et al. [21] proposed a self-supervised few-shot semantic segmen-
tation (FSS) framework called SSL-ALPNet to segment medical images by uti-
lizing superpixel-based pseudo-labels as supervision signals. This method also
improved the segmentation accuracy using an adaptive local prototype pooling
module. Xiao et al. [30] proposed a Siamese few-shot network for medical image
segmentation and they used a grid attention module to enhance semantic infor-
mation localization. Ding et al. [6] designed a self-supervised few-shot network to
segment medical images. They introduced a Cycle-Resemblance Attention mod-
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ule to effectively capture the pixel-wise relations between query and support
medical images.

Despite the incorporation of semi-supervised and self-supervised techniques
within these strategies to optimize the training procedure of the model, the
presence of annotated data remains indispensable during the inference stage for
accurate query mask prediction. To mitigate this requirement, we undertake
an exploration of the role played by self-supervised techniques in facilitating
the acquisition of object representation within a conventional few-shot context.
Specifically, we draw inspiration from the accomplishments of few-shot segmen-
tation methods in natural images, which rely on the episodic training paradigm.
In our approach (depicted in Figure 1), ❶ we aim to eliminate the need for
extensive annotation by leveraging the eigenvectors of the Laplacian matrix de-
rived from the feature affinity matrix of self-supervised networks. This allows us
to effectively capture the global representation of the object of interest in the
Support image. By integrating this concept into the standard few-shot segmen-
tation framework, ❷ we propose an end-to-end network that leverages support
guidance to predict the query mask. In order to enhance the decoding process
of the query image by leveraging the information from the support image, ❸
we propose to incorporate large kernel attention along with multi-scale atten-
tion gate modules. These modules effectively highlight pertinent features and
intricate details, resulting in an enhanced segmentation process.
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Fig. 1: The overview of our annotation-free FSS model.

2 Proposed Method

2.1 Problem Formulation

In the context of standard FSS, our approach involves three main datasets: a
training set denoted as Dtrain = {(Xt

i , Y
t
i )}

Ntrain
i=1 , a support set denoted as

Dsupport = {(Xs
i , Y

s
i )}

Nsupport

i=1 , and a test set denoted as Dtest = {(Xq
i )}

Ntest
i=1 .
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Here, Xi and Yi represent the input image and corresponding binary mask,
respectively. Each dataset contains a total of N images, specified by Ntrain,
Nsupport, and Ntest, involving C distinct classes. Notably, the classes are shared
between the support and test sets but are disjoint with the training set, denoted
as {Ctrain} ∩ {Csupport} = ∅.

The objective of few-shot learning is to train a neural network f(θ,γ)(·) on
the training set, enabling it to accurately segment a new class c /∈ Ctrain in the
test set based on k reference samples from Dsupport. Here, θ and γ represent
the learnable parameters of the encoder and decoder respectively. To repro-
duce this procedure, training on the base dataset Dtrain follows the episodic
learning paradigm introduced in [27], where each episode entails a c-way k-
shot learning task. Specifically, each episode is created by sampling two compo-
nents. Firstly, we construct a support training set for each class c, denoted as
DS

train = {(Xt
s, Y

t
s (c))}ks=1 ⊂ Dtrain, where Y t

s (c) represents the binary mask
corresponding to the support image Xt

s for class c. Secondly, we create a query
set DQ

train = {(Xt
q, Y

t
q (c))} ⊂ Dtrain, where Xt

q is the query image and Y t
q (c) is

the corresponding binary mask for class c. In order to estimate the segmen-
tation mask of a given class c in the query image, the model leverages the
support training set and the query image. This process can be expressed as
Ŷ t
q (c) = f(θ,γ)(D

S
train, X

t
q).

More specifically, in our approach we utilize an encoder module to encode
the support and query images, resulting in feature representations denoted as
fs ∈ RW×H×M and fq ∈ RW×H×M , respectively. Here, W , H, and M represent
the width, height, and feature dimensionality in the feature space, respectively.
In the subsequent step, we employ a hierarchical approach to acquire the class
prototypes, employing a self-supervision strategy in contrast to the prevailing
literature [2,10], which utilizes the support mask Ys to filter out the support
prototype. We will provide a full explanation of our hierarchical prototype esti-
mation process in the next sections.

2.2 Hierarchical Prototypes

In the realm of few-shot learning, the support prototype assumes a pivotal role
as a representative reference for a specific class, greatly influencing the model’s
ability to generalize and accurately predict unseen instances. By encapsulating
the fundamental characteristics of a class, the support prototype empowers the
model with the capacity to make informed predictions. Our study introduces a
novel approach for generating a hierarchical support prototype using spectral
decomposition, eliminating the need for a support mask.

