
The Microservice Dependency Matrix

Amr S. Abdelfattah1[0000−0001−7702−0059] and Tomas
Cerny2[0000−0002−5882−5502]

1 Computer Science, Baylor University, One Bear Place 97141 Waco, TX, USA
amr elsayed1@baylor.edu

2 Systems and Industrial Engineering, University of Arizona, Arizona, USA
tcerny@arizona.edu

Abstract. Microservices have been recognized for over a decade. They
reshaped system design enabling decentralization and independence of
development teams working on particular microservices. While loosely
coupled microservices are desired, it is inevitable for dependencies to
arise. However, these dependencies often go unnoticed by development
teams. As the system evolves, making changes to one microservice may
trigger a ripple effect, necessitating adjustments in dependent microser-
vices and increasing maintenance and operational efforts. Tracking dif-
ferent types of dependencies across microservices becomes crucial in an-
ticipating the consequences of development team changes. This paper
introduces the Endpoint Dependency Matrix (EDM) and Data Depen-
dency Matrix (DDM) as tools to address this challenge. We present an
automated approach for tracking these dependencies and demonstrate
their extraction through a case study.

Keywords: Microservice Dependency · Static Analysis · Service Depen-
dency · System Evolution · Automated Reasoning

1 Introduction

Microservice Architecture is widely used for complex systems that require selec-
tive scalability or the decomposition of complex organizational structures into
smaller, independently managed units handled by separate development teams.
As software systems evolve due to market demands, technological shifts, patches,
or optimizations, new features are implemented, and bugs are fixed, potentially
introducing new services and system dependencies [2]. Isolated modifications
of individual services typically do not cause disruptions to others [8]. Neverthe-
less, as systems undergo evolution and dependencies naturally emerge within the
architecture, posing challenges to the system’s consistency and maintainability.
Hence, it becomes crucial to proactively monitor and uphold the principles of low
coupling and minimize dependencies within the architecture. In fact, consider a
scenario where a critical bug is identified in a particular microservice. By accu-
rately tracking the system dependencies, developers can confidently modify and
debug the specific microservice without worrying about unintended consequences
or unintended disruptions to other interconnected services. This highlights the

ar
X

iv
:2

30
9.

02
80

4v
1 

 [
cs

.S
E

] 
 6

 S
ep

 2
02

3



2 Abdelfattah and Cerny

importance of actively managing and preserving a low-coupling architecture to
ensure the long-term stability and scalability of microservice-based systems.

Recent studies highlight the lack of methods to prevent maintainability prob-
lems in microservices [1]. While existing metrics focus on direct dependencies in-
troduced through endpoint calls between microservices, other aspects introduce
dependencies too. For example, the presence of a common data model between
microservices can lead to inconsistencies and coupling, where changes in one mi-
croservice may require modifications in others. This perspective provides another
dimension to understanding the interconnectivity between microservices.

The main objective of this paper is to introduce and identify system de-
pendencies at different perspectives, including direct endpoint calls and data
dependencies, by analyzing the source code of microservices-based systems. We
aim to offer a comprehensive understanding of service dependencies.

One of the key contributions of this paper is the development of an automated
approach that extracts this dependency information directly from the codebase,
ensuring that the obtained insights are up-to-date and free from outdated or
stale information. The paper’s contributions are summarized as follows:

– Describing automated approaches for constructing the Endpoint Depen-
dency Matrix (EDM) and Data Dependency Matrix (DDM) of microservice-
based systems.

– Implementing a prototype that applies the proposed approaches.
– Conducting a case study on a real public microservice project to generate

the dependency matrices and discuss the results.

The paper is organized as follows. Section 2 presents the proposed method for
constructing the dependency matrices. Section 3 presents the case study results
for validation. Section 4 discusses the approach and potential threats to validity.
Section 5 introduces related works. Finally, Section 6 concludes the paper.

2 The Proposed Dependency Methodology

The proposed method focuses on capturing the dependencies within microservice
systems by considering both endpoints and data entities. Microservices systems
utilize specialized frameworks to streamline the development of diverse capabil-
ities. These frameworks often leverage object-oriented concepts and offer robust
implementations. Through the utilization of static analysis techniques applied
to the source code of the microservices, the necessary components are extracted
to facilitate a comprehensive understanding of the system’s dependencies.

To construct the EDM, the method identifies the direct endpoint calls within
the source code, capturing the dependencies between microservices. The DDM is
generated to represent the dependencies based on the shared data entities among
microservices. By combining the information from EDM and DDM, a holistic
depiction of the system’s dependencies is achieved, providing insights into the
flow of dependencies between both endpoints and data entities.

This approach serves as a valuable tool for practitioners to gain a comprehen-
sive understanding of the intricate dependencies within microservice systems. By



The Microservice Dependency Matrix 3

examining the system from both the endpoints and data perspectives, potential
bottlenecks, inefficiencies, or critical dependencies can be identified, enabling
better decision-making for system maintenance and evolution.

Fig. 1: Endpoint Dependency Matrix Generation Process.

2.1 Endpoint Dependency Matrix (EDM)

The dependency between endpoints reveals the interdependencies among differ-
ent microservices, where one microservice’s source code contains a request call
to an endpoint of another microservice. Our process examines the distributed
source codes of microservices to extract the defined HTTP endpoints and re-
quest calls. This process consists of three phases, as depicted in Fig. 1: Endpoint
Extraction, Call Extraction, and Signature Matching.

In the Endpoint Extraction phase, we identify and extract the HTTP
endpoints defined in the source code. Typically, endpoints are specified using
framework-specific functions or annotations. This approach ensures consistency
in metadata identification. During this phase, we collect various attributes for
each endpoint, including the path, HTTP method, parameters, and return type.

The Call Extraction phase focuses on extracting the requests made from
the source code. By identifying the corresponding client, we determine where
these endpoints are called from other services. Through code analysis, we can
gather metadata about every call in the system by identifying the appropriate
function call formats specific to the known HTTP library. Therefore, we extract
the path, HTTP method, parameters’ values, and the expected return type.

The Signature Matching phase involves comparing endpoint method sig-
natures with data and parameters exchanged during REST call interactions. This
process finds the matches between endpoint and request calls in the distributed
source code. The collected endpoint and call details are merged to establish asso-
ciations between calls and their corresponding endpoint components. However,
direct matching is complex due to the endpoint definition including parame-
ter data types, while request calls involve parameter values or variables in the
request’s body or path. Our approach initially considers path and parameter



4 Abdelfattah and Cerny

count matching. Subsequently, regular expressions are employed to identify the
optimal match for parameter types with values in the calls. A successful match
signifies a communication path between microservices via the matched endpoint.

Consequently, we can generate an EDM that illustrates the number of request
calls between each pair of microservices in the system, thereby displaying the
communication dependencies.

2.2 Data Dependency Matrix (DDM)

Each microservice establishes a data-bounded context that defines the scope
where its specific domain model applies. To identify data dependencies, this
method employs static analysis techniques to extract bounded contexts from each
microservice’s source code. It then proceeds to determine the correspondence
between data entities across the individual bounded contexts. The construction
process for data dependencies consists of three phases, as illustrated in Fig. 2:
Components Extraction, Entity Filtration, and Entity Matching.

In the Components Extraction phase, all local classes declared in the
project are extracted. Once these classes are identified, the Entity Filtration
phase follows, which selects both Data Transfer Objects (DTOs) and classes
representing persistent data. It focuses solely on data-related entities, excluding
other classes like those serving as REST controllers or internal services. These
two phases leverage enterprise standards and frameworks’ components, such as
annotation descriptors, to differentiate between class types based on their se-
mantic purpose.

Fig. 2: Data Dependency Generation Process.