Initially, we extract the support representation denoted as fs ∈ RW×H×M by
leveraging an encoder module f(θ)(·). This support representation is derived from
different parts of the encoder module, including combinations of various layers
such as hyper-columns [10]. Our experimental findings, consistent with previous
research [2], reveal that incorporating features from both shallow and deep layers
of the encoder network produces favorable results. This approach captures multi-
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Fig. 2: The overview of the proposedCLKA andMS-AGmodules. In each block
of the decoder network, we include both CLKA and MS-AG for conditioning the
query representation based on the support prototype.

level and multi-scale representations while preserving global contextual object
features.

Subsequently, we construct an affinity matrix based on pixel correlations.
By setting the affinity threshold to zero, our focus lies on aggregating similar
features rather than anti-correlated ones. The resulting feature affinities, denoted
asWs ∈ RHW×HW , encompass semantic information at both coarse and low-level
resolutions. Utilizing Ws, we compute the eigenvectors of its Laplacian matrix
L = D−1/2(D−W )D−1/2 to decompose an image into soft segments, represented
as y0, · · · , yn−1 = eigs(L). Among these eigenvectors, we pay particular attention
to the remaining ones y>0 since the first eigenvector y0 is constant, corresponding
to an eigenvalue λ0 = 0.

To identify the support object, akin to prior studies [16], we examine the
Fiedler eigenvector y1 of L and discretize it by considering its sign, resulting
in binary image segmentation. By creating a bounding box around the smaller
region, which is more likely to represent the foreground object rather than the
background, we establish an alternative to the support mask. This bounding
box serves the purpose of hierarchically filtering the support representation to
generate support prototype f ′

s.

2.3 Decoder

In our network architecture, we incorporate a decoder module consisting of four
blocks. Each block follows a specific sequence of operations. Firstly, we employ
the cross-LKA (CLKA) module to effectively integrate the query representation
with the support prototype. This module aids in capturing meaningful relation-
ships between the query and prototype, enhancing the overall feature fusion
process. Subsequently, we utilize the multi-scale attention gate mechanism to
combine the output of the CLKA module with the up-sampled features ob-
tained from the previous decoder layer. The multi-scale attention gate (MS-AG)
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facilitates the selective integration of relevant spatial information from differ-
ent scales, promoting the refinement of the feature representation. In the next
subsections, we will elaborate on cross-LKA and MS-AG in more detail.

Large Kernel Attention (LKA) The attention mechanism, also known as
an adaptive selection process, has the ability to identify discriminative features
while disregarding noisy responses with respect to the input features. Generating
an attention map that signifies the importance of various parts is one of the key
roles of the attention mechanism. There are two well-known attention mecha-
nisms and each one has its own pros and cons. The first one is the self-attention
mechanism [7] which has the potential to discover long-range dependencies how-
ever it has some drawbacks (e.g., ignoring channel adaptability, high quadratic
complexity for high-resolution images, neglecting the 2D structure of images).
The second one is large kernel convolution [22] which can establish relevance
and produce an attention map. Nevertheless, employing large-kernel convolu-
tions introduces substantial computational overhead and increases the number
of parameters. To address the mentioned limitations and leverage the advantages
of both self-attention and large kernel convolutions, the large kernel attention
(LKA) approach is proposed in [9], which decomposes a large kernel convolution
operation to capture long-range relationships. In our study, we extend the idea
of the LKA for distilling discriminative representation derived from the support
prototype into a query representation to condition the prediction of the query
mask based on support distribution. To this end, we first fuse the support pro-
totype f ′

S and the query representation fq with learnable parameters (modeled
as 3D convolution) followed by a non-linear activation function. This operation
enables the network to encode the prior knowledge obtained from the support
representation into query features for estimating the object of interest’s rep-
resentation and eliminating the background noise. Next, to capture long-range
dependency in an efficient way, we follow the LKA approach. Regarding C as
the number of channels, then a C × C convolution can be decomposed into a
[ cd ]× [ cd ] depth-wise dilation convolution (a spatial long-range convolution) with
dilation d, a (2d − 1) × (2d − 1) depth-wise convolution (a spatial local convo-
lution) and a 1 × 1 convolution (a channel convolution). Therefore, long-range
relationships can be extracted within a feature space and the attention map
is generated with a few computational complexity and parameters. The large
kernel attention (LKA) module is written as

Attention = Conv1×1(DW −D−Conv(DW−Conv(F(f ′s, fq)))) (1)