Finally, the Entity Matching phase examines all extracted entities across
the microservices to generate a matching list between them. Different bounded
contexts may have distinct intentions for the shared entities, resulting in poten-
tial variations in the fields they retain. This phase matches entities based on
their names, considering if they are the same or similar. Additionally, it exam-
ines whether some of their fields share the same data type and possess similar or
identical names. This process yields the DDM, which provides insight into the
common data entities among microservices.



The Microservice Dependency Matrix 5

3 Case Study

To demonstrate the effectiveness of our method, we apply it to a real-world sce-
nario. It showcases the capabilities of capturing and understanding the depen-
dencies present in microservice systems. Additionally, we seek to provide valuable
insights into the interconnectedness of endpoints and data dependencies, leading
to a comprehensive understanding of the system’s overall dependency landscape.

Our approach was implemented into a prototype, which we utilized to analyze
a publicly available testbench. This allowed us to construct matrices depicting
the dependencies of endpoints and data. The comprehension of system depen-
dencies provided by these matrices serves as a valuable tool for facilitating seam-
less modifications and preserving the maintainability of the system. Moreover,
these matrices play a crucial role in monitoring the evolution of dependencies
throughout system changes. By generating and analyzing the dependency ma-
trix, developers can track the impact of each commit on the system, observe how
it affects system dependencies, and evaluate system coupling and stability. This
enables informed decision-making and proactive management of dependencies,
ultimately leading to a more robust and adaptable system architecture.

3.1 Prototype Implementation and Testbench

We developed a prototype3 implementation of our proposed approach specifically
designed for analyzing Java-based microservices projects utilizing the Spring
Boot framework. The prototype utilizes Graal [5], the runtime system developed
by Oracle Labs. The prototype takes a GitHub repository containing microservices-
based projects as input. It downloads the repository and generates a list of di-
rectories for each microservice project.

For the Endpoint Dependency Matrix, the prototype scans the project
files for JAX-RS annotations that define endpoints. By combining class-level
and method-level annotations, it creates a comprehensive definition for each
endpoint, including its path, HTTP method, parameters, and return type. The
prototype also scans each microservice to identify the Spring Boot REST client
(RestTemplate client) and detects HTTP calls between services. It then applies
the signature matching technique to match the detected calls with the corre-
sponding endpoints. The prototype generates a JSON structure that represents
the dependencies between microservices and the matched calls. Each microser-
vice name serves as a key in the structure, containing two list values: Dependen-
cies and Dependant services. These lists provide detailed information about the
involved endpoints associated with each microservice node.

Regarding the Data Dependency Matrix, the prototype extracts all lo-
cal classes in the project using a source code analyzer. It filters this list down
to classes serving as data entities using persistence annotations (JPA standard
entity annotations such as @Entity and @Document). It also considers annota-
tions from Lombok4, a tool for automatically creating data entity objects (e.g.,

3 Prototype: https://github.com/cloudhubs/graal-prophet-utils
4 Lombok: https://projectlombok.org

https://github.com/cloudhubs/graal-prophet-utils
https://projectlombok.org


6 Abdelfattah and Cerny

@Data), although these annotations do not explicitly indicate persistence. The
prototype then examines the entities of different bounded contexts and their
fields, applying the matching rules described above. To detect name similar-
ity, the prototype employs the WS4J5 project, which relies on the WordNet [4]
dictionary. The prototype generates a JSON format, including entities and rela-
tionships for each microservice. It also presents a list of entities that provides a
holistic context map of the system after eliminating duplicated matched entities.

Testbench: To demonstrate our case study, we utilized a public microservices
testbench known as the train-ticket6 testbench system. It comprises 47 microser-
vices, with 42 of them based on the Java-based Spring Boot framework. The
system adheres to enterprise conventions by employing distinct controllers, ser-
vices, and repositories for layering the application. Inter-service communication
between microservices in the system is facilitated through REST API calls.

3.2 Results

The prototype was executed on the testbench to construct the endpoint and data
dependencies. To ensure the data extraction’s completeness, the prototype out-
comes were manually validated. The resulting dependencies were analyzed sep-
arately and subsequently combined to form a comprehensive dependency view
of the system. The heatmap is used as the visualization approach for the depen-
dencies. Due to space constraints, the discussion refers to the microservices IDs
listed in Table 1. For more detailed results, please refer to the provided dataset7.

Endpoint Dependency: The endpoint dependency matrix (EDM) is depicted
in Fig. 3. The first column represents the microservices IDs containing request
calls to the microservices listed in the first row. The values within each cell indi-
cate the number of endpoint calls between each pair of microservices. Microser-
vices containing no request calls to other microservices have been removed from
the first column. This includes the following 16 microservices: 1, 4, 7, 9, 11, 13, 16−
18, 20 − 22, 31, 32, 40, and 42. Similarly, microservices that do not have any re-
quest calls made to them have been eliminated from the first row, resulting in re-
moving the following 16 microservices: 1, 19, 23, 24, 26−30, 32−35, 39, 41, and 42.

The dependency matrix showcases dependencies between multiple microser-
vices, primarily consisting of one or two endpoint calls. However, there are four
dependencies with a degree of three: 25 → 18, 27 → 7, 29 → 17, and 39 → 36.
Notably, these dependencies originate from different microservices. The high-
est degree of dependencies observed is four, which occurs in seven pairs of mi-
croservices: 23 → 6, 27 → {9, 16, 18, 22}, and 28 → {14, 15}. The microservice
ts-admin-basic-info-service (ID 27) exhibits a fourth-degree dependency on
four distinct microservices, while the microservice ts-admin-order-service (ID
28) relies on the microservices ts-order-other-service (ID 14) and ts-order-

service (ID 15), each with four endpoint calls.

5 WS4J: https://github.com/Sciss/ws4j
6 Train-ticket V1.0.0: https://github.com/FudanSELab/train-ticket/tree/v1.0.0
7 Dataset: https://zenodo.org/record/8106860

https://github.com/Sciss/ws4j
https://github.com/FudanSELab/train-ticket/tree/v1.0.0
https://zenodo.org/record/8106860


The Microservice Dependency Matrix 7

Table 1: List of train-ticket microservices and associated IDs
ID Name ID Name ID Name
1 ts-common 15 ts-order-service 29 ts-admin-route-service
2 ts-travel-service 16 ts-price-service 30 ts-admin-travel-service
3 ts-travel2-service 17 ts-route-service 31 ts-consign-price-service
4 ts-assurance-service 18 ts-station-service 32 ts-delivery-service
5 ts-auth-service 19 ts-food-delivery-service 33 ts-execute-service
6 ts-user-service 20 ts-station-food-service 34 ts-preserve-other-service
7 ts-config-service 21 ts-train-food-service 35 ts-preserve-service
8 ts-consign-service 22 ts-train-service 36 ts-route-plan-service
9 ts-contacts-service 23 ts-admin-user-service 37 ts-seat-service

10 ts-food-service 24 ts-rebook-service 38 ts-security-service
11 ts-payment-service 25 ts-basic-service 39 ts-travel-plan-service
12 ts-inside-payment-service 26 ts-cancel-service 40 ts-verification-code-service
13 ts-notification-service 27 ts-admin-basic-info-service 41 ts-wait-order-service
14 ts-order-other-service 28 ts-admin-order-service 42 ts-gateway-service

Fig. 3: Endpoint Dependency Matrix (EDM).
The longest rows and columns are visually marked using a red rectangle.