Output = Attention ⊗ F(f ′s, fq) (2)

where F (f ′
s, fq) ∈ RC×H×W and Attention ∈ RC×H×W denote the 3D convo-

lutional operation for support and query aggregation and the attention map,
respectively. Also, ⊗ indicates the element-wise product and the value of the
attention map represents the importance of each feature. Unlike conventional
attention methods, the LKA approach does not use an additional normalization
function such as sigmoid or SoftMax. The overall process is depicted in Figure 2
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Multi-scale Attention Gate (MS-AG) The main purpose of AGs is to mit-
igate irrelevant features in background regions by employing a grid-attention
technique that considers the spatial information of the image [20]. To achieve
this objective, we initiate the fusion process by combining the feature representa-
tion obtained from the decoder block xl−1

d with the output of the CLKA module
xl
e. This fusion is accomplished using a 1×1 convolution operation, which com-

bines the two sets of information into a unified representation. Next, to model
multi-scale representation we employ Atrous convolution in our attention gate
module. Atrous convolution, also referred to as dilated convolution, is a technique
that expands the kernel size of a filter without increasing the parameter count or
computational load. By introducing r−1 zeros between consecutive filter values,
the kernel size of a k×k filter is effectively enlarged to kAtrous = k+(k−1)(r−1).
Using this multi-scale attention mechanism allows the model to more precisely
determine the importance of each region and effectively manage their impact on
the final outcome. The multi-scale attention gate MS−AG(·) can be formulate
as follows:

qatt(xe, xd) = Cat(σ1 (BN (Ce(xe) +BN (Cd(xd))))) (3)

MS−AG(xe, xd) = xd ∗ σ2 (BN (C (qatt(xe, xd)))) (4)

where σ1(·) refers to ReLU, and σ2(·) corresponds to the Sigmoid activation func-
tion. Ce(·), Cd(·), and C(·) indicate the channel-wise 1×1 convolution operation.
BN(·) denotes the batch normalization operation and Cat(·) shows the Atrous
convolution operation. xd and xe represent the up-sampled and skip connection
features, respectively. Figure 2 illustrates the overall process.

3 Experiments

3.1 Dataset

In this study, the FSS-1000 dataset is utilized to assess the effectiveness of our
method in analyzing natural images. Additionally, to examine the network’s abil-
ity to generalize to medical images, we evaluate its performance on the publicly
accessible (PH2) dataset, specifically designed for skin lesion segmentation.
FSS-1000: The FSS-1000 class dataset [14] is a significantly large-scale dataset
specifically tailored for few-shot segmentation tasks. It encompasses a total of
1000 classes, with each class consisting of 10 images accompanied by their cor-
responding pixel-level ground truth annotations. The official training split, com-
prising 760 classes, is utilized as the primary dataset for training purposes. On
the other hand, the testing set, comprising 240 classes, is used for inference.
PH2 dataset: The PH2 dataset [17] consists of 200 RGB dermoscopic im-
ages of melanocytic lesions including 80 common nevi, 80 atypical nevi, and 40
melanomas. The dataset was provided at the Dermatology Service of Hospital
Pedro Hispano in Matosinhos, Portugal. The resolution of images is 768x560
pixels, but in our work we resized them to 224×224 pixels. In our experimental
setup, we follow the same setting suggested in [8] to evaluate our method.
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3.2 Implementation Details

In our implementation, ResNet50 backbone network with ImageNet pre-trained
weights is used. Feature extraction is performed by extracting features from the
last convolutional layer at each encoder block of the backbone network. This
feature extraction approach yields four pyramidal layers (P = 4). To ensure
consistency, we set the spatial sizes of both support and query images to 400×400
pixels, resulting in H,W = 400. Consequently, we obtain the following spatial
sizes for each pyramidal layer: H1,W1 = 100, H2,W2 = 50, H3,W3 = 25, and
H4,W4 = 13. As a result, our decoder component consists of four blocks, where
each block involves fusing the support prototype with the query representation,
as illustrated in Figure 1. The entire network is implemented using the PyTorch
framework and optimized using the Adam optimizer, with a learning rate of
1e−3. To prevent the pre-trained backbone networks from learning class-specific
representations from the training data, we freeze the encoder weight.

3.3 Evaluation Metrics

For FSS-1000 benchmark, we adopt the mean intersection over union (mIoU) as
our evaluation metric. To assess the performance of our network on the skin
dataset, we compare our method against the unsupervised k -means cluster-
ing method, as well as SOTA self-supervised methods such as DeepCluster [4],
IIC [11], and spatial guided self-supervised strategy (SGSCN) [1]. Our evalua-
tion methodology follows the guidelines outlined in [1]. To evaluate the efficacy of
our network, we employ three evaluation metrics: the Dice similarity coefficient
(DSC), the Hammoud distance (HM), and the XOR metric.