Examining the longest rows containing values in the matrix reveals microser-
vices with the highest number of dependencies, indicating that they make re-
quests to a significant number of other microservices. For instance, the ts-rebook-
service (ID 24) exhibits dependencies on eight different microservices, while the
longest row belongs to ts-preserve-other-service (ID 34) and ts-preserve-

service (ID 35) with eleven dependencies. On the other hand, analyzing the
longest column highlights the microservices with the most dependants, meaning
they receive requests from a greater number of microservices. The matrix indi-
cates that ts-route-service (ID 17) and ts-train-service (ID 22) have a
length of seven dependent microservices. However, the longest column contains
eight dependants, which are microservices with IDs 14, 15, and 18.



8 Abdelfattah and Cerny

Table 2: Endpoints receiving more than three calls from other microservices.
ID Endpoint Path Method #Calls #µs

17 ts-route-service/api/v1/routeservice/routes GET 8 7

18 ts-station-service/api/v1/stationservice/stations/id GET 4 3

22 ts-train-service/api/v1/trainservice/trains/byName GET 6 6

25 ts-basic-service/api/v1/basicservice/basic/travel POST 6 4

Further analysis delves into whether the dependants of a microservice make
requests to the same endpoint or if they are spread across multiple endpoints
within the microservice. The table presented in Table 2 highlights the endpoints
that receive multiple requests from other microservices, specifically focusing on
endpoints with more than three requests. It is important to note that not every
call originates from a distinct microservice as shown in column (#µs). Notably,
the GET endpoint with the path ts-route-service/api/v1/routeservice/route
receives eight calls from seven different microservices. This observation could in-
dicate a potential functional bottleneck in the system, where multiple microser-
vices rely on this endpoint to fulfill their respective use cases.

Fig. 4: Data Dependency Matrix (DDM).
The longest rows and columns are visually marked using a red rectangle.

Data Dependency: The data dependency matrix (DDM) in Fig. 4 represents
the number of common data entities between microservice pairs. The rows and
columns correspond to microservice IDs, while the cell values indicate the count
of matched data entities. Unlike the endpoint dependency matrix (EDM), this
matrix is symmetric and undirected, meaning the values remain the same regard-
less of whether one starts from the rows or columns. A total of 18 microservices
(IDs 25-42) have been excluded from the rows and columns of the DDM because
they do not share any common data entities with other microservices.



The Microservice Dependency Matrix 9

The matrix reveals that multiple microservices share one or two common data
entities with other microservices. However, the maximum number of common
entities between a pair of microservices is four, observed between ts-common

(ID 1) and both ts-travel-service (ID 2) and ts-travel2-service (ID 3),
and also between ts-travel-service (ID 2) and ts-travel2-service (ID 3).

Moreover, the longest row in terms of values belongs to ts-common (ID 1),
indicating that this microservice shares the most common entities with other
twenty microservices. However, the next longest row corresponds to ts-user-service
(ID 6) with a length of only three, highlighting a significant disparity in data
dependencies among the microservices, with a concentration of dependencies in
a single microservice (ts-common). Upon further examination of the most com-
mon data entities across all microservices, we identified eight commonly shared
entities: AdminTrip, Order, OrderAlterInfo, StationFoodStore, Travel,

Trip, TripAllDetail, and User. All these entities also exist in ts-common, but
are shared only across three distinct microservices.

Comprehensive Service Dependency: By combining the EDM and the
DDM, we generate a comprehensive perspective of the system’s dependencies
known as the Service Dependency Matrix (SDM), as shown in Fig. 5. The SDM
represents microservice IDs as both columns and rows. The cell values in the
SDM are decimal numbers, where the integer part corresponds to the endpoint
dependency degree from the EDM, and the fractional part corresponds to the
data dependency degree from the DDM.

To visually distinguish between different types of dependencies, the matrix
utilizes different colors for endpoints-only dependencies, data-only dependencies,

Fig. 5: Service Dependency Matrix (SDM).



10 Abdelfattah and Cerny

and dependencies involving both endpoints and data. The inclusion of data de-
pendency in the fractional part of the SDM does not diminish its value compared
to the endpoint dependencies. The construction of the decimal value is primarily
related to the data formatting rather than the absolute significance of the cell
value. For instance, consider the cell at position (row: 23, column: 6) in the SDM,
which has a value of 4.1. This value indicates that ts-admin-user-service mi-
croservice (ID 23) has made four calls to ts-user-service microservice (ID 6),
and there is one common entity (UserDto) shared between them.

Analyzing the SDM, it becomes apparent that the responsibility of hold-
ing common data entities among microservices is predominantly concentrated in
the ts-common microservice. This concentration results in distinct separations
between the dependencies of endpoints and data entities. However, some over-
laps can still be observed between the following four microservice pairs: 6 → 5,
12 → 11, 19 → 20, and 23 → 6. These pairs demonstrate a strong dependency
within the system, as they depend on each other for both direct endpoint calls
and the presence of common data entities. These dependencies highlight their
interconnected nature and the importance of their mutual interaction.

4 Discussion

In the proposed method, we aim to provide a comprehensive understanding of
system dependencies by considering both the endpoints and data perspectives.
The introduced dependency matrices present system-centric perspectives that
have the potential to provide a scalable visualization approach, helping practi-
tioners in comprehending the system architecture and its dependencies. Blending
endpoint dependencies (EDM) and data dependencies (DDM) within a unified
matrix (SDM) has the potential to unveil more profound architectural concerns
within microservices applications, surpassing what can be discerned from the
separate EDM and DDM matrices. Moreover, by comparing the metrics across
different versions, we can track the evolution of system dependencies over time.

While our method and prototype are valuable, it is important to acknowledge
their limitations, particularly regarding the consideration of other perspectives
of dependencies. The asynchronous communication model between microservices
(e.g., publish-subscribe pattern), is not currently covered by our approach and
they are not used in the train-ticket testbench as well. Incorporating such per-
spectives would provide additional insights into the interconnections between
system components beyond the direct endpoint calls. Furthermore, this study
focuses on analyzing the system’s source code to gain a holistic understanding of
all possible execution paths. However, considering the runtime interactions cap-
tured in logs and traces could provide valuable insights into the actual number
of calls made to a particular microservice. This additional perspective could offer
an additional depiction of the dependencies between microservices and enhance
our understanding of the system’s behavior.
Threats to Validity: The method does not address all potential microservice
dependencies, its purpose is to illustrate how dependency matrices can assist in



The Microservice Dependency Matrix 11

system analysis. Our prototype tool is tailored for the Java platform, potentially
restricting its relevance to other programming languages. However, it’s impor-
tant to emphasize that the focus was on introducing the methodology rather
than creating an exhaustive tool. In certain cases, the prototype tool might
encounter challenges in accurately matching method signatures, particularly in
situations where there are ambiguous method names. Additionally, the entity
matching process is currently restricted to basic similarities such as names and
field matches, indicating that there are inherent limitations in approximation.

The case study analysis may be influenced by specific constructs present in
the selected testbench, potentially limiting the prototype’s generalizability across
different systems. However, manual validation of the prototype’s outcomes was
performed to ensure the completeness of information extraction from the source
code. Furthermore, the chosen testbench is employed in various research and is
regarded as a well-established and representative microservice system.

5 Related Work

Numerous studies underscore the significance of managing dependencies in mi-
croservice architectures. According to Lewis and Fowler [8], loosely coupled mi-
croservices offer advantages in independent modifications but pose challenges as
systems evolve. To analyze such dependencies, scholars have introduced various
techniques. Apolinário et al.[1] focus on endpoint calls, Sangal et al.[11] employ
static analysis for dependency models, and Eski and Buzluca [6] use evolutionary
code coupling. Our approach uses static analysis to extract and integrate both
endpoint and data dependencies for a comprehensive system view.