3.4 Results

FSS-1000: We commence our evaluation of the proposed model on the FSS-
1000 dataset, considering two distinct settings. In the first setting, the inference
process incorporates the support mask to guide the network. We compare our re-
sults with recent few-shot methods, including DoG [2], PFENet [26], HSNet [18]
and etc. The results for 1-shot and 5-shot scenarios are summarized in Table 1b.
Remarkably, our models, set new benchmarks in terms of performance while
maintaining a minimal number of learnable parameters. With including the sup-
port annotation on the inference time, our 1-shot and 5-shot results exhibit
substantial improvements of 15.3% and 14.9% in mIoU, respectively, compared
to the baseline OSLSM method. Furthermore, compared to the recent SOTA
approaches, HSNet [18] and DAN [28], our strategy achieves promising results.

In the second setting, we conduct additional experiments without including
support annotation. As outlined in our proposed method, we estimate the sup-
port distribution through spectral decomposition. Notably, our model performs
exceptionally well even without annotation, as evident from Table 1a. In the
1-shot scenario, our model achieves a notable mIoU improvement of 19.7% over
the FSS-baseline method. In addition using the same setting, our method is
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abale to obtain superior performance than HSNet [18]. Some challenging cases
are visualized in Figure 3.
PH2: We present a comparative results in Table 1b. The comparative results
highlight the superiority of our approaches over SOTA methods across all evalu-
ation metrics, affirming the effectiveness of our self-supervised few-shot learning
strategy. Notably, by employing the episodic training paradigm, a noticeable en-
hancement of approximately 19.1% is observed compared to the few-shot baseline
model suggested in [8]. In contrast to the semi-supervised strategy [8] that inte-
grates additional samples through the utilization of unsupervised methodologies,
the proposed models demonstrate a superior level of performance by employing
a self-supervised strategy. Moreover, our strategy differentiates itself from the
self-supervised approach [1,13] that generates a supervisory signal solely based
on image content. Instead, we leverage a support sample to incorporate prior
knowledge, effectively guiding the network and elevating its performance. From
a qualitative standpoint, we provide a visual comparison in Figure 3.
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Fig. 3: Sample of prediction results of the proposed method on the FSS-1000 and
PH2 datasets, employing a one-shot setting.

3.5 Ablation Study

The proposed architecture incorporates two key modules: the CLKA, and the
MS-AG module in the decoding path. These modules are designed to facilitate
the feature representation and adaptively fuse support information into the query
representation. In order to assess the impact and contribution of each module on
the generalization performance, we conducted experiments where we selectively
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removed individual modules, as outlined in Table 1c. The experimental results
highlight the significance of each module in the overall architecture. Specifically,
removing any of the modules from the network leads to a noticeable decrease
in performance. Notably, when the CLKA module is removed, the impact of
support prior knowledege diminishes, resulting in a clear drop in performance.
Similarly, replacing the MS-AG with simple concatenation results in a perfor-
mance drop. However, by including the MS-AG module, our model tends to
reduce the number of wrong predictions and isolated false positives.

Table 1: (a) Comparison of IoU on the FSS-1000 dataset. (b) Comparative per-
formance of the proposed method against the SOTA approaches on the PH2

dataset. (c) Contribution of each module on the model performance.

(a) Results on FSS-1000 Dataset

Setting Methods
mIoU

1-shot 5-shot

With Annotation
OSLSM [24] 70.2 73.0
co-FCN [23] 71.9 74.2
FSS-1000 [14] 73.4 80.1
DoG [2] 80.8 83.3
PFENet [26] 80.8 81.4
MemoryFSS [15] 83.0 85.7
DAN [28] 85.2 87.1
HSNet [18] 85.5 87.8

Proposed Method 85.7 87.9

Without Annotation
FSS baseline [8] 65.3 67.9
HSNet [18] 84.3 86.1

Proposed Method 85.0 86.8

(b) Results on PH2 dataset

Methods
PH2

DSC ↑ HM ↓ XOR ↓
FSS-baseline 68.13 - -

Semi-supervised FSS [8] 74.77 - -
k -means 71.3 130.8 41.3

DeepCluster [4] 79.6 35.8 31.3
IIC [11] 81.2 35.3 29.8

SGSCN[1] 83.4 32.3 28.2
MSS-Former[1] 86.0 23.1 25.9

Our Method 87.3 21.2 23.5

(c) Modules effect

CLKA MS-AG mIoU (FSS-1000)

✗ ✗ 83.8
✓ ✗ 84.1
✗ ✓ 84.0
✓ ✓ 85.0

4 Conclusion

Our study presents a novel approach for addressing few-shot semantic segmenta-
tion on medical images in the absence of annotated data. We reframe the prob-
lem as a graph partitioning task and leverage the eigenvectors of the Laplacian
matrix derived from self-supervised networks to effectively model the Support
representation and capture the underlying distribution. Within the standard FSS
framework, we predict the query mask by utilizing the learned support distri-
bution. Furthermore, we introduce the hierarchical LKA module to enrich the
feature representation and improve the decoding process.

Acknowledgment This work was funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG)– project number 455548460.
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