In the realm of heterogeneous dependencies in distributed systems, Fang et
al. [7] devised specialized tools for compile-time dependency extraction through
static analysis. They targeted entity dependencies within components and hard-
coded API dependencies, using text comparison. In contrast, our method goes
beyond text-based analysis, incorporating semantic similarities and fine-grained
dependency capture through signature matching.

Effective visualization is crucial for comprehending system dependencies.
Multiple studies [10,9,3] propose graph-based visualizations depicting microser-
vice dependencies, focusing on communication patterns via endpoint calls. In
contrast, our approach employs dependency matrices to visualize and analyze
the system, offering a distinct view of microservices’ dependencies.

6 Conclusion

System dependency analysis in microservices provides valuable insights for prac-
titioners to comprehend the system. This paper integrates endpoint and data de-
pendencies, offering a comprehensive understanding of system dependencies and
facilitating informed decision-making in developing and evolving microservice-
based systems. The analysis is addressed through static code analysis providing



12 Abdelfattah and Cerny

perspectives that enable reasoning about system maintainability and monitor-
ing system dependency evolution across different versions. Our approach encom-
passes a detailed analysis of individual microservices, combining the results to
a holistic dependency perspectives that can be visualized and interpreted. The
focus was on generating the EDM and DDM from the source code and further
combining them to create the SDM for a more comprehensive perspective. The
proposed methodology was implemented in a prototype and validated through
a case study, highlighting its efficacy in understanding system dependencies.

Future work will include asynchronous call dependencies, recognizing their
importance. We also aim to expand the prototype for analyzing system polyglots.

Acknowledgements
This material is based upon work supported by the National Science Foundation
under Grant No. 2245287.

References

1. Apolinário, D.R., de França, B.B.: A method for monitoring the coupling evolution
of microservice-based architectures. Journal of the Brazilian Computer Society
27(1), 17 (2021)

2. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microservice
architecture reconstruction and visualization techniques: A review. In: 2022 IEEE
International Conference on Service-Oriented System Engineering (SOSE). pp. 39–
48. IEEE (2022)

3. Cerny, T., Abdelfattah, A.S., Bushong, V., Al Maruf, A., Taibi, D.: Microvision:
Static analysis-based approach to visualizing microservices in augmented reality.
In: 2022 IEEE International Conference on Service-Oriented System Engineering
(SOSE). pp. 49–58. IEEE (2022)

4. Christiane, F., Brown, K.: Wordnet and wordnets. In: Encyclopedia of Language
and Linguistics, pp. 665–670. Oxford: Elsevier. (2005)

5. Duboscq, G., Stadler, L., Würthinger, T., Simon, D., Wimmer, C., Mössenböck, H.:
Graal ir: An extensible declarative intermediate representation. In: Proceedings of
the Asia-Pacific Programming Languages and Compilers Workshop. pp. 1–9 (2013)

6. Eski, S., Buzluca, F.: An automatic extraction approach: Transition to microser-
vices architecture from monolithic application. In: Proceedings of the 19th Inter-
national Conference on Agile Software Development: Companion. pp. 1–6 (2018)

7. Fang, H., Cai, Y., Kazman, R., Lefever, J.: Identifying anti-patterns in distributed
systems with heterogeneous dependencies. In: 2023 IEEE 20th International Con-
ference on Software Architecture Companion (ICSA-C). pp. 116–120 (2023)

8. Lewis, J., Fowler, M.: Microservice. https://www.martinfowler.com/articles/
microservices.html, accessed: 2022-12-13

9. Oberhauser, R., Pogolski, C.: Vr-ea: Virtual reality visualization of enterprise archi-
tecture models with archimate and bpmn. In: International Symposium on Business
Modeling and Software Design. pp. 170–187. Springer (2019)

10. Rahman, M.I., Panichella, S., Taibi, D.: A curated dataset of microservices-based
systems. SSSME-2019 (2019)

11. Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. In: 20th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications. pp. 167–176 (2005)

https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html

	The Microservice Dependency Matrix